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Abstract—Distributed source coding is a promising enabling
technology for sensor network applications. Symmetric Dis-
tributed source coding can achieve the entire Slepian-Wolf rate
region and offer sensor network applications a wide range of
options to compress and transmit data. In this paper, we design a
new symmetric distributed coding scheme that realize the benefits
of both simplified code construction and bit incorrespondence
handling. In particular, we propose a general scheme to deal
with the bit incorrespondence problem, which is not specifically
addressed by previous approaches. With the ability to deal with
the bit incorrespondence in the code structure, it is more likely
for our approach to be used in real sensor network environments.

I. INTRODUCTION

Wireless sensor networks have attracted a great deal of
research attention in recent years. In a typical sensor network,
tens of thousands, even millions, of sensor nodes cooperate
to collect data and fulfill a specific task. Different from many
other wireless devices such as cell phones, PDAs, and laptops,
which can have battery recharged relatively easily and have
powerful computational capability, wireless sensor nodes are
expected to operate under limited and unrenewable power sup-
ply and constrained computational capability. Therefore, one
of the paramount goals of wireless sensor network research
is to reduce the energy consumption and extend the system
life time. Since data collected by different wireless sensor
nodes are highly correlated, data compression is often used to
reduce the amount of information transmitted and the trans-
mission power. There are two general approaches to realize
data compression: joint source coding and distributed source
coding. Joint source coding needs sensors to communicate
with each other and demands a computationally complicated
encoder. Distributed source coding needs only a relatively
cheap encoder and promises to achieve similar compression
ratio while not requiring sensors to communicate with each
other. Fig. 1 shows its architecture. Therefore, distributed
source coding is a suitable data compression scheme for
wireless sensor networks [1].

Distributed source coding is based on the theorem proved
by Slepian and Wolf in 1970s [2]. The fascinating aspect
of distributed source coding is that efficient compression of
two or more sources can be achieved by separate encoding
and joint decoding. The correlation between two sources
can be modeled as a virtual channel as shown in Fig. 1.
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Fig. 1. Distributed Source Coding Architecture

Specifically, the Slepian-Wolf theorem gives the achievable
rate region for distributed source coding. Namely, given two
statistically correlated i.i.d finite-alphabet random sources X
and Y . A conventional entropy encoder can achieve lossless
compression with rate RX ≥ H(X) and RY ≥ H(Y ) when
X and Y are separately encoded and decoded. When X and
Y are jointly encoded and decoded using the joint source
coding algorithm, lossless compression can be achieved with
rate RXY ≥ H(X,Y ). Distributed source coding can achieve
lossless compression with the following rate region (Fig. 2):
RX ≥ H(X|Y ), RY ≥ H(Y |X), and RX +RY ≥ H(X,Y ).

A special case for distributed source coding problem is to
compress one source X when the other source Y is available as
side information at decoder. It is normally called asymmetric
distributed source coding. Asymmetric lossless distributed
source coding can be achieved with rate RX ≥ H(X|Y )
while the side information Y is losslessly compressed by
using conventional entropy coding with rate RY = H(Y ) and
available at the decoder. This case corresponds to the corner
point in the rate region of the Slepian-Wolf theorem shown in
Fig. 2. The distributed source coding scheme that can achieve
an arbitrary point in the Slepian-Wolf rate region is normally
referred as symmetric distributed source coding.

Slepian and Wolf’s seminal work indeed has inspired other
researchers to produce dozens of theoretical papers [3]. How-
ever, the practical distributed source coding algorithm was
not developed until Pradhan and Ramchandran’s work in
1999 [4]. Since distributed source coding is dual to channel
coding [5], powerful channel codes such as lattice codes,
convolutional codes, Turbo codes and low density parity check
codes (LDPC), can all be used to realize distributed source
coding. Algebraic binning is the basic idea to construct the
practical distributed source codes, which is first illustrated by
Wyner in the seventies [6]. The majority of early research
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effort is focused on asymmetric distributed source coding. A
survey in 2004 [1] summarizes the early results.

Though it appears difficult to design one channel code to
achieve the entire rate region at first sight, several researchers
have proposed excellent solutions to realize the symmetric
distributed source coding [7]–[12]. These approaches can
be classified into two classes: parity-based approaches and
syndrome-based approaches. [10], [12] are parity-based ap-
proaches, where a decoder recovers the original source bits by
processing the information bits and parity bits generated by an
encoder. [7]–[9], [11] are syndrome-based approaches where
a decoder deciphers the original source from part of source
bits and syndrome bits generated by an encoder. [8], [9] need
only one linear channel code to encode both sources. [7],
[11], which both have roots in [13], construct independent
subcodes from one main channel code and use them to realize
the symmetric distributed source coding.

The aforementioned symmetric distributed source coding
approaches are elegant and able to create capacity-approaching
codes. However, it is still difficult to use them in the real
world. All previous approaches implicitly assume that an
encoder knows the exact bit correspondence between corre-
lated sources, X and Y . However, this assumption is not
true in most cases due to various reasons. For example, in
a camera sensor network, pixel correspondence between two
correlated images is not known at the encoder and can only
be inferred at the decoder since there is no communication
channel between two encoders. Without the knowledge of
bit correspondence, [7], [8], [10] will fail to work since
bit incorrespondence makes it impossible for the decoder to
correctly recover the syndrome of difference pattern between
X and Y , and thus it is unable to decipher the difference
pattern, X ⊕ Y , though they offer mathematically provable
capacity-approaching codes. The decoder normally knows the
bit correspondence. Though authors do not specifically address
the bit incorrespondence problem, [11] can successfully
decode the original mismatched sources because the process
to recover the bit correspondence can be easily integrated
into the decoding process as shown in Fig. 3(a) and 3(c),
where bit incorrespondence between sources is modeled as a
mapping, π, which is used to change the bit order of one
source. However, the code partitioning technique makes it
difficult to design capacity-approaching codes since it requires

both the main code and two subcodes to be good codes [11].
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(a) Encoder Using Two Subcodes. H1 and H2 are
the parity check matrix of respective subcodes.
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(b) Encoder Using One Channel Code. For EETG,
H1 and H2 are the parity check matrix of one
LDPC code and its permutation equivalent code.
For SSIF, H1 = H2.
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(c) Decoder Using Extended Tanner Graph

Fig. 3. Illustration of Encoder and Decoder Using Extended Tanner Graph.
π is a mapping, which is used to change the bit order of a source.

In this paper, inspired by the work [8], [11], we propose
an enhanced symmetric distributed source coding approach
that combines both advantages of two previous approaches.
Namely, at encoder we use one capacity-approaching code to
encode the correlated sources, which help us circumvent the
difficulty of code construction in [11]; at the decoder we
use the message-passing algorithm on the extended Tanner
graph, which makes it easy to handle the bit incorrespondence
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problem. We termed our approach as Enhanced Extended
Tanner Graph (EETG) method. In addition, we put forward
a simple heuristic to construct the extended Tanner graph
to achieve the better decoding performance. Furthermore, we
introduce a general framework to handle the bit incorrespon-
dence problem.

The remainder of the paper is organized as follows. In
Section II, we review the two previous approaches [8], [11] in
detail. In Section III, we elaborate on the proposed approach.
Simulation results are presented in Section IV. Section V
concludes the paper.

II. BACKGROUND

In this section, we first give some definition related with
bit correspondence that will be used throughout the paper.
Then we elaborate in detail on the symmetric distributed
source coding schemes proposed in [11] and [8]. The
approach in [11] is termed as “Two-machine Algorithm”, and
the method in [8] is called “Symmetric SF-ISF (Syndrome
Former - Inverse Syndrome Former) Framework (SSIF)”. Both
approaches are general and can be used with any linear channel
code. To facilitate easy exposition, we use LDPC codes as
an example to explain the basic ideas. The virtual correlation
channel is BSC (Binary Symmetric Channel).

A. Bit Correspondence

Given two n-bit sources, X and Y , bit correspondence
is defined as a mapping between bit Xi and its correlated
bit, Yj . Namely, let π be the mapping, then π(i) = j.
Given a bit location, i, which satisfies 1 ≤ i ≤ n, and a
mapping, π, let γ = |i − π(i)|. If 1 ≤ γ ≤ n, the mapping
π is called arbitrary mapping. If 1 ≤ γ ≤ t < n, the
mapping π is called bounded mapping. If an encoder knows
the mapping as a priori knowledge, the encoder is said to be
aware of bit correspondence between two sources. Otherwise,
the encoder is oblivious to the bit correspondence. In the next
two subsections, we assume that the mapping between two
sources is an identity mapping and an encoder knows the
mapping. Namely the mapping, π, shown in Fig. 3 has the
function format π(i) = i.

B. Two-Machine Algorithm

The Two-machine algorithm realizes any point in the entire
rate region by creating two subcodes from a main code. Both
the main code and subcodes need to be capacity-approaching
codes to avoid practical performance loss.

Fig. 3(a) illustrates its encoder architecture. Given the
parity check matrix of two subcodes, encoding is realized
by straightforward multiplication of the parity check matrix
and the sources. Namely, Sx = H1X and Sy = H2Y . The
resulting syndromes, Sx and Sy , are transmitted to the decoder.

Fig. 3(c) shows the extended Tanner graph used by the
message-passing decoding algorithm. The message-passing
algorithm for each single Tanner graph is exactly the same
as the typical message-passing algorithm used to decode
LDPC codes. The only difference is that messages are also

passed between two Tanner graphs to exchange extrinsic
information. The exact formulas to calculate the extrinsic
information can be found in [11]. We omit it for brevity. A
column dropping procedure is proposed to create parity check
matrices of subcodes from the parity check matrix of the main
code. The column-dropping procedure might not guarantee
to generate capacity-approaching subcodes. Further research
effort is needed to refine the column dropping procedure [11].

C. Symmetric SF-ISF Framework

SSIF uses one channel code to achieve an arbitrary rate pair.
Its encoder structure is illustrated in Fig. 3(b). SSIF requires
two encoders using the same parity check matrix, which is
the syndrome former of a LDPC code. Let H = H1 = H2

and its size is m × n. Then the sum rate of two sources is
m + n. Each encoder transmits its syndrome, m bits, and
complementary subset of first n − m bits. Different rates
between two sources are achieved by adjusting what subsets
of source bits to transmit.

The decoder in SSIF proceeds in two steps. Given two
binary sources, X and Y . Let Z be the difference patten of
X and Y . Namely Z = X ⊕ Y . In first step, the syndrome
corresponding to Z can be obtained through Sz = Sx ⊕ Sy .
Then Sz is passed through an inverse syndrome former, which
is H−1 for LDPC codes, to get the noise codeword of the
difference pattern, Z. Z can be recovered after passing through
the noise codeword into a channel decoder corresponding to
H . In the second step, with the knowledge of the difference
pattern, Z, Xn−m

k+1 and Y k
1 can be recovered through the

following equations.

Xn−m
k+1 = Y n−m

k+1 ⊕ Zn−m
k+1 (1)

Y k
1 = Xk

1 ⊕ Zk
1 (2)

To decipher the rest of bits, SSIF partitions H into two
sub-matrices:

Hm×n = [Am×(n−m), Bm×m]

where B is square matrix and must have full rank. Since

Sx = HX = [A,B]
[

Xn−m
1

Xn
n−m+1

]
= AXn−m

1 ⊕ BXn
n−m+1

we can obtain the remaining m source bits using

Xn
n−m+1 = B−1(Sx ⊕ AXn−m

1 )

After recovering all bits of X , the m remaining bits of Y
can be recovered through Y n

n−m+1 = Xn
n−m+1 ⊕ Zn

n−m+1.
From the decoding process of SSIF, it is obvious that

the performance gap between SSIF and the theoretical limit
solely depends on how well the channel code performs on the
equivalent virtual correlation channel between two sources.
In addition, SSIF imposes stringent requirements on bit corre-
spondence at the encoder. Any bit incorrespondence will cause
the decoder to fail.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1894
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on March 05,2010 at 15:18:31 EST from IEEE Xplore.  Restrictions apply. 



III. THE PROPOSED APPROACH

In this section, we discuss the proposed symmetric dis-
tributed source coding approach (EETG) in detail. Our idea is
simple and intuitive. EETG takes advantage of both benefits
of the Two-machine algorithm and SSIF. It simplifies the code
design and relaxes the bit correspondence requirement at an
encoder. Though the idea can be used in all linear channel
code, we focus our discussion in LDPC codes.

A. Encoder Design

As discussed in previous sessions, our goal is to find a
symmetric distributed source coding approach that can easily
construct a capacity-approaching code and can handle poten-
tial bit incorrespondence at encoder. It turns out that turbo-
like iterative decoding is the only option since mapping and
inverse mapping operation can be naturally integrated into
such a decoder. Because the Two-machine algorithm [11]
is essentially an iterative decoding algorithm, we decide to
use the message-passing algorithm in an extended Tanner
graph as the decoding algorithm. However, it is difficult to
construct good subcodes if we follow the code partitioning
philosophy [13]. Inspired by the observation that [7], [11]
both root back to the code partitioning idea [13] and [7],
[8] share the same ingredient to realize symmetric distributed
source coding while [8] does not use code partitioning, we
realize that one channel code without partitioning should be
able to achieve similar performance when it is used in the
iterative message-passing algorithm in an extended Tanner
graph. Without much thought, it is evident that a channel
code and its permutation equivalent code should be used. It is
well known in algebraic coding theory that a channel code
and its permutation equivalent code have the same weight
distribution and thus the same error correction capability.
Fig. 3(b) illustrates the encoder structure of the proposed
approach. H2 is formed by permutation of the columns of
H1. It is almost the same as the encoder used in [8]. The
only difference is that the two parity check matrices in EETG
are permutation equivalent matrices while they are the same
matrix in [8]. Compared with two same matrices, permutation
equivalent parity check matrices make it easy to reduce the
the number of short cycles that go across two Tanner graphs
and thus can improve the decoding performance. Like SSIF,
EETG achieves the entire Slepian-Wolf region by adjusting
which subsets of source bits are transmitted.

B. Decoder Design

Given a capacity-approaching channel code, the key to the
decoder design is to construct a good extended Tanner graph to
improve the performance of the message-passing algorithm. In
the case of LDPC codes, given a LDPC code ensemble profile
(λ, ρ), the question is how we should choose a parity check
matrix and its permutation equivalent matrix to construct a
good extended Tanner graph. The naive approach would be
to randomly choose a code from the code ensemble as the
parity check matrix and get a permutation equivalent matrix
by randomly permuting the columns of the known parity check

matrix and then construct the extended Tanner graph to decode
the sources. Experiment results in Section IV show that this
method performs poorly. We propose a simple heuristic to
construct a parity check matrix and its permutation equivalent
parity check matrix from a given channel code ensemble
profile. Algorithm 1 gives the pseudo code to construct the
parity check matrix and its permutation equivalent parity
check matrix. Fig. 4 illustrates the structure of the constructed
extended Tanner graph.

Sx

Sy

X

Y

n − m uum − 2u

n − m m − 2u u u

A E D C

A E C D

Fig. 4. Illustration of Permutation Equivalent Parity Check Matrix Con-
struction. A represents the set of information variable nodes. C represents
the set of internal reachable variable nodes. D represents the set of external
reachable variable nodes. E represents isolated variable nodes. The dashed
arrow indicates the degree decreasing direction of variable nodes in A for
each matrix (Tanner graph).

We construct the extended Tanner graph by following the
following basic guidelines: (1) reduce as many short cycles
as possible; (2) let the transmitted source bits associate with
variable nodes with large degree; (3) let the extrinsic infor-
mation propagate into ambiguous nodes as soon as possible.
The heuristic approach shown in Algorithm 1 is a specific
realization of the above principles. Variable nodes in A consist
of the set of information variable nodes since their initial
log-likelihood ratio (LLR) is ∞ or log 1−p

p , where p is the
crossover probability of the BSC virtual correlation channel,
and includes most information about their original bits. Vari-
able nodes in C consist of the set of internal reachable variable
nodes since extrinsic information can be directly obtained from
variable nodes in A from the same Tanner graph. Variable
nodes in D consist of the set of external variable nodes since
they can only obtain their extrinsic information initially from
the other Tanner graph. The variable nodes in E consists
of the set of isolated variable nodes since they only obtain
their extrinsic information after all other nodes have their
extrinsic information. The rationale to partition H1 into A
and B is inspired by the second decoding step of SSIF. We
let the initially most ambiguous bits, whose initial LLR is 0,
associate with B and hope that if all n − m bits in A are
known and the remaining m bits can be quickly decoded. In
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Algorithm 1 Pseudo Code to Construct A Parity Check Matrix
and Its Permutation Equivalent Parity Check Matrix

1: λ : variable node degree distribution
2: ρ : check node degree distribution
3: H1 : parity check matrix
4: H2 : permutation equivalent parity check matrix
5: n : the code length
6: m : the syndrome length

7: Randomly construct a Tanner graph as H1 based on the
channel code profile (λ, ρ);

8: Partition H1 into two matrices Am×(n−m) and Bm×m.
Make sure that B is full rank and the degree of variable
nodes in B is as small as possible;

9: Partition B into three matrices Cm×u, Dm×u, and
Em×(m−2u). Suppose that all n − m variable nodes in
A are known, make sure that all u variable nodes in C
are successfully decoded under BEC assumption and no
variable nodes in D and E can be decoded using message-
passing algorithm in the Tanner graph of H1. Suppose that
all n−m variable nodes in A and 2u nodes in C and D
are known, make sure that all m−2u variable nodes in E
can be successfully decoded under BEC assumption using
message-passing algorithm in the Tanner graph of H1;

10: Sort the columns in A based on variable node degree
so that the degree of variable node associated with each
column is in non-increasing order from left to right;

11: H1 = [AEDC];
12: Sort the columns in A based on variable node degree

so that the degree of variable node associated with each
column is in non-decreasing order from left to right;

13: Randomly permute columns in C D E;
14: H2 = [AECD];
15: Construct the extended Tanner graph based on H1 and

H2;

addition, the partition makes the asymmetric case naturally fit
into the scheme. In the asymmetric case, one node transmits
n − m source bits and m syndrome bits in our scheme; the
other node transmits m syndrome bits. Since our construction
guarantees that n−m bits correspond to A and B is full rank,
the n original source bits can be easily decoded by solving
m linear equations. The other source can then be decoded
using the sum-product algorithm in a Tanner graph. The reason
that we let the variable nodes in B have low degree is to
mitigate the negative effect of the most ambiguous bits on the
decoding of other bits. According to tanh rule of the sum-
product algorithm in check nodes, if the message in one of
the neighbor nodes is zero, output message of the check node
is zero. Therefore, if the degree of variable nodes in B is
large, the extrinsic information propagation will be slow and
some bits will be hard to decode. Similarly, our intention to
sort the variable nodes in A based on their degree is to let the
transmitted source bits, whose LLR is ∞ or −∞, to associate

with large degree variable nodes and thus maximize their
positive impact to decode other source bits. The exchange of
C and D in the parity check matrix and its permutation matrix
aims at accelerating the propagation of extrinsic information
since variable nodes in C can get extrinsic information directly
from internal iteration and variable nodes in D initially have
no way to get extrinsic information from internal iterations.
BEC assumption is used in the pseudo code because the
extrinsic information propagation from known variable nodes
to the ambiguous variable nodes is much like the decoding of
erasure bits.

C. Handling The Bit Incorrespondence

Though our approach relaxes the stringent requirement
on bit correspondence at the encoder, it still cannot totally
eliminate all the problems created by the oblivion of bit
incorrespondence at an encoder. The major problem created
by the bit incorrespondence is that there is no way for two
encoders to send non-overlapped source bits if the mapping
between two sources is arbitrary and unknown at the encoder.
Overlapped source bits will induce performance loss at the
decoder since less information is available for the decoder to
decipher the original source bits.
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Y

k1 uum − 2u

k1 m − 2u u u

k2

k2

E D C

E C D

A1
A2

A1 A2

Fig. 5. Handle The Bit Incorrespondence

However, if the mapping is bounded and the bound, t, is
less than m

2 , we can modify the parity check matrices and the
extended Tanner graph to avoid sending overlapping bits by
encoders. For example, as shown in Fig. 5, we can move the
matrix B to the middle portion of the parity check matrix H
and let one encoder transmit the first k1 source bits and let the
other decoder transmit the last k2 = n − m − k1 bits. Then
no bit overlapping will occur. Thus the proposed approach
can tolerate some degree of bit incorrespondence and is more
suitable to be used in the real world.

IV. SIMULATION RESULTS

In this section, we present some simulation results. We
demonstrate the feasibility and efficiency of the proposed
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symmetric distributed source coding approach using a 1/2
irregular (n, k) LDPC code. The degree distribution pair in
example 2 of [14] is used to generate LDPC codes. In
our simulation, two independent and identically distributed
(i.i.d) binary sources, X and Y , are generated with a BSC(p)
correlation.

We first show the effectiveness of the heuristic structural
code construction approach. Fig. 6 compares the performance
of the code generated by the random construction and code
generated by structural construction. Results indicate that the
code generated by the random construction has a consistent
error rates regardless of the joint entropy rate. The code cre-
ated by structural construction is significantly better than the
code generated by random construction. For each data point,
one million bits are simulated and the results are averaged.
Experiments on other code length have similar results.
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Fig. 6. Random Code Construction vs. Structural Code Construction. The
code length is 10000. The rate pair is (0.5,0.5).

We next study the performance of compression of both
sources at different rate pairs. Fig. 7 shows the log-scale bit
error rate (BER). Results shows that asymmetric rate pair
(1, 0.5) has better performance than other symmetric rate
pairs. The reason might be that the iterative message-passing
algorithm is sub-optimal in the extended Tanner graph. The
results of symmetric rate pairs are comparable to other sym-
metric distributed coding approaches using iterative decoding
procedure such as [11], [12].
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Symmetric Distributed Source Coding at Difference Rates
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Fig. 7. Simulation Results under Various Rate Pairs. The code length is
10000.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an enhanced symmetric distributed
source coding approach that realizes the benefits of previous
approaches. The idea is simple and effective. The approach
simplifies the code construction procedure and relaxes the
stringent requirement of bit correspondence at an encoder. A
simple code construction heuristic is put forward to construct
good extended Tanner graphs from a LDPC code profile. We
also propose a general scheme to circumvent bit incorrespon-
dence problem that frequently occurs in real sensor network
environments. In the future, we would like to investigate using
mathematical tools to analyze the code performance in the
extended Tanner graph.
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