
REAL-TIME MUSIC VISUALIZATION
USING RESPONSIVE IMAGERY

Robyn Taylor
robyn@cs.ualberta.ca

Pierre Boulanger
pierreb@cs.ualberta.ca

Daniel Torres
dtorres@cs.ualberta.ca

Advanced Man-Machine Interface Laboratory,
Department of Computing Science, University of Alberta

T6G 2E8 Edmonton, Alberta. Canada

ABSTRACT

We present a music visualization system that allows
musical feature data to be extracted in real-time from
live performance and mapped to responsive imagery.
We have created three example mappings between
music and imagery, illustrating how music can be
visualized through responsive video, virtual character
behaviour, and interactive features inside an
immersive virtual space. The system is implemented
using a visual programming paradigm, enhancing its
ease-of-use and making it suitable for use by
collaborative teams containing both artists and
scientists.

1. INTRODUCTION

We have created a real-time system capable of
visualizing live music using responsive imagery. A
musician can interact with a virtual environment in a
natural and intuitive way, using his or her voice as
input to a visualization experience.
 In this paper, we will describe our system which
allows us to visualize live musical performance using
responsive imagery. We will present our musical
feature data extraction routine and describe three
examples of mappings between music and responsive
imagery that have been created using our system.
Example mappings include:

• vocal timbre and piano chord data visualized
through responsive video

• melodic information visualized through the
responses of a virtual character

• vocal dynamics visualized through interactive
aspects of an immersive virtual space

 Our music visualization system has been used to
create an audio-visual performance piece (see Figure
1), and is currently being used to develop additional
multimedia applications. It is designed to facilitate
artist/scientist collaboration, thus visual programming
platforms are used whenever possible to develop the
audio-visual processing components.
 Section 2 of this paper discusses our motivation
in creating a music visualization system, and Section
3 provides an overview of the system architecture.
Section 4 explains our musical feature data extraction
and organization routines, while Sections 5, 6, and 7

Figure 1 – A performer interacts with a responsive
video visualization

present examples of music visualization techniques
that have been created using this system.

2. MOTIVATION

New Media art often combines modern technologies
with traditional art forms to create new platforms for
artistic expression. Virtual and augmented reality
technologies can be used to visualize live music for
the purpose of creating an artistic experience.
 Examples of existing music visualization artworks
include immersive installations that respond to vocal
or instrumental input. Ox’s Color Organ [9] is one
example of such an installation, allowing users to
navigate virtual landscapes generated by assigning
geometric and colour data to characteristics found
within input musical streams. The Singing Tree
created by Oliver et al. [8] allows users to immerse
themselves in an environment containing both
physical and virtual elements, inside which their
vocalizations result in auditory and visual feedback.
 Virtual characters can be used to illustrate aspects
of musical performance. Dancing Gregor (created by
Singer et al. [11]) and Goto’s Cindy the Virtual
Dancer [6] are examples of virtual characters that
synchronize their movements to input provided by
live musicians.
 Levin and Lieberman’s Messa di Voce [7] is a
concert performance piece that generates glyphs in
order to augment live performers' vocalizations.

Figure 2 – System Architecture

 Each of these visualization systems uses a different
mapping between musical and visual content and
illustrates the interactivity between musician and
visualization in a different way.
 Our music visualization system is flexible enough
to visualize musical data through responsive video
imagery, virtual character behaviour, and responsive
virtual environments. We have designed our system
to facilitate multiple mappings between sound and
imagery, so that it may be expanded in the future to
create more music visualization projects.
 The distributed nature of our system encourages
code re-use and task delegation. Since New Media
artwork is often created by interdisciplinary teams,
our system attempts to maximize ease-of-use in the
creative process so that individuals without formal
training in computer programming can participate in
the design and development of audio-visual
applications.

3. SYSTEM ARCHITECTURE

Our music visualization creation system is developed
in a distributed fashion (see Figure 2) allowing the
tasks of musical feature extraction and analysis to be
separated from the visualization system. This
simplifies the task of creating multiple mappings
between music and imagery, as additional
visualization front-ends may be introduced in order to
create new applications.

3.1 Musical Input

The input to the system comes from a digital
keyboard and vocal microphone. The keyboard and

microphone are connected to a Macintosh G5 which
handles the task of parameterizing and organizing
musical input. Musical input is processed inside the
Musical Perception Filter Layer, which is
implemented inside the visual programming
environment, Max/MSP [3]. The Max/MSP
environment is specifically designed to simplify the
creation of musical processing applications. It
provides numerous tools and functions that can be
used to analyze and manipulate analog and MIDI data.

3.2 Visualization

The parameterized input is used to control the
appearance of the visualization environments. We
have used the system to create visualizations using
three different engines – Jitter, ANIMUS, and
Virtools.
 Jitter [2] is a video processing environment that
we use to create a music visualization illustrating
vocal timbre through manipulated video parameters.
 The ANIMUS Framework [15][16] is a virtual
character creation system. We use it to visualize
melodies through the emotional responses of
animated characters.
 Virtools [4] is a virtual environment simulator.
We illustrate vocal dynamics in Virtools by
manipulating aspects of the virtual space in response
to live musical input.
 The Jitter video processing environment runs on a
Macintosh, and is built into the Max/MSP processing
environment. The ANIMUS Framework and Virtools
environments run on remote PC’s running the
Windows XP operating system.

Figure 3 – The Musical Perception Filter Layer

3.3 Displayed Imagery

The output of all the visualization engines can be
displayed upon large-scale projection screens.
Additionally, the ANIMUS and Virtools simulation
engines are capable of generating life-sized
stereoscopic imagery. Virtools can be configured to
control stereoscopic visualizations inside three-walled
immersion rooms.

3.4 Networked Communications

Communication between the musical feature
extraction system and the remote computers used to
visualize the musical data (the computers running the
ANIMUS and Virtools engines) is performed using
the Virtual Reality Peripheral Network (VRPN)
library [14]. VPRN is designed to facilitate generic
distributed communications for virtual reality
applications. VRPN is highly flexible, allowing our
system to be capable of communicating with
visualization clients housed on Windows, OS X,
Linux or IRIX machines.

4. REAL-TIME MAX/MSP SOUND
EXTRACTION MODULE

In order to visualize live music, a stream of musical
input must first be parsed into discrete parameters.
We use Cycling `74's sound processing environment
Max/MSP [3] to encapsulate this process into a
module called the Musical Perception Filter Layer
(see Figure 3).

4.1 Max/MSP

Max/MSP allows musicians to create music
processing applications by describing the dataflow
between hierarchical submodules, known as objects.
Max/MSP’s ease of use and modularity have made it
an industry standard in electronic music development.
Numerous users create and share their objects with the
large Max/MSP user community.

4.2 Vocal Feature Extraction

To analyze a musician’s singing, we use one such
user-created Max/MSP object called fiddle~ [10].
fiddle~ , created by Puckette et al., performs a
Fourier analysis of the incoming sound signal and
outputs information about the singer’s vocalization.

4.2.1 Pitch and Amplitude Extraction

fiddle~ is designed for use as a pitch and
amplitude tracker. It outputs a constant stream of
pitch and amplitude information. We use these
values to track the pitch and loudness of the live
musician’s singing.

4.2.2 Pitch Organization

Since the objective of this application is to facilitate
the creation of music visualizations that are
aesthetically pleasing to humans familiar with
Western tonal music (the tonal system familiar to
listeners of modern popular or folk music, as well as
pre-twentieth century classical music), an existing
schema for musical data representation [5] which is
congruent with the rules of Western musical tonality
has been modified in order to organize the extracted
vocal pitch data. Extracted pitches are encoded in
terms of their intervallic relationship to the (pre-
determined) key signature of the input melody,
simplifying any later music-theoretical processing of
the melodic data.

4.2.3 Assessment of Vocal Timbre

In addition to outputting estimations of the singer’s
pitch and loudness, fiddle~ also makes available
data describing the frequencies and amplitudes of all
the harmonic components that are contained within
the harmonic spectrum resulting from the Fourier
analysis performed on the incoming sound stream.
 Our system assesses the weighting of energy
amongst the partials in the sound, creating a
parameter that a vocalist can control by modifying her
vocal timbre.

 Vocal timbre refers to the characteristics of a
vocalized sound that make it recognizably different
from other vocalizations uttered at the same pitch and
loudness. A voice’s timbral character is determined
by the way energy is distributed amongst the partial
frequencies in the sound. Literally meaning tone
colour, a vocalist’s timbre is what is being addressed
when a voice is described using terms such as dark,
bright, rich, or strident.
 Our system creates a description of the singer’s
vocal timbre by examining the harmonic spectrum
output by the fiddle~ object. Vowel choices are
roughly identified by comparing the reported
amplitude at each harmonic in the vocalized spectrum
to known data characterizing vowel formation.

4.4 Piano Chord Identification

In addition to interpreting analogue vocal data, MIDI
data from the digital piano keyboard is also assessed.
A sub-module of the Musical Perception Filter Layer
is used to monitor MIDI events and identify the
chords played on the digital piano by comparing them
to a list of “known” major and minor chords. Any
inversion of the chords is recognized, and this module
could easily be expanded to incorporate other types of
chord data.

4.5 Broadcasting the Musical Feature Data

After the musical feature data (vocal pitch, amplitude,
and timbral information as well as keyboard chord
data) has been identified and extracted, it is then
transmitted to the visualization engines to be
represented through responsive imagery. As described
in Section 3.3, this task is facilitated by the use of
the VRPN library [14].
 We have created a Max/MSP object encapsulating
the VRPN technology required to run a server on the
Macintosh system. This object, vrpnserver,
broadcasts the extracted musical feature data so that
our visualization engines may receive information
about the musical performance.

5. VISUALIZATION THROUGH
RESPONSIVE VIDEO IMAGERY

Our first visualization environment allows a musician
to interact with a responsive video visualization by
manipulating her vocal timbre and playing chords on
a digital piano.
 By mapping responsive video parameters to aspects
of the musician’s live performance, we used our
music visualization system to create a multimedia

piece called Deep Surrender that has been performed
live in concert.
 The piece was created using Cycling `74’s video
processing engine, Jitter [2] to manipulate the
responsive video space.

5.1 Jitter

Jitter is an add-on to the Max/MSP system. As such,
its visually programmed interface is consistent with
that of Max/MSP, and Jitter operations are executed
inside of the Max/MSP processing loop. Jitter’s
extensive library of image processing functions allows
users to perform matrix-based image manipulation
operations on still images and video files. We make
use of two such Jitter functions, the
j i t . s c a l e b i a s and jit.chromakey
operations in order to create the effects seen in the
Deep Surrender performance (see Figure 4.)

5.2 Visualizing Piano Chords

 In the production, chords played on the piano
keyboard affect the colour balance of the video
imagery.
 To map piano chords to colours, we use a strategy
similar to the one used by Jack Ox in her Color
Organ installation [9]. A music theoretical structure,
the Circle of Fifths, is mapped to a standard colour
wheel, associating a colour value with each chord.
 The Circle of Fifths relates chords to one another
in terms of their harmonic similarities. Chords that
are closer to one another on the Circle are more
similar to one another than chords that are located
further away. Mapping a colour wheel to the Circle
of Fifths makes chords that are musically similar
appear similar in colour.
 Jitter’s jit.scalebias operation adjusts the
colour balance of a displayed video, using matrix
multiplication to scale the hue of the moving images.
 In the Deep Surrender performance, the live
performer manipulates the colour balance of the video
playback by playing different chords on the keyboard.

5.3 Visualizing Vocal Timbre

The vocalist’s singing also affects the visual
environment. Image layering is used to allow the
singer’s vocalization to introduce coloured images
into the video stream.
 The jit.chromakey operation is used to
superimpose images into the displayed video scenes.
Chroma-keying (also known as blue- or green-
screening) is commonly used in film and video
productions. The process allows elements from one
video to be layered into a second video, creating a

Figure 4 – Images from Deep Surrender

composite video stream containing elements from two
separately filmed video segments.
 In Deep Surrender, a soprano chroma-keys images
from one video stream into another by making sounds
with her voice.
 She controls the colour of the chroma-keyed
imagery by manipulating her vocal timbre.
 By mapping the amplitudes found at each partial
frequency of the analogue vocal input to an RGB
colour selection function, we assign a colour to the
singer’s timbre.
 The amplitude of the energy found at the
fundamental frequency of the sound affects the red
component of the colour selection, while the
amplitude of the second and third partial frequencies
control the blue and green components.
 Focused sounds (like /i:/ or /u:/ vowels or
extremely high pitches above soprano High C) have a
high intensity of tone amplitude weighting at the
fundamental frequency. Our mapping yields red-
orange colours in these cases. If the soprano produces
a spread sound at a moderate pitch (like /a:/ sung
near the pitch of A440) there is increased amplitude at
the second and third partial frequencies in her
harmonic spectrum. This results in a blue-green
colour value.
 By making sounds, the singer introduces new
objects into the scene, and by choosing the type of
sound she makes, she determines their colour.

5.4 The Deep Surrender Performance

 The intention of the Deep Surrender piece is to
illustrate how an artist can harness anxiety and
adrenalin to produce a beautiful performance. This is
achieved by utilising the visual metaphor of a
jellyfish -- a creature both beautiful and terrifying.
The artist's musical performance manipulates the
jellyfish representation, in order to convey how the
artist interacts with and overcomes her anxiety.
 The interaction techniques (piano playing and
singing) are used to manipulate the jellyfish imagery
in order to convey the musician’s emotional state to
the audience. Different video segments are
manipulated during each section of the piece, and the
performer adjusts her vocalizations as the performance
progresses, illustrating her growing confidence as she
overcomes her anxiety.
 We have used our system to perform this piece in
concert, and often perform it in the laboratory setting
in order to show visiting tour groups an example of
an artistic usage of visualization technology.

Figure 5 – A singer interacting with a virtual
character called Alebrije

6. VISUALIZATION THROUGH THE
BEHAVIOUR OF A RESPONSIVE

VIRTUAL CHARACTER

A second way of visualizing music using our system
illustrates emotional content in sung melodies
through the responsive behaviour of a virtual character
[12] [13].

6.1 The ANIMUS Framework

The virtual character used in this implementation was
created using Torres and Boulanger’s ANIMUS
Framework [15] [16].
 The ANIMUS Framework supports the creation of
responsive virtual characters using a three-layered
process. Musically responsive character behaviour is
defined in three layers: the perception layer, the
cognition layer, and the expression layer.

6.1.1 Perception Layer

In the perception layer, the virtual character perceives
the musical feature data which is extracted from the
live musical input and communicated by the Musical
Perception Filter Layer.

6.1.2 Cognition Layer

In the cognition layer, the virtual character’s
simulated “personality” is defined. In this layer, the
way in which the character’s simulated “emotional
state” is affected by musical stimuli is specified.

6.1.3 Expression Layer

In the expression layer the virtual character’s internal
state is expressed to the viewing audience through
animations. Animations are created at run-time using
DirectX functionality to interpolate between emotive
keyframe poses and generate character movement on
the fly.

Each layer in the ANIMUS Framework is defined by
a designer who defines the functionality and
animation parameters through an XML scripting
language, then implemented by a developer who
creates the code required to fulfill the designer’s
specifications. This encourages the close
collaboration between designers and developers that is
essential when creating an artistic application.

6.2 An Example of a Virtual Character

Our example of a virtual character music visualization
illustrates sung melodies through the behaviours of
Alebrije, a lizard-like character (see Figure 5.)
 Alebrije’s perception layer receives information
from our Musical Filter Perception Layer. He is
aware of the pitches the singer sings, both in terms of
their raw pitch values, and in terms of their intervallic
context with respect to the key signature of the sung
piece.
 To implement Alebrije’s cognitive layer, we base
his simulated emotional state upon a metric devised
by Deryck Cooke [1]. Cooke’s study correlates
musical emotion with features in tonal melodies.
Cooke’s metric assigns an emotional meaning to each
interval in the scale (as an example, he states that
minor thirds signify despair, while major thirds
signify joy.)
 Each note in an incoming sung melody has a
specific intervallic tension (relative to the tonic note
of the key signature), and as each note is sung we
affect Alebrije’s emotional state in response to this
tension. His simulated emotional state becomes more
or less happy based on Cooke’s interpretation of the
significance of the perceived melodic data.
 To express Alebrije’s emotional state in a way
that is visible to the viewing audience, his posture
transitions between “happy” and “sad” keyframe
poses.

6.3 The Resulting Animation

The Alebrije visualization is capable of expressing
appropriate animated responses to the emotional
content in tonal melodies. When presented with the
folk song Greensleeves, his emotional state registers
“sadness” in response to its wistful melody, which is
characterized by minor thirds and minor sixths.
Twinkle Twinkle Little Star, with its major melody
and prominent perfect fifths, makes his emotional
state transition towards “happiness”. These states are
expressed through emotive animations, which allow
him to express his simulated emotions in a way that
is visible to the audience.
 We display Alebrije on a life-sized stereoscopic
screen (see Figure 5) so that the viewing audience
may perceive both the virtual character and the human
performer on the same scale. This enhances the
realism of the visualization and makes it particularly
suitable for use in virtual theatre productions, since
the human and virtual actors appear in a unified
setting.

 We intend to develop this simulation further in
order to create musically responsive virtual characters
with greater expressive capabilities. We are currently
working with a media artist who is creating a 3D
character with a wide library of emotive poses so that
we may develop a compelling artistic performance
incorporating the musically responsive virtual
characters.

7. VISUALIZATION INSIDE A VIRTUAL
SPACE

The third method we have implemented to visualize
music using our system uses the Virtools
development environment to create immersive virtual
spaces that are responsive to musical input.

7.1 Virtools

The Virtools’ authoring application [4] is a visual
programming environment which allows designers of
virtual reality applications to create immersive
visualizations by defining Virtools Behaviours and
describing how they affect the properties of objects in
the virtual environment.
 Connecting our Musical Perception Filter Layer’s
musical control system with Virtools’ intuitive
authoring environment allows us to rapidly develop
music visualization applications. Using Virtools'
visual programming environment to create
visualizations allows different musical imaging
strategies to be quickly and easily defined, tested, and
modified.
 The connection between Max/MSP's music
processing environment and Virtools' virtual reality
simulator allows both the musical and visual aspects
of immersive music visualization projects to be
implemented using specialized development
environments that expedite the process of audio-visual
application development.

7.2 Immersive Spaces

The Virtools simulator is capable of retargeting our
music visualizations so that they may be displayed
inside life-sized immersion rooms. Immersion rooms
are CAVE-like three-walled structures comprised of
large stereoscopic display screens. When a virtual
environment is displayed in an immersion room, the
immersed users experience a realistic and believable
sense of actually being inside the virtual space.

7.3 Musical Control of the Virtual Environment

We interact with the Virtools simulator by connecting
the Musical Perception Filter Layer to the Virtools
event loop. We have built a Virtools building block
that connects to our musical feature data server.
 Our building block, called MusicController,
receives information about the performer’s pitch,
loudness, and timbre, as well as information about

any chords that are played on the digital piano. These
musical features can then be used to control aspects of
the Virtools simulation.
 We have created a responsive environment inside
Virtools that allows a user to modify aspects of the
virtual space using his or her voice.
 To illustrate the singer’s vocal dynamics, clouds
of particle fog are generated in response to singing.
The colour of the clouds is controlled by the pitch the
user sings (higher pitches are visualized with red-
orange colours while lower pitches are visualized with
blue-green colours) and the size of the clouds
increases as the singer’s loudness increases (see Figure
6.)
 The particle cloud is a particularly responsive
form of visual feedback, as the fog is evocative of the
breath the user uses to create a vocalized sound.

Figure 6 – Vocalization visualized with fog

The Virtools visualization environment is particularly
user-friendly, as its visually programmed authoring
environment provides users with a large library of pre-
built functionality. The particle fog visual metaphor
was created using Virtools’ built-in particle cloud
simulation routines.
 Enhancements to the responsive virtual room are
currently being developed, so that visitors to our
laboratory may experiment with the musical input
mechanism and experience visual feedback in the
immersive virtual space.

8. CONCLUSIONS

This system is designed to facilitate the creation of
artistic applications that use musical control to
interact with responsive virtual environments.
 We have created this system in a way that makes
the process of artist/scientist collaboration as easy as
possible.

 For this reason, we chose to use visual
programming to develop system components
whenever possible. Max/MSP, Jitter, and Virtools
use visual techniques to describe the flow of data
within an application, allowing those without training
in traditional computer programming to participate in
the development process with greater ease.
 While the ANIMUS Framework requires
developers to create their applications using
traditional coding methods, its character-creation
processes encourage task delegation, making extensive
use of scripting languages to allow non-technical team
members to participate in the design process of
responsive animation applications.
 We have used our system to develop three music
visualization applications. One of these applications
(the responsive video visualization) has been used to
create an audio-visual work that has been performed in
a live concert setting. The other applications (the
virtual characters and the responsive room) are
currently being used to develop additional
performance pieces and installations.
 Modern visualization technologies can be used to
produce compelling imagery and responsive
interaction. We look forward to using this system to
continue our development of New Media artwork
facilitated by computer science research.

ACKNOWLEDGEMENTS

The use of the VRPN library was made possible by
the NIH National Research Resource in Molecular
Graphics and Microscopy at the University of North
Carolina at Chapel Hill, supported by the NIH
National Center for Research Resources and the NIH
National Institute of Biomedical Imaging and
Bioengineering.
 The source video footage for the Deep Surrender
video production was filmed by Melanie Gall.
 The textures on the models used in the Virtools
simulation are from http://www.ktn3d.com/.

REFERENCES

[1] Deryck Cooke. The Language of Music. New
York: Oxford University Press, 1959.
[2] Cycling '74. Jitter, 2004.
[3] Cycling '74. Max/MSP, 2004.
[4] Dassault Systémes. Virtools, 2005.
[5] Diana Deutsch and J. Feroe. The internal
representation of pitch sequences in tonal music.
Psychological Review, 88:503-522, 1981.
[6] Masataka Goto and Yoichi Muraoka. Interactive

Performance of a Music-Controlled CG Dancer.
http://staff.aist.go.jp/m.goto/PROJ/ip-j.html.
[7] Golan Levin and Zachary Lieberman. In-situ
speech visualization in real-time interactive
installation and performance. In Proceedings of The
3rd International Symposium on Non-Photorealistic
Animation and Rendering, pages 7-14. ACM Press,
2004.
[8] William Oliver, John Yu, and Eric Metois. The
Singing Tree: design of an interactive musical
interface. In DIS '97: Proceedings of the conference
on Designing interactive systems: processes,
practices, methods, and techniques, pages 261-264.
ACM Press, 1997.
[9] Jack Ox. 2 performances in the 21st Century
Virtual Color Organ. In Proceedings of the fourth
conference on Creativity & Cognition, pages 20-24.
ACM Press, 2002.
[10] M. Puckette, T. Apel, and D. Zicarelli. Real-
time audio analysis tools for Pd and MSP. In
Proceedings of the International Computer Music
Conference, pages 109-112. International Computer
Music Association, 1998.
[11] Eric Singer, Athomas Goldberg, Ken Perlin,
Clilly Castiglia, and Sabrina Liao. Improv:
Interactive improvisational animation and music. In
Proceedings of the International Society for the
Electronic Arts (ISEA) Annual Conference, 1996.
[12] Robyn Taylor, Pierre Boulanger and Daniel
Torres. Visualizing emotion in musical performance
using a virtual character. In Proceedings of the Fifth
International Symposium On Smart Graphics, pages
13-24. Springer LNCS, 2005.
[13] Robyn Taylor, Daniel Torres and Pierre
Boulanger. Using music to interact with a virtual
character. In Proceedings of the International
Conference on New Interfaces for Musical
Expression, pages 220-223, 2005.
[14] Russell M. Taylor II, Thomas C. Hudson, Adam
Seeger, Hans Weber, Jeffrey Juliano, and Aron T.
Helser. VRPN: A device-independent, network
transparent VR peripheral system. In Proceedings of
the ACM symposium on Virtual reality software and
technology, pages 55-61. ACM Press, 2001.
 [15] D. Torres and P. Boulanger. The ANIMUS
Project: a framework for the creation of interactive
creatures in immersed environments. In Proceedings
of the ACM symposium on Virtual reality software
and technology, pages 91-99. ACM Press, 2003.
[16] D. Torres and P. Boulanger. A perception and
selective attention system for synthetic creatures. In
Proceedings of the Third International Symposium
On Smart Graphics, pages 141-150, 2003.

