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Abstract

This paper describe a new algorithm to segment in con-
tinuous parametric regions registered color and range im-
ages. The algorithm starts with an initial partition of small
£rst order regions using a robust £tting method constrained
by the detection of depth and orientation discontinuities in
the range signal and color edges in the color signal. The al-
gorithm then optimally group these regions into larger and
larger regions using parametric functions until an approx-
imation limit is reached. The algorithm uses Bayesian de-
cision theory to determine the local optimal grouping and
the complexity of the parametric model used to represent
the range and color signals. Experimental results are pre-
sented.

1. Introduction

The ability to integrate and represent in a coherent man-
ner multiple source of sensor data is at the base of under-
standing images in terms of intrinsic physical properties.
This paper describe a method to segment range and color
data produced by color range sensor [11] or by a combina-
tion of color cameras and range sensors [15] . Many of these
sensors can measure in perfect registration a range signal
corresponding to the distance between the sensor and the
surface of an object and a corresponding color signal which
is proportional to the re¤ectivity of the surface at this point.

Many references to the problem of sensor fusion can
be found in the literature. A survey and analysis of multi-
sensor fusion and integration methods can be found in Luo
and Kay [9], Allen et al. [1], and Stamos and Allen [15].

Hackett and Shanh [7] segment range and intensity im-
ages by using a split and merge method. The algorithm con-
sist of two steps. First, the initial seed regions are deter-
mined by using the most dominant sensor at a given time.
Second, the initial segmentation is re£ned by using region

merging based on if the strength of range and intensity
boundaries are low.

In the case of color and range sensor fusion very few pa-
per can be found. Baribeau et al. [2] discuss the problem
of estimating the bidirectional re¤ectance-distribution func-
tion (BRDF) for each pixel from the fusion of the range
and color information and a sensor model. Shirai [14] inte-
grate sparse range data obtained by stereo vision with color
data, using color stereo pair. The color is used to assist in
model-based classi£cation and object recognition to build a
rich description of the scene. Regions are £rst classi£ed us-
ing color and further split based on edge information and
range information obtained from stereo. The scene is even-
tually represented in a series of 3-D planner patches and its
relationship between them. Rushmeier et al. [13] try to com-
pute the Bi-directional Re¤ectance Function of colored ob-
jects using the normals computed from the range data.

In this paper, one will analyze a new segmentation algo-
rithm based on a hierarchical grouping of an initial partition
based on a Bayesian criteria. The algorithm starts with an
initial partition of the range and color images constrained
by the detection of depth and orientation discontinuities in
the range image and of color edges in the corresponding
color image.

From this initial partition, the algorithm start grouping
these regions into larger and larger one until the approx-
imation error in one of the region is greater than a pre-
determined threshold. The algorithm then try to transform
these primitives into more complex ones by using higher or-
der parametric models. The key idea behind the algorithm
is that one should start with the simplest hypothesis about
the model of the data, and gradually increase the complex-
ity of the hypothesized form as statistical evidence grows.
This paper present a consistent view of the grouping crite-
rion and of the generalization process based on Bayesian de-
cision framework. The end result of this segmentation pro-
cess is a compact representation of a scene composed of
continuous surface patches with a constant parametric color
model.



2. Problem De£nition

In this approach to segmentation, the relevant structure
of a range and color image is viewed as a piecewise smooth
parametric polynomial contaminated by noise. A piecewise
smooth parametric surface �ηr(u, v) and its corresponding
color signal �ηc(u, v) can be partitioned into N smooth sur-
face models �frl(u, v;Arl) and color models �fcl(u, v;Acl)
over a connected support region Ωl:

�ηr(u, v) =
N∑

l=1

�frl(u, v;Arl)ξ(u, v,Ωl) (1)

�ηc(u, v) =
N∑

l=1

�fcl(u, v;Acl)ξ(u, v,Ωl) (2)

where ξ(u, v,Ωl) is the characteristic function of the region
Ωl, and is equal to one if (u, v) ∈ Ωl and zero otherwise.
The arrays Arl and Acl are the model parameters for each
signals. The function �ηr(u, v) = (x, y, z)T is a three di-
mensional signal corresponding to the x, y, z component of
the range signal and the function �ηc(u, v) = (r, g, b)T to
the red r, green g, and blue b component of the color sig-
nal.

The segmentation problem can be stated as follow-
ing: given a discrete range �r(ui, vi) = (xi, yi, zi)T and
color image �C(ui, vi) = (ri, gi, bi)T and an approxima-
tion thresholds εt £nd the N image regions Ωl approxi-
mated by N statistically reliable functions �frl(ui, vi;Arl)
and �fcl(ui, vi;Acl) subject to:

χ2 =
1
nl

∑
(ui,vi)∈Ωl

(�frl − �r)T Σ−1
r (�frl − �r)

+(�fcl − �C)T Σ−1
c (�fcl − �C) < εt ∀ l = 1, · · · , N (3)

The parameter nl is equal to the number of pixels in the re-
gion Ωl. The matrices Σr and Σc are the covariance matri-
ces of the noise associated to the range and color signal and
can be modelled using a technique described in [10].

The basic steps of the algorithm are the following:

1. Normalize the color by computing the bidirec-
tional re¤ectance- distribution function (BRDF) at
each pixel.

2. Do an initial partitioning of the data set based on a £rst
order parametric model using a robust £tting technique
constrained by depth and orientation discontinuities in
the range signal and color edges in the corrected color
signal.

3. Group adjacent £rst order regions with other £rst order
regions or points to produce a larger £rst order region.
Validate the grouping corresponding to the one which
is the most similar based on a Bayesian criterion.

4. Loop until the similarity criterion is smaller than a pre-
determined threshold.

5. Generalize the £rst order regions to second order one
if the decision is supported by statistical signi£cance
test.

6. Group adjacent £rst or second order regions to other
points, £rst, or second order regions to produce a larger
region corresponding to the highest order of the two.
Validate the grouping corresponding to the one which
is the most similar.

7. Generalize second order regions into higher or-
der parametric polynomials using geometrical heuris-
tics if it is supported by Bayesian decision.

8. Proceed with more grouping until no more regions are
generalized.

3. Color Re¤ectance Modelling

Ideally the color signal should be independent of the
senor parameters and should depend only on basic physi-
cal properties such as the material pigmentation. Baribeau et
al. [2] and later [13] discuss such possibilities by modelling
the physical image formation of the color range sensor us-
ing a Lambertian model. Using a similar physical model,
the total power received at the detector at time t is equal to:

Pr(u, v;λ) =
(

1
4π

SrTr exp(−αr)TxPx(u, v;λ)
)
×(

ρλ(u, v)�µ · �n(u, v)
r2

)
(4)

where Px(u, v;λ) is equal to the instantaneous total power
of the transmitted laser in the direction �µ and a wavelength
λ; Tx is the transmission coef£cient of the incident beam;
Tr is the transmission coef£cient of the re¤ected signal pro-
duced by a Lambertian surface of area Sr with a normal
equal to �n(u, v) and an albedo equal to ρλ(u, v) at a dis-
tance r form the measuring sensor; α is the coef£cient of
attenuation in the atmosphere and is assumed constant for
all wavelength used. The relative power between the inci-
dent beam and the measured one is equal to:

Pr(u, v, t;λ)
Px(u, v;λ)

= K

(
ρλ(u, v)�µ · �n(u, v)

r2

)
(5)

where K = 1
4π SrTr exp(−αr)Tx and is assumed to be

a constant for all wavelength. An estimate of the incident
laser power Pw(u, v, λ) can be performed by scanning a
white Lambertian surface for each similar u, v. The power
is equal to:

Px(u, v;λ) =
r2
wPw(u, v, λ)
�nw(u, v) · �µ . (6)



Using this estimated laser power one can compute the
bidirectional re¤ectance distribution function (BRDF) with
the following equation:

Pr(u, v, t;λ)
Px(u, v;λ)

(
r2

�µ · �n(u, v)

)
= ρλ(u, v). (7)

The white standard used as a reference is a ¤at bar coated
with barium sulphite paint. This material is known to have
very good Lambertian behavior. The computed BRDF for
the three wavelength is an intrinsic property corresponding
to the material pigmentation. More detail on how to cali-
brate the system and estimate the various unknown param-
eters can be found in [2].

4. Multidimensional Signal Representation

The type of model used to represent the shape of the
range data and the spatial evolution of the intrinsic color
is highly constrained by the feasibility of the correspond-
ing segmentation algorithm. A parametric Bézier polyno-
mial is used to represent both signals and is de£ned as:

�fsl(u, v;Asl) =
k∑

i=0

k∑
j=0

�aijBi(u)Bj(v) (8)

Bm(t) is a Bernstein polynomial de£ned as:

Bm(t) =
k!

(k − m)!m!
tm(1 − t)k−m. (9)

The subscript s can be equal to r or c depending on if
one wants to represent the range or color information. This
equation can be represented in matrix form by:

�fsl(u, v;Asl) = AslMl|uv (10)

where the array Asl = [�a00,�a10,�a01, · · · ,�akk] is the coef-
£cients array of size 3 × (k + 1)2 and

Ml|uv = [B0(u)B0(v), B1(u)B0(v), B0(u)B1(v),
· · · , Bk(u)Bk(v)]T (11)

is the basis function matrix of size (k + 1)2 × 1.
If one assume that the range �r(ui, vi) and color �C(ui, vi)

image data is corrupted by Gaussian noise of means �µr =
�µc = �0 and for which the covariance matrices are equal to
Σr and Σc, then the optimal model coef£cients are the ones
which minimize the log-likelihood function of the observa-
tions corresponding to the minimum of the standard least
squared metric L2 given by equation (3).

The minimum occurs when ∇Arl
χ2 = 0 and ∇Acl

χ2 =
0 which correspond in matrix form to:

Tsl = AslLl (12)

where Ll = [Ml|u1v1 , · · · ,Ml|unl
vnl

] is a matrix of size
(k+1)2×nl and Tsl = [�s(u1, v1), · · · , �s(unl

, vnl
)] a matrix

of size 3 × nl corresponding to the sensor measurements.
The solution correspond to the normal equation equal to:

Asl = TslLT
l (LlLT

l )−1 = VslR−1
l (13)

where Rl is an Hermitian matrix of size (k+1)2× (k+1)2

corresponding to the covariance matrix of the basis func-
tions and Vsl is a matrix corresponding to the correlation
between the basis functions and the measurements. Using
this notation the covariance matrix of the approximation er-
ror is equal to:

Σ̂sl = TslTT
sl − 2AslVT

sl + AslRlAT
sl (14)

The average error on the model parameters δAl is propor-
tional to the diagonal element of the inverse of the matrix
Rl, i.e.,

δAsl =
DT

slUl

nl − (k − 1)2
= [δAsl|i, δAsl|j , δAsl|k]T (15)

where Dl = [Diag Σ̂sl] = [σ̂2
sl|i, σ̂

2
sl|j , σ̂

2
sl|k] is a 1 × 3

matrix corresponding to the variance of the £tting error in
each orthogonal directions and is equal to the diagonal ele-
ments of the matrix Σ̂sl. The matrix Ul = [Diag R−1

l ] is a
1 × (k + 1)2 matrix where each element is the diagonal el-
ement of the covariance matrix R−1

l

5. Initial Partition Method

Like many region growing techniques, one needs to
make an initial guess of the primitives and then iteratively
re£ne the solution. Besl [3] used the topographic map based
on the sign of Gaussian and mean curvatures to determine
seed points where his algorithm grows regions of increas-
ing size and complexity from. There is a relationship be-
tween the quality of the initial guess and the number of it-
erations required to converge to the £nal region size. Be-
cause of the importance of the initial partition, the algo-
rithm use a robust £tting technique constrained by previ-
ously detected depth and orientation discontinuities in the
range image and edges in the color image. The algorithm
uses a Least Median Square (LMS) £tting method £rst de-
scribed by Rousseeuw and Leroy [12] which allows a ro-
bustness up to 50% outliers. The algorithm to £nd the ini-
tial partition is the following:

• Set the window size L = Lmax to the maximum win-
dow size (typically 11 × 11).

• Find a square neighborhood of size L×L where there
is no depth nor orientation discontinuities nor color
edges present.



• Do least median square £tting and detect the outliers
(not sensitive to 50% of outliers).

• Eliminate the outlier from the window by releasing
their availability to be used by other regions.

• Compute the least square model without the outliers
for the range and color information.

• Proceed for the whole image with the same window
size.

• Do the same operation with a reduced window size
L = L − 2 until the minimum window size Lmin has
been reached (typically 3 × 3).

This new initial partition technique is not sensitive to im-
pulse noise (up to 50% of outliers) and is capable of produc-
ing excellent seed regions even for a large neighborhood.

6. Compatibility Function

A similarity function is a predicate that determine if
two regions can be merged into one. Let Ωi be a region
composed of ni points de£ned by the maximum likelihood
model parameters Ari = (�b00,�b10, · · · ,�bkk)T for the range
signal and Aci = (�c00,�c10, · · · ,�ckk)T for the color signal.
Each region is also characterized by their covariance matri-
ces Σ̂ri and Σ̂ci. Let δAri = (δ�b00, δ�b10, · · · , δ�bkk)T and
δAci = (δ�c00, δ�c10, · · · , δ�ckk)T be the margin of error on
the model parameters estimated by equation (15). Let {Ωm}
be the set of Nt regions adjacent to the region Ωi and de-
£ned by the models Arm and Acm with a margin of error
equal to δArm and δAcm. The best grouping of region Ωi

with one of its neighbors correspond to the one for which:

P (Ωb ∧ Ωi|Ωi) = max
b

∏
u,v∈Ωi

pt(u, v|Arb;Acb)p(δArb)p(δAcb)

Nt∑
j=1

∏
u,v∈Ωi

pt(u, v|Arj ;Acj)p(δArj)p(δAcj)

(16)

where pt(u, v|Arb;Acb) is equal to the probability that a
point in region Ωi with coordinate u and v would be pre-
dicted by one of the models Arb and Arb adjacent to Ωi.
The likelihood of grouping the region Ωi with Ωb is given
by:

P (Ωi|Arb;Acb) = α exp
(
− σ̂2

ib

2

)

=
∏

u,v∈Ωi

pt(u, v|Arb;Acb) (17)

where

σ̂2
ib = Tr[(TriTT

ri − 2ArbVT
ri + ArbRriAT

rb)Σ
−1
r + (18)

(TciTT
ci − 2AcbVT

ci + AcbRciAT
cb)Σ

−1
c ]

is the sum of the square difference between the functions
representing region Ωb extrapolated to predict region Ωi.
The functions p(δArb) and p(δAcb) is the a priori proba-
bility of the region Ωb and can be evaluated by the follow-
ing equation:

p(δArb) = ω1 exp−1
2
[δArb|x Σ−1

Ar δAT
rb|x

+δArb|y Σ−1
Ar δAT

rb|y + δArb|z Σ−1
Ar δAT

rb|z] (19)

p(δAcb) = ω2 exp−1
2
[δAcb|r Σ−1

Ac δAT
cb|r

+δAcb|g Σ−1
Ac δAT

cb|g + δAcb|b Σ−1
Ac δAT

cb|b] (20)

where ΣAr and ΣAc are equal to the true covariance matrix
of the parameters Arb and Arb and represents the strength
of the belief that the coef£cients of the matrices Arb and
Acb are the true value of the coef£cients. In practice, the co-
variance matrix cannot be evaluated, but in our implemen-
tation, we arti£cially set the diagonal elements of the ma-
trix ΣAr and ΣAr are equal to β2 and the off-diagonal to
zero.

From equations (18), (19), and (20) the a posteriori prob-
ability of a grouping correspond to the one which maximize
the numerator. If one compute the log of the numerator of
equation (17), one obtain a grouping coef£cient equal to:

cib = σ̂2
ib +

(σ̂2
rb|x + σ̂2

rb|y + σ̂2
rb|z)Tr R−1

rb

β2(nb − (k − 1)2)
+

(σ̂2
cb|r + σ̂2

cb|g + σ̂2
cb|b)Tr R−1

cb

β2(nb − (k − 1)2)
(21)

Using this compatibility coef£cient, one can select the best
groupings, by selecting from all the possible grouping the
one corresponding to the minimum value.

7. Geometrical Generalization

The problem of segmentation is to £nd the most reli-
able minimal description of an image. This statement im-
plies that the complexity of the model used by the seg-
mentation algorithm must only be increased if there is a
strong statistical evidence. Let σ̂2

t be the approximation
error of the model with the larger number of parameters
pmax = (k + 1)2 as computed by equation (13). Its value
is kept as a comparison basis. In order to validate a parame-
ter in one of the coef£cient matrices Arl and Acl the algo-
rithm £rst eliminate this element from the coef£cient matrix
by setting it equal to zero and then compute the new approx-
imation error σ̂2

n. The variation of the relative error is given
by:

σ̂2
n − σ̂2

t

σ̂2
t

=
σ̂2

n

σ̂2
t

− 1 = r − 1. (22)



The variables σ̂n and σ̂t are equal to the sum of the squared
error for the reduced model and the full model respectively.

If the statistics r is close to unity, one may conclude with
con£dence that the ith component of one of coef£cient ma-
trices is not statistically signi£cant. The statistical distribu-
tion of the variable r is distributed as a Snedecor’s F dis-
tribution with ν1 = 1 and ν2 = nl − pmax degrees of free-
dom. The decision to reject the parameter i from the coef£-
cient matrix with a degree of con£dence α is given by:

PF (r ≥ ro) =
∫ ∞

ro

pF (r)dr ≥ α. (23)

In the algorithm the parameter α is set equal to 0.1.

8. Experimental Results

In order to illustrate the segmentation process, a billiard
ball composed of different color region was scanned using
the National Research Council color range sensor. One can
see in Figure 1a a 3-D display of the color range image. In
the present implementation, the position of depth and orien-
tation discontinuities and color edges was computed by us-
ing a morphological method developed by Boulanger [4].
One can see in Figure 1b the combined range and color
edges. After the initial partition of the scene and the genera-
tion of the graph structure to represent this partition, the al-
gorithm start the grouping process as described above. The
grouping process is terminated when the average extrapo-
lation error σ̂ib of the best grouping is over a threshold of
0.5 mm in the range image and 10.0 in the color image. The
model generalization method is then applied and the group-
ing process resumed for the same threshold. One can see in
Figure 1c the partition of the scene produced by the algo-
rithm and in Figure 1d the reconstructed color range image
from the segmentation model. A similar segmentation pro-
cess was applied to a series of color band applied with a
wide paint brush. One can see in Figure 2a the range and
color image of the painting and in Figure 2b the resulting
label map for a grouping threshold of 1.0 mm in the range
image and 20.0 in the color image. One can see in Figure
2c the reconstructed color range image from the segmenta-
tion parameters.

9. Conclusion

The present algorithm produce a quasi-optimal partition
of colored range images even when the images are cor-
rupted by a high level of noise. At the end of the hierar-
chical grouping, one has a model where one can analyze
color range images at different levels of representation. The
data structure produced by the algorithm is directly acces-
sible to high level tasks such as model building, identi£ca-
tion, and pose determination. The algorithm is also clean in

Figure 1. Segmentation of color range im-
ages of a billiard ball: (a) 3–D view of the color
range image (b) detected range and color
edges, (c) segmented image regions, (d) re-
constructed color range image.

the sense that there is no ad-hoc threshold (beside resolu-
tion εt and the a priori distribution parameter β) that would
make the algorithm hard to tune. Bayesian decision crite-
rion always makes sure that one take the best grouping or
generalization decision.
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