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Abstract 
 

In this paper, an improved Poisson matting method 
is proposed to segment participants in real-time at a 
tele-presence session from their background. In order 
to improve the matting process, we introduce the 
concept of color distance and extend the standard 
Poisson matting using patch matching. The idea of 
patch based matching algorithm which is widely used 
in texture synthesis is adopted here to estimate the 
foreground and background color more precisely in  
complex scenes. A set of experimental results 
demonstrate the accuracy and robustness of the 
proposed method. We also present a GPU (Graphics 
Processing Unit) implementation of the algorithm 
capable of an average speed-up of 25 times compared 
to its CPU implementation. 

 
 

1. Introduction 
 
    Tele-presence is one of the most important 
applications of computer vision and image processing 
nowadays. Tele-presence not only provides a shared 
virtual meeting environment, but also supports eye 
contact and non-verbal communication that are so 
important in real-world conversations. Ultimately tele-
presence system will be able to create the illusion that 
participants are in the same meeting room and talking 
face to face. 

In this paper, we focus on the first step of a real 
time tele-presence system where each participants need 
to be extracted from their background using a robust 
foreground-background segmentation technique. The 
extracted foregrounds (participants) are then processed 
in the next step of a tele-presence pipeline where it is 
inserted in the virtual meeting room. Examples of such 
systems can be found in the literature for virtual 
meeting [1][2][3][4] or for direct eye contact 
conferencing systems [2][3]. This segmentation 

process requires that the system must automatically 
determine if each pixel are either foreground or 
background. In many algorithms, some foreground 
parts will be miss-classified if the color of the 
background is close to its foreground. Many of the 
algorithms found in the literature do not work well for 
regions with subtle artifacts, such as hair and glasses 
and need to be improved in order to create high-quality 
video avatars. 

Image matting is a process of image segmentation 
where pixels are classified as either foreground or 
background. The main different with other image 
segmentation techniques is that it allows the pixels to 
belong at the same time to the foreground or 
background categories and is frequently called “soft 
segmentation”. Image matting can be described 
mathematical by:  
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     is the 2D image coordinates of a pixel and 

represents the color of the pixel . Similarly, 
and are the foreground and background 

color of pixel  respectively. The matrix α  is a 
weighing value for each pixel between the foreground 
and the background and is set to be between [0, 1]. 
When 
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1, =jiα  this means that the pixel is definitely 
foreground, and when  this means that the 
pixel is definitely background.  Image matting starts by 
defining a tri-map that can be initialized manually or 
automatically using IR imaging as in [6]. A tri-map 
image consists of pixels with three states: definite 
foreground (DF), definite background (DB), and 
unknown region. 

0, =jiα

    Among all the image matting methods one can find 
in the literature, Poisson matting [5] has the most 
potential to be implemented for real-time applications 
because solving Poisson equation is the same at each 
pixel which is ideal for a GPU implementation. 



Although the GPU processing power can help us reach 
our requirement for real time (30FPS), there are some 
constrains that must be imposed that will limit the 
quality of the matting results. First, the closest pixel 
(measured by the smallest Euclidean distance in color 
space) is chosen as the estimation of the foreground 
and background color in the unknown region. 
However, in real cases, the closest pixel color 
requirement is sometimes not the correct one. 
Moreover, this distance metric is not robust without 
neighbor and color information. In this paper, two 
algorithms are presented to overcome the shortcomings 
of the standard Poisson matting algorithm. The first 
improvement is based on a texture comparison 
technique of local patches [8], inspired by texture 
synthesis [7][8]. It takes advantage of the neighbor 
information and is employed to improve the estimation 
of the foreground and background. The other 
improvement is the use of color distance [10] to 
calculate the patch similarity. Color distance collects 
color information from RGB channels and simulates 
the YUV space. Experiment results demonstrate that 
the proposed methods enhance the accuracy of Poisson 
matting and works very well in the context of the real-
time requirements for tele-presence. 
    The paper is organized as following.  Section 2 
starts by presenting the so called “standard” Poisson 
matting algorithm and then illustrates how to extend 
this algorithm. Section 3 presents experiment results 
comparing the two methods and its speed-up using 
GPU.  We will then conclude and describe our future 
work plan. 
 
2. Improved Poisson Matting 
 
2.1. Standard Poisson Matting 
 
    There exist two different types of Poisson matting 
algorithms: global Poisson matting and local Poisson 
matting. Since local Poisson matting necessitates 
manual operation to post-process the matting result, in 
this paper, we will only deal with global Poisson 
matting as tele-presence require fully automatics 
segmentation. The main steps of Poisson matting as 
described in [5] are as following: 
(1) Foreground and background initialization: create 

a tri-map classification either manually or using IR 
illumination as described in [6] or range data is in 
[9] . 

(2) Fill unknown regions: for each pixel in the 
unknown region, find the nearest pixel in the 
definite foreground or definite background, and 
then copy the color from this pixel in two images 
F and B. 

(3) α Reconstruction: according to the matting 
equation (1) described in [5], the partial 
derivatives of the original image is a combination 
of the derivative of the foreground image F and 
background image B and the weighing function α :  
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    Assuming the foreground and background are 
smooth where F∇ and close to zero and by 
ignoring the two terms  and , 

Equation (2) can be rewritten as:  
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    Under Dirichlet boundary condition, the partial 
derivative of both sides of (3), matting equation is 
transformed into the form of a Poisson equation: 
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(4) Refinement: depending on the solution of Poisson 
equation, divide those pixels in the unknown 
region with α  values greater than 0.95 to the 
definite foreground. The same to the background, 
those pixels whose α  values less than 0.05 are 
added to the definite background.   

 (5) Iterate step (3) and (4) until convergence. 
 
Please refer to [5] for more details about global 
Poisson matting. 
 
2.2.Matching Using Patch Related Information 
 
    Besides the tri-map, the image is divides into three 
parts: target foreground (TF), target background (TB) 
and unknown region. The unknown region is the same 
with the tri-map. Target foreground is composed by 
those pixels whose neighboring pixels in the same 
patch are also in the definite foreground. Target 
background has the similar definition.  

Suppose ),( jiΨ is a n x n patch centered at , the 
pixels in patch 

),( ji
),( jiΨ  can be defined as:  
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Therefore, the target foreground is:  
 
               }),(,),(),({ DFtsPDFtstsTF ⊂∈=          (7)  

 



Similarly, the target background is: A simple way to calculate the color difference is the 
sum of squared difference (SSD) of 3 channels in RGB 
space. However, RGB does not model how human 
perceive color. Ideally one should convert the color to 
the YUV space but that would increase the 
computation load during execution. 
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    The default patch size set in this paper is at a 
neighborhood of  9 x 9.   As suggested in [10], a weighted Euclidean distance 

in RGB is described as:     Inspired by [7], the estimated foreground colors are 
not just copied from the nearest pixels in the definite 
foreground. Instead, for each patch  in the 
unknown region, we look at the closest patch 
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the target foreground (with the smallest distance). 
Then, the estimated foreground color of pixel  is 
determined by the average color of a 3 x 3 

.The estimated background is done in the same 
way.  
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This function is a simulation of the color distance in 

YUV space while the calculation depends on the RGB 
values directly. In this way, the distance of two patches 
is defined as the sum of color distance between all 
pairs of corresponding pixels using Equation 10. 

  
2.3. Color Distance 2.4.Estimation of Foreground and Background 
  
    Before the definition of the distance between two 
patches, we introduce a Euclidian distance for color. In 
traditional Poisson matting, the color images are 
converted to gray value where color information is lost. 
The same value in gray scale does not means they 
come from the same 3- channel color. In other words, 
the smallest color distance in gray scale level is not 
equal to the smallest color distance in color space. 
Therefore, the measure of distance of two patches has 
to be processed in color space. 

    In addition, the construction of estimated foreground 
and background has a certain order. We give a 
confidence value to each pixel in the unknown region. 
For pixel , the confidence value is defined by how 
many pixels in 

),( ji
),( jiΨ  belong to the definite 

foreground or background regions. The pixel with the 
highest confidence value has the highest priority to 
choose the closest patch.  All the confidence values are 
updated when the pixels with the highest confidence 
values have found the closest patches. 
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Figure 1. Comparison between improved method and standard Poisson matting (Image 1): (a) original image 

(b) proposed method (c) standard Poisson matting (d) ground truth 
 
 

       
 (a)                          (b)                        (c)                          (d) 

 
Figure 2. Comparison between improved method and standard Poisson matting (Image 2): (a) original image 

(b) proposed method (c) standard Poisson matting (d) ground truth                                 



3. Experiment Results 
 
    We tested our algorithm compared to the standard 
Poisson matting technique and to a ground truth 
segmentation. Figure 1 and Figure 2 show the results 
obtained for both methods. From left to right, (a) is the 
original color image, (b) is the matting obtained from 
the proposed method, (c) is the matting obtained using 
standard Poisson matting and (d) is the ground truth. 
One can observe that the improved method can 
segment more precisely the image near subtle changes 
than the standard method.  
 

According to [11], a MSE (Mean Square Error) 
estimate can be used as an efficient and objective 
criterion to give a more rigorous comparison between 
the two methods. Table 1 shows the MSE between the 
matting results and ground truths. On average the 
segmentation error was reduced by 5% to 10%. 

 
Table 1. MSE comparison 

(Original Poisson matting/Improved method) 
 Image 1 Image 2 

Original 381.46 376.63 
Improved 363.22 344.62 

% of Improvement 
over original 

method 

 
4.78% 

 
8.5 % 

 
 3.2. Comparison of GPU and Implementation 
 
    We implement the improved Poisson matting on 
both CPU and GPU. The GPU version runs on an 
NVIDIA GeForce 9800 X2 display card, which 
provides CUDA (Compute Unified Device 
Architecture) to support parallel computation. The 
CPU implementation runs on an Intel (R) Core (TM) 2 
Extreme CPU X9770 @ 3.02GHz. The size of Image 1 
is 400*300 and the size of Image 2 is 400* 400. 

 
Table 2. Running time comparison between CPU 

and GPU implementation (in seconds)     
 Image1 Image2 

CPU 97.4 96.9 
GPU 3.8 4.7 

Speed-up 26 20.6 
 

    Although we only have on average a 25 times 
speedup on one GPU. In the future, we will continue to 
optimize our GPU code and use multi-GPU to further 
improve the speed to the hard constraints of 30FPS. 

 
 

4. Conclusion and Future Work 
 
    In this paper, we propose a new and improved 
matting algorithm that can be used in tele-presence 
system.  By performing patch based comparison and 
by using color distance for a similarity metric we were 
able to improve significantly the matting process 
especially near complex borders. The experiments 
demonstrate that the improved Poisson matting works 
more accurate and robust than global Poisson matting. 
We also demonstrated that 25 times speedup are 
possible on a standard GPU.  We are currently 
implementing the same algorithm on a 4 NVIDIA 
5800 GPUs cluster where we hope to reach 30 FPS. 
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