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Abstract— One can find in the literature numerous techniques
to reduce noise in Magnetic Resonance Images (MRI). This
paper critically reviews modern de-noising algorithms (Gaus-
sian filter, anisotropic diffusion, wavelet, and non-local mean)
in terms of their efficiency, statistical assumptions, and their
ability to improve brain tumor segmentation results. We will
show that although the different techniques do reduce the noise,
many generate artifacts that are incompatible with precise brain
tumor segmentation. We also show that the non-local means
algorithm is the best de-noising technique for brain tumor
segmentation.

I. INTRODUCTION

Magnetic Resonance Images (MRI) are widely used for
diagnosis and the treatment of brain tumors. MRI provide
invaluable information about localization, shape, and size of
tumors without exposing the patient to the high ionization
radiation imposed by other modalities, as: CT, PET, or SPEC.
However, during the MRI acquisition process there are trade-
offs between resolution, acquisition speed, and signal-to-
noise ratio (SNR) that affect the quality of the images and
its subsequent analysis. One way to improve the SNR in
MRI is to increase the acquisition time. Although such an
option is not always practical due to technical limitations
and patient comfort. In general, when the acquisition time
is reduced and the temporal resolution is increased, both the
SNR and the contrast are degraded. Noise and low-contrast
in MRI data make it difficult to precisely delineate regions
of interest between tumor and normal brain tissues. Most
segmentation algorithms found in the literature [1] tend to
be very sensitive to noise, intensity inhomogeneities and low-
contrast. For this reason, it is necessary to pre-process MRI
data to reduce noise and to enhance contrast between regions.
There are several algorithms proposed for de-noising MRI
data, some adapted from general image processing methods
while others developed specifically to deal with the noise
in MRI. Some authors [2], [3], [4], argue that MRI should
be treated differently because the noise does not follow the
standard Gaussian assumption, but a more complex Rician
distribution [5]. It is well known that almost all image
processing filters are based on the Gaussian assumption
and do blur discontinuities between regions hence, reducing
contrast. This is the main challenge in de-noising MRI data
for a segmentation application, i.e. to preserve the edges
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and details but at the same time to reduce noise in uniform
regions. There are many algorithms described in the literature
capable of reducing MRI noise and hence improving the
SNR. On the other hand there is no comprehensive review
comparing their abilities at improving the quality of the
data such as high spatial resolution and good contrast, and
also improving segmentation and visualization. We divide
the MRI de-noising algorithms into four major categories:
Finite Impulse Filters (FIR), Anisotropic Diffusion, Wavelet
and based on Non-Local Means (NLM ) algorithm.

This paper is organized as follows, Section II briefly
explains the basic principles of each category. Section III,
describes the experiments carried out to compare the different
algorithms at de-noising MRI data and improving the quality
for brain tumor segmentation. Section III discusses the
results, and finally, Section IV concludes and presents future
research directions.

II. DE-NOISING ALGORITHMS

In this section, we explain the basic principles for three
categories, Anisotropic Diffusion, Wavelets and Non-Local
Means algorithm; we ommit Gaussian filter as it is trivial.

A. Algorithm Based on Anisotropic Diffusion

Anisotropic diffusion was first introduced by Perona and
Malik [6] as a multi-scale technique to detect edges. The
algorithm is based on an anisotropic diffusion process that
favors smoothing within continuous regions while it avoids
smoothing across boundaries between regions. The filter
is based on a constrained differential diffusion equation
where pre-computed edges are viewed as locations with low
diffusion coefficients. The diffusion equation is:

It = div(c(x, y, t)∇I) = c(x, y, t)4I +∇c · ∇I (1)

The operators div, ∇ and 4 are the divergence, the gradient
and the Laplacian operators respectively. I represents an
intensity image while t is the process ordering parameter or
diffusion time. The term c(x, y, t) is a scalar field controlling
the diffusion strength. It has a monotonically decreasing
function that is directly proportional to the initial magnitude
of the gradient 4I . At locations with large gradients, where
boundaries are assumed to happen, the initial value of
c(x, y, 0) is close to zero while it is a maximum at locations
with small gradients.



Perona and Malik propose Equations (2) and (3) to esti-
mate the values of c(x, y, t):

g(∇I) = exp
(
− (‖∇I‖/K)

2
)

(2)
or

g(∇I) =
(
1 + (‖∇I‖/K)

2
)−1

(3)

where K is a scalar parameter controlling the edge enhance-
ment threshold.

B. Algorithm Based on Wavelet Analysis

Wavelets and multi-resolution analysis are intrinsically
connected. Multi-resolution analysis with wavelets is based
on two operations: dyadic dilations and integer translation
[7]. The Wavelet transform has the advantage of being
adaptable in both time and frequency to discontinuities in the
signal. In the wavelet framework, a signal f(x) is represented
as infinite combinations of a discrete wavelet at different
scales and tranlations as defined by:

f(x) =

∞∑
j=−∞

∞∑
k=−∞

dj,kΨj,k(x) (4)

In Equation (4), j and k are the scale and translation
parameters respectively. The function Ψj,k(x) is a Mother
wavelet or basis function at scale j with a distinct translation
k. The coefficients dj,k {j, k ∈ Z} called the wavelet or
mixing coefficients of Ψj,k(x) are used to reconstruct f(x).
Each coefficient dj,k is estimated by convolving the signal
f(x) with the Mother wavelet function Ψj,k(x):

dj,k =

∫ +∞

−∞
f(x)Ψj,k(x)dx = 〈f,Ψj,k(x)〉. (5)

With wavelet analysis, the signal’s energy is distributed
through out the scale-space. De-noising in the wavelet-scale
domain involves thresholding the coefficients dj,k at different
scales and discard those with non-significant energy that do
not change y the signal’s morphology.

C. Algorithm Based on Non-Local Means

The de-noising methods in this category were first intro-
duced by Buades, Coll and Morel [8]. In principle, these
algorithms estimate the true value at pixel i from the mean
of all the values from non-local pixels or voxels whose
neighborhoods are similar to the neighborhood of i. Given
a discrete image υ = {υ(i) | i ∈ I}, the estimated value
NL[υ](i) is computed as a weighted average of all the pixels
j in the image:

NL[υ](i) =
∑
j∈I

w(i, j)υ(j) (6)

In Equation (6), each w(i, j) is a weight that depends on the
similitude metric between grey levels of the neighborhoods
around pixels i and j. The similitude between two neigh-
borhoods is estimated using a Gaussian weighted Euclidian
distance.

III. EXPERIMENTS AND RESULTS

The comparison among methods presented in this section
was performed on twenty simulated T1-MRIs. This set
of images were generated using the brain MRI simulator,
BrainWeb [9]. We also used ten real MRIs containing brain
tumors to see the effect of the filters on tumor segmenta-
tion. These MR images were provided by the Brain Tumor
Analysis Project [10], a joint project between the Cross
Cancer Institute and the Computing Science Department at
University of Alberta, Canada. We compared six algorithms
from the four categories: Gradient anisotropic diffusion algo-
rithm implemented by Gerig et al. [11], curvature anisotropic
diffusion implemented in the ITK library, an open-source,
cross-platform image processing library that provides soft-
ware developers tools for image processing [12], Nowak’s
method based on wavelet [2], the original non-local means
proposed by Buades et al. [8], the unbiased non-local means
algorithm proposed by Manjón et al. [3], and finally, a simple
Gaussian filter as a reference.

A. Evaluation for Synthetic MRIs

The brain MRI simulator in [9] allows the user to generate
synthetic MR brain images with different modalities, levels
of noise, slice thickness, and non-uniformity contents. We
first generated a complete volume without noise as our
reference. This reference volume contains 20 slices of 5 mm.
thick and it was generated with ”Inversion Recovery” (IR)
scan technique to generate slices similar to the real MRIs
data that we also used in our evaluation. Each 2-D image
was corrupted with Rician-noise for ten different values of
variance σi in the range between [2, 20]. We compared the
performance of the different algorithms in the least-square
sense using the Root-Mean-Square Error (RMSE), Equation
(7):

RMSE =
√

(υo − υf )2 (7)

where υo is the noise-free image and υf is the smoothed
image. Figures (1a) and (1b) illustrate the performances of
each algorithm. The horizontal axis in each figure represents
the noise variance σ while the vertical axis is the logarithm
of average RMSE values obtained for each method over the
set of twenty MR images. Figure (1a) shows that Nowak’s
method had the worst performance of all the methods. The
two anisotropic diffusion algorithms and the Gaussian filter
showed similar performance at different noise levels. Figure
(1b) depicts the performance of the two non-local mean
algorithms and the Gaussian filter. The classical non-local
means version performance is similar to the Gaussian filter,
while Manjón’s variant outperformed both the classical non-
local means and the Gaussian filter.

Figure (2) shows de-noised slices. Figure (2a) is a syn-
thetic MRI slice without noise, Figure (2b) is the same slice
with noise at level σ = 16 and the remaining subfigures
are the results obtained after applying each of the de-noising
algorithms.
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(a) Anisotropic algorithms vs. Nowak’s algorithm vs.
Gaussian filter
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(b) Algorithms based on Non-local means vs. Gaussian
Filter

Fig. 1: Performance comparisons at de-noising the synthetic
images.

(a) Noise-free (b) Noise σ = 16 (c) Gaussian (d) Nowak

(e) Anisotropic (f) Curvature (g) NLM (h) Manjón

Fig. 2: Visual comparison for the various de-noising algo-
rithms.

B. Evaluation for Real MRI

We next used Real MRI data to evaluate the algorithms
performance at segmenting brain tumors. For this purpose
we used expert’s manual tumor segmentation as references.
The MRI segmentation was performed using the Confidence
Connected Segmentation (CCS) algorithm in the ITK library
[12]. First, we segmented the tumor on each unfiltered

image in order to establish a performance baseline. We
then performed the same segmentation after the image were
processed by the six de-noising algorithms mentioned in
Section III-A. The segmentation algorithm is tuned by the
parameter fmult that controls the inclusion of new pixels
in the segmented area. Equation (8) shows the inclusion
criterion:

υ(X) ∈ [m− σfmult,m+ σfmult] (8)

where υ(X) is an image, X is the position of the neigh-
boring pixel under consideration for inclusion in the current
region, σ is the local neighborhood intensity values standard
deviation. Equation (8) considers the standard deviation of a
circular region around the mean of the current neighborhood.
Neighboring pixels whose intensity values fall inside the
range are accepted and are included to be part of the region.
Then, both the mean and the standard deviation are updated
after each iteration until no more pixels are available or the
maximum number of iterations is reached [12]. The accuracy
of each segmentation was evaluated using the Dice Similarity
Coefficient (DSC), which measures the coincidence between
two segmented regions [13]. Let two binary segmtentaions,
G(x, y) and R(x, y) of an image psilon, be goal and
resulting segmentations, the DSC is calculated as:

DSC(R,G) =
2P{(R(x, y) = 1)

⋂
(G(x, y) = 1)}

P (R(x, y) = 1) + P (G(x, y) = 1)
(9)

where R(x, y) = 1 and G(x, y) = 1 represents the pixels
inside of the target segmented areas in the two respective
segmentations, in our case the target area is a tumor. P
represent the probability.

We applied an ANOVA analysis within-subjects in order
to determine if the segmentation results after de-noising are
better than those without filtering. Our alternative hypothesis
is that there is a difference between at least one of the
segmentation results obtained after de-noising with one of the
de-noising methods versus the results obtained without pre-
processing. We considered two factors in the analysis: de-
noising methods and segmentation parameter fmult. Ten real
images were smoothed with the six de-noising algorithms.
Afterwards, we applied the CCS segmentation algorithm with
different values fmult = 2.5, 2.65 and 2.8 over the noisy and
de-noised images. In total, we obtained 210 segmentations:
10 images × 7 methods × 3 values of fmult.

The box-plot at Figure 3 sumarizes the resulting means
from the segmentation results for the different methods,
including the noisy image. We observe that the mean for
Nowak’s method is the least of the means from the de-
noising methods, including the noisy version. When we
include Nowak’s method in the ANOVA analysis for the seg-
mentation results, the alternative hypothesis was supported at
0.01 levels of significance with a p0.01 = 0.0013. However,
when we exclude Nowak’s method from the analysis, the
alternative hypothesis is not longer supported with a p0.01 =
0.9643. Such results indicate that there are no differences in
the segmentation results if we include a previous denoising
step with exception of Nowak’s method.



Fig. 3: Segmentation performance box-plot for each filtering
method.

C. Discussion

Figures (1a) and (1b) show that Manjón’s method, based
on the non-local mean algorithms and the Rician noise distri-
bution in MRIs, had the best performance. Other papers [3],
[14] and [15], have also shown the superiority of non-local
means over wavelet and anisotropic diffusion methods for de-
noising MRI. Nowak’s method had the worst performance at
de-noising the set of synthetic images in Section III-A. How-
ever, the segmentation results obtained after de-noising with
Nowak’s showed a better contrast than the other methods.
The main point of Nowak’s work is to improve the contrast
in the MRI. It seems that the contrast is improved at the
expense of fidelity with the noise-free MRI. One reason for
Nowak’s low evaluation with the RMSE metric could be the
effect of the Haar wavelet on the image. When zooming on
the results from Nowak’s method one can see that the image
is built with squared patches. Figure (1a) shows that the
Gaussian performance curve closely follows both anisotropic
algorithms, which suggests that the Gaussian performance
is similar to both of them. In MRI, as the edges between
the different tissues are not well defined and the contrast is
low, without strong gradients between regions the methods
based on anisotropic diffusion do not have enough strength
to stop at the boundaries of the regions, therefore the result
is similar to a Gaussian smoothing. These methods did not
improve the quality of the MRI data for tumor segmentation.
Our experiments show that although the method did remove
the noise from the MRIs, they do not improve the contrast
and the inhomogeneities on the images enough to allow the
region-growing based segmentation algorithms to stop when
they should. Additionally, as Figure (2) shows, there are fine
details and some edges lost in the de-noised images. Nowak’s
method improved the contrast of the images, however the
segmentation has a hard time dealing with the small squared
patches generated by the Haar wavelet on the image regions.

IV. CONCLUSION

The presence of noise and low-contrast in MRI diffi-
cults visual inspections and to perform a computer-aided
analysis of the images. In this work, we have evaluated
the performance of the best algorithms proposed in the
literature at de-noising MRI and at improving the quality

of the data for brain tumor segmentation. We found that
many of those algorithms do reduce noise without too much
apparent artifacts, but our results show that they still blur the
boundaries of the tissues, thus, the results of growing-region
based segmentation algorithms are not better after de-noising.

As future work, we will analyze if reducing noise on
volumetric data, instead of slice-by-slice could improve the
noise estimation and provide more information that allow
us to reduce the noise and preserve the structure of the
surfaces. Volumetric data provide redundant information for
each voxel that can be used for a better discrimination of the
noise. We will also study different methods to estimate the
noise in the images.The blurring effect of the methods may
be due to a poor estimation of the noise parameter on MRI.
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