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Abstract. Creating models of real objects is a complex task for which the use of 

traditional modeling techniques has proven to be difficult. To solve some of the 

problem encountered, laser rangefinders are frequently used to sample an object´s 

surface from several viewpoints resulting in a set of range images that are 

registered and integrated into a final triangulated model. In practice, due to surface 

reflectance properties, occlusions and accessibility limitations, certain areas of the 

object´s surface are  not sampled leaving holes which create undesirable artifacts 

in the integrated model. In this paper, we present a novel algorithm for the 

automatic hole–filling of triangulated models.  The algorithm starts by locating 

hole boundary regions. A hole consists of a closed path of edges of boundary 

triangles that have at least an edge, which is not shared with any other triangle. 

The edge of the hole is then fitted with a b-spline where the average variation of 

the torsion of the b-spline approximation is calculated. Using a simple threshold of 

the average variation of the torsion along the edge, one can automatically classify 

real holes from man-made holes. Following this classification process, we then use 

an automated version of a radial basis function interpolator to fill the inside of the 

hole using neighboring edges. Excellent experimental results are presented.
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1. Introduction 

Creating accurate models of real environments is a nontrivial task 

for which traditional modeling techniques are inappropriate. In these 

situations, the use of laser rangefinders [5] seems attractive due to 

their relative independence from the sampled geometry and their 

short acquisition time. The combined use of range and color images 

is very promising and it has been demonstrated that together they 

can produce an unprecedented degree of photorealism [15, 16]. 

Unfortunately, surface properties (i.e., low or specular reflectance), 

occlusions and accessibility limitations cause the scanner to miss 

some surface elements, leading to incomplete reconstruction of the 

scene and introducing holes in the resulting models. Creating high-

quality mesh representations of objects based on such incomplete 

information remains a challenge [24]. Due to the costs and 

difficulties involved in scanning real environments, it is desirable to 

have automatic or semiautomatic tools for helping users to improve 

the quality of incomplete data sets. 

The problem of filling holes in a triangulated mesh can be divided 

into two sub-problems: hole identification and   construction of the 

missing data using the available data near the holes. Unfortunately, 

none of these problems are trivial since holes created during the 

scanning of geometrically rich objects, such as detailed sculptures, 

can be quite complex [9]. However, in many practical cases, holes 

occurring in range images can be topologically simpler. This is the 

case of many holes found when scanning interior environments 

where most surfaces tend to be smooth and planar areas are 

abundant (for example: imagine a home or an office environment). 

For these situations, simpler algorithms for identifying holes and for 

parameterizing their neighbors can be specified to avoid the 

problems usually associated with more general cases. 

This paper presents a novel algorithm for automatically 

identifying and filling holes in regions associated with smooth 

surfaces. Although our algorithm is targeted towards filling holes in 

smooth surfaces, it does not provide a general solution to the hole-

filling problem. It is conceptually very simple and its 

implementation is straightforward. The algorithm takes a 

triangulated mesh, which is analyzed for the existence of boundary 

edges (edges that belong to a single triangle). The occurrence of a 
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hole implies the existence of a cycle defined by boundary edges. 

Thus, once a boundary edge is found, the algorithm traces the entire 

boundary. A ring of points around the boundary is used for an 

interpolation procedure that will eventually fill in the hole. The 

points near the hole are then used to fit a surface using a radial basis 

function (RBF) interpolator. An important feature of our algorithm is 

that it guarantees that the reconstructed patches blend smoothly into 

the original surface. Moreover, the reconstructed surface preserves 

the original sampling rate of the original mesh. As the new 

primitives are distinguished from the original points, they can be 

processed further. Since the algorithm works after surface 

reconstruction, it can be used with any reconstruction technique and 

its processing is only limited to the size of holes. In this paper, we 

demonstrate the effectiveness of our approach in real data sets and 

show how it can significantly improve the overall quality of a 

triangular mesh model. 

The paper is organized as follows: Section 2 discusses previous 

work. Section 3 presents the details of the hole-filling algorithm. 

Section 4 discusses results obtained using this algorithm, and 

Section 5 summarizes the contributions of this paper and proposes 

future developments. 

2. Previous and Related Work 

Hole filling is an important problem in object reconstruction and 

this work benefits from previous efforts in areas such as range image 

registration [6, 17, 20] and surface reconstruction from point clouds 

[2, 3, 11, 12].

Curless and Levoy [8] used a hole-filling technique to interpolate 

non-sampled surfaces in concave regions of objects. In this case, the 

added surfaces were intended to produce “watertight” models for 

reproduction using rapid prototyping machines. Their algorithm has 

little or no impact on the appearance of the objects. In our work, we 

are concerned about the reconstruction of holes that, if not fixed, 

would result in major rendering artifacts. 

Carr et al. [7] use polyharmonic radial basis functions (RBF) to fit 

an implicit representation to a set of sampled points. This technique 

consists of creating a signed distance function, fitting an RBF to the 

resulting distance function, and extracting iso-surfaces from the  
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fitted RBF. It is general and produces very impressive results, but 

the entire set of points is treated as a single implicit function. In 

order to create the signed distance function, the system needs to 

know what portion of the space corresponds to the exterior of the 

surface and what portion corresponds to its interior, which may not 

always be readily available. 

Davis et al. [9] use a volumetric diffusion approach, analogous to 

in-painting techniques [4, 18], to fill holes in range scans. The 

process consists of converting a surface into a voxel-based 

representation with a clamped signed distance function. The 

diffusion algorithm consists of alternated steps of blurring and 

compositing, after which the final surface is extracted using 

Marching Cubes [14, 28].

Alexa et al. [1] used point sets to represent shapes and employed 

an approach similar to ours as they also locally project points onto 

planes and fit surfaces through those points. The reconstructed 

surfaces are used to sub–sample the point set. Their method, 

however, does not attempt to fill holes on surfaces. 

Wang and Oliveira [21] proposed a pipeline to improve the 

reconstruction of scenes represented as sets of range images. The 

pipeline consists of a segmentation step followed by the 

reconstruction of missing geometric and textural information for 

individual objects. The reconstruction of missing geometric data 

exploits the fact that real (indoor) scenes usually contain many 

planar and symmetric surfaces. Thus, a 3D Hough transformation is 

used to identify large planar regions, whose corresponding samples 

are replaced by texture-mapped polygons and are also removed from 

the point cloud [10, 22, 23]. In the remaining dataset, individual 

objects are segmented as clusters of spatially closed points, using an 

incremental surface reconstruction algorithm [11]. Inside each 

cluster, the point cloud is analyzed and searched for approximately 

symmetric patterns using a variation of the 3D Hough 

transformation [21]. As these patterns are identified; the algorithm 

automatically proceeds with reconstruction by mirroring data from 

one part of the model to another.  Figure 1 shows a chair extracted 

from a real data set. The image on the left corresponds to the original 

samples with large holes. The image to the right shows the model 

recovered using the symmetry-based reconstruction algorithm 

J. Branch et al.
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described in [21]. It provides a significant improvement with respect 

to the original model, but some holes are still visible. Such holes 

essentially result from the lack of data on both sides of the model 

and from limitations of surface reconstruction algorithms [2, 3, 11, 

12] that work effectively on areas with variable sampling density. 

The algorithm presented in this paper intends to fill these remaining 

holes.

Figure 1. a) Chair from the range image has big holes due to occlusion,  b) 

Symmetry-based reconstruction. 

3. Hole-Filling Algorithm 

With the objective of correcting the topological anomalies related to 

the absence of information in mesh representing objects, it is 

necessary to generate new points in those regions which have not 

been scanned. 

The proposed methodology first identifies and analyzes the holes 

present in the grid to determine which ones must be filled and which 

ones belong to the topology of the object. For example, 

discontinuities are present in the eye area on the surface of the mask 

as shown in Figure 2. Figure 3 shows the block diagram of the 

proposed algorithm. 

a                                    b 

Figure 2. a) Surface Hole, b) Representation Hole. 
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The analysis of the holes consists of studying the torsion of the 

contour curve of every hole. This analysis is based on the idea that 

every hole belonging to the surface is smooth and regular, but the 

holes generated by occlusion often present irregularities reflected in 

high torsion of the contour. Some examples are shown in Figure 4. 

Next, an iterative process is started to fill the holes using 

neighboring points. These points are generated by means of local 

interpolators of radial basis functions originating from a 

neighborhood selected iteratively around a hole until a pre-selected 

fitting threshold is reached. 

Figure 3. Block diagram of the algorithm. 

3.1.  Hole Identification 

The first step for the process of hole filling is the process of 

identification, during which it is possible to find the different types 

of holes present in the topology of an object. There are those that 

really belong to the surface, and those that are caused by the 

acquisition process itself, i.e, such as holes due to occlusion or due 

to insufficient views as illustrated in Figure 4. 

J. Branch et al.
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a                                    b 

Figure  4. a) Hole generated by occlusion, B) Hole generated by partial scanning. 

If the object is a triangular mesh, a hole consists of a closed path 

of edges of border triangles. A border triangle is the one that has at 

least an edge which is not shared with any other triangle (that edge is 

called a limiting edge). 

By following these border edges the holes can be detected 

automatically. However, it is possible to differentiate two kinds of 

borders: an internal limit which delimits a hole on a surface, and an 

external limit which delimits a patch or an island inside a hole or the 

limits of the surface. For the filling process, the path which 

represents the limits of the surface is eliminated within the set of 

detected holes. This elimination can be done by verifying that every 

one of the holes identified does not enclose a surface. 

Initially, the algorithm takes a seed triangle located at any part of 

the grid, and it searches on the whole mesh until it finds a border 

triangle from which it starts a recursive search to find a closed path. 

This search is done by determining which one of the three edges is 

on a border, and then it searches for an adjacent border triangle that 

shares some of those vertices. The algorithm proceeds until the 

starting triangle is found again.

Figure 5 shows lateral views of the Standford bunny data set. It 

has five holes, two of them are part of the real object. The other 

holes were generated in early steps of surface reconstruction 

(acquisition and registration). Figure 6 shows the final result of the 

hole identification algorithm. 
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a b c 

Figure 5. a) Lateral view of  Stanford’s Bunny, b) and c) View of the five holes 

that the object owns. 

a b 

Figure 6. a) and b) Result of the algorithm of holes identification on the mesh, 

five identified holes. 

3.2. Hole Analysis 

The step following the detection of holes is analysis. This stage tries 

to determine whether a hole must be filled or not, whether the hole is 

present on the surface of the real object, or if the hole was caused 

during an intermediate stages of  reconstruction. 

There are an infinite number of configurations of holes on  free 

form objects which makes it very difficult to identify the actual hole 

belonging to the surface. This is why the hole-filling process 

requires an interaction with the user. An attempt to automate this 

procedure consists in analyzing the contour curve of each hole. 

Keeping in mind that the smoothness of the contour is relative to the 

density of the sampling points, the holes present in man-made 

objects usually have smooth contours. 

On the other hand, the holes caused by occlusion, present  great 

variability of the contour curve as shown in Figure 7. 

J. Branch et al.
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a                                      b 

Figure 7. a) Internal contour, b) External contour. 

Since the contour line is a curve, it can be studied and classified 

according to its geometric properties as curvature and torsion. To 

classify the contour curves we use the torsion and not the curvature 

because a hole on a surface can have a wide range of curvature 

variations. It is important to establish the behaviour of every curve in 

the space, such as its smoothness or high variability. 

The study of the torsion of a curve depends on the behaviour of 

the osculating plane. The osculating plane is the plane nearest to the 

curve at an arbitrary point A. This plane crosses the A point and it 

contains the tangent T and the normal N to the curve at A, as 

illustrated in Figure 8. 

Figure 8. Osculating plane (Vector for N and T necessary). 

From point-to-point through the curve, the position of the 

osculating plane varies in a similar way to the tangent vector. This 

simple characteristic allows characterization of the curvature. The 

variation of the osculating plane allows calculation of the torsion of 

a curve. Similar to the curvature, the variation of the osculating 

plane is measured according to the arch longitude. That is, if  is 

the angle between the osculating planes at a fixed point A and a 

neighbouring point X, and if s  is the arch longitude AX, then the 

torsion  at the point A is defined as the limit 

ss

lim
0

.
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The sign of the torsion depends on the side of the curve towards 

which the osculating plane turns when it is moving across the curve. 

However, according to differential geometry, the properties of the 

curve at a point are those properties which depend on an arbitrarily 

small environment. The properties of this type of curve are defined 

in terms of derivative on the curve at the point. The estimation of the 

torsion is defined as follows: 
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The contour is partially approximated by means of Bézier curves 

of the third degree with sets of four continuous points until the 

estimation of the torsion is computed at every point along the 

contour.

Once they are obtained, the equations of the torsion for the 

segments along the curve are evaluated at the last point. Since Bézier 

curves guarantee that the obtained curve has the extreme points of 

the set from which it is calculated, the error of approximation that is 

present at the intermediate points does not affect the torsion’s 

estimation (see Figure 9).

a b 

c d 

Figure 9. Approximation to the contour curve by means of Bézier’s curves and 

points on which the torsion is estimated. 

Finally, the variance of the torsions is calculated to measure the 

level of dispersion of the measured values at each point. The holes 

whose contours have a variance of torsion higher than a pre-

established threshold, will be filled The value of this measure is 

obtained by: 

.
)(

0

2
_

n
S

n

i i

torsion

shows different cases of the hole and its values of dispersion.  In 

these cases, low dispersion is considered as values less than 0.1. 

Although  the smoothing of long  contour curves depend on sample 

In general, low values of dispersion suggest a surface hole. Figure 10 



Figure 10. Measurement of the torsion of contour curve in six different cases 

a) 0.31, b) 0.42, c) 0.245, d) 1.1E-4, e) 3.2E-3, f) 0.04, g) 0.09, h) 0.38, i) 0.51, 

j) 0.63. 

density. We assumed that in a real data range the density is adequate 

and that the mesh does not yet have any reduction procedure.

3.3. Calculation of the Interpolant 

Once the holes to be filled are classified, the missing points are 

computed by an interpolation function using a continuous 

interpolation scheme. In order to do this, a function h(x) is calculated 

from a set of points distributed in a homogenous way around the 

contour of the hole. This interpolating function is constructed using 

a radial basis function. 

The procedures based on radial basis functions have proven to be 

very useful in the reconstruction of shapes from noisy, disperse, and 

incomplete data [25, 26, 27]. Recent studies about RBF are centred 

on the reconstruction of a big set of points produced by modern 

acquisition devices [11, 17, 7, 26]. 

The radial basis functions are circularly symmetric functions 

centred on a point called centre. To calculate an interpolant of RBF, 

let us consider a set of points 
N

ppP ,...,
1

 sampled from a 

surface S and with a set of normals, 
n

nnN ,...,
1

, which indicate 
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the orientation of the surface. The main goal is to build a function 

)(rh in such a way that the set of zeroes satisfies the 

equation 0)(:
3

rhr ,  approximating the set of points P. 

The typical interpolation function )(rh interpolating P is defined 

as:

,])([)(

pp

iii

i

Crrgrh

For hole filling, it is necessary to compute independent 

interpolators local to every hole. Therefore, for every hole, a 

different interpolant function is estimated with a reduced set-of-

points. This set-of-points should be as big as possible and 

homogeneously distributed so that the obtained function can 

estimate the topology of the missing points. 

3.4. Centres Selection 

The computation of the interpolating radial basis functions, which is 

not a compact support, is expensive. Therefore, the selection of the 

centres or set-of-points on which the interpolant will be calculated 

carefully. The estimation of the adequate neighbourhood is done by 

means of an iterative procedure (see Figure 11).

a b c 

Figure 11. a) Iteration 1, Neighbourhood size: 38. b) Iteration 2, Neighbourhood 

size: 106. c) Iteration 3. Neighbourhood size: 172.

where
3

)(),/()( ssss  is a tri-harmonic radial basis 

function used for the approximation of the absent surface The 
i
 are 

the set of weights associated to each centre, 
i

g  are typically a 

polynomials of second or third degree, and the 
i

C  are the set of 

centres.
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This process starts with a small number of selected centres, as a set 

of points radially near to each one of the vertices on the contour 

curve, the size of radio is initially established by the user, this 

selection  is shown in Figure 12. An interpolant is calculated for 

these points and the precision is measured on a set of control points.  

If the precision measured is not equal to the threshold or lower than 

a pre-established threshold, the size of radio is duplicated, and a new 

selection process is done until a threshold is reached. In every one of 

these iterations an interpolant is calculated. The evaluation of the 

quality of the interpolation is done over a set of reference points, 

which initially belong to the neighbourhood of the hole but are not 

used to calculate the interpolant. 

Figure 12. Estimation of the set of centres. 

Figure 13 shows the result of the selection of the adequate 

neighbourhood for the calculation of the interpolating function on a 

real object. Once the initial neighbourhood is obtained, the reference 

points set must be determined to measure the quality of the 

interpolating function. This set-of-points should be kept constant. In 

the proposed algorithm, the set-of-points of the initial 

neighbourhood is clustered to obtain homogeneous regions which 

describe different variations of the topology in the regions around 

the hole. A cluster type K-mean [19] is used, where the parameter K 

will be equal to the number of vertices that form the hole’s contour. 

J. Branch et al.
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a b 

Figure 13. a) and b) final neighborhood for each hole in the bunny.

Once the set of regions defined for every cluster is obtained, a 

point is randomly selected from each of them (see Figure 14), which 

will represent every region. In this way, it is assured that the 

evaluation is done homogeneously around the hole. If an 

interpolating function reaches the threshold with high precision, it 

means that it represents the topology of the hole’s neighbourhood. 

a b c 

Figure 14. a) Neighbourhood clusterization. b) and c) Selection of the reference 

points set. 

3.5. Filling the Hole 

In order to fill each hole, it is important to remember that the 

reconstructed segment preserves the sampling density of the original 

mesh; that is, the sampling density that is measured for each one of 

the holes. 

In general, two important criteria are used for determining the 

new points that fill each hole. First, the position of new points 

should be inside the hole and the new triangles added to the hole 

must be easy to merge with the original mesh. The local 

triangulation is an efficient procedure for hole-filling because it 

avoids the remeshing of  the cloud-of-points. Additional procedures 

such as the normal estimation over the new points and the new 

normal of the contour points that will be different due the new 
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In order to generate the new segment of the mesh, we use an iso-

surface algorithm with a RBF interpolator [7]. Given a density 

function S, an iso-surface at value a  is defined as the set of all 

points p where apf )( . In the context of surface reconstruction, 

where S represents a signed-distance function. The reconstructed 

surface corresponds to the iso-surface where f = 0. 

The function S is sampled at regular intervals to construct a 

manifold mesh of polygons representing the desired iso-surface at a 

specified resolution. The density of the new segment of the mesh is 

equal to the mean value of the original mesh. Facet vertices are 

ordered such that the cross-product of adjacent edges (the facet 

normal) is consistent with the gradient of the density function S. The 

marching cubes algorithm is a well-known general purpose 

algorithm and we use it to fill the holes as illustrated in Figure 16. 

        a   b 

Figure 16. a) and b) show the filled holes identified in Section 3.1.

 a  b               c 

Figure 15. Hole triangulation a) Initial mesh, b) Contour extraction, new points 

generation and local triangulation, c) Filling hole. 

segment of the surface, can also be made locally (see Figure 15). 

Second, the density of the new set-of-points must be of that vicinity.

J. Branch et al.
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4. Experiments and Results 

All tests were made with a computer with a 3.0GHz processor, 

1.0Gb of ram memory running under the Microsoft XP operating 

system.  The implementations of the models were made in C++ and 

MATLAB. In addition, a graphical motor in OpenGL was 

programmed to obtain the graphical representation of the images.  

The  data were acquired with the Kreon sensor available in the 

Advanced Man-Machine Interface Laboratory Department of 

Computing Science, University of Alberta, Canada. 

In order to calibrate the model and to validate the correct behavior 

of the interpolator over 3D points, several tests were made on 

synthetically generated holes. The generation of synthetic holes is 

necessary to evaluate the quality of the points obtained with the 

interpolator since in real cases, the degree of precision of the points 

generated with respect to the real section of the surface is impossible 

to measure.  The test consisted of generating synthetic holes on real 

range image, extracting a near points neighborhood by means of a 

kd tree structure.  Next, the hole is filled with the proposed strategy 

and the error of fit between the extracted data of the real surface and 

the new points is measured.  The error reported in Table 1 

corresponds to the error of the distance between both sets of points. 

Figure 17, shows  the variation of neighborhood size to fill the hole. 

Table 1. Variation of neighborhood size to fill the hole.

Number of Points Size of Hole=50 Surface size = 6051

Neighborhood Size error % of Surface 

100 1.79E-2 1.65%

200 1.60E-2 3.31%

500 1.03E-3 8.26%

1000 0.83 16.53%
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Figure 17. Different neighborhood sizes.

To show the behavior of our algorithm one can see in Figures 18 

and 19 results for several real 3D cases. These images show that the 

algorithm generates smooth segments to fill the surface holes in 

different configurations and correctly identifies each one of the 

holes.

a                       b                    c 

Figure 18. a) Original mesh, b) set of center and c) hole filled with RBF 

interpolant.

a                                 b 

Figure 19. a) Original mesh, b) hole filled with RBF interpolating function. 

J. Branch et al.
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5. Conclusion 

We have presented a new technique for filling holes in a triangulated 

model using a local radial basis function interpolant defined for each 

one of the holes detected using the torsion fluctuation around the 

contour curve. In the algorithm, each contour curve is approximate 

with a Bézier curve segment from which the torsion is calculated 

analytically. The method is simple and effective, since the radial 

basis function fits the surface smoothly and always generates a 

closed manifold triangular mesh. 

When big holes are present in a mesh, the interpolating function 

cannot adequately fit the surface. No big holes can exist if a good 

scanning process is done, that is, holes whose sizes do not exceed 

3% of the total size of the mesh. Our algorithm has only one 

parameter: the predefined threshold for  the variation of the torsion 

to determine if a hole must be filled. The other values like the size of 

vicinity are automatically calculated. 

The threshold for the variation of the torsion to identify a  hole in 

the mesh will be affected by the sample density and the method to 

make the mesh. So an approach to automatically define this value 

from a given mesh would be desirable.  In some cases the holes 

would be on a plane. For these cases our algorithms must complete 

with a normal variation analysis of limit edges; but this is not a 

general case because the holes too often are caused by occlusion  

and are not trivial surfaces. 

References

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C., "Point Set 

Surfaces", IEEE Visualization, pp. 21–28, 2001. 

2. Amenta, N., Bern, M., and Kamvysselis, M., "A new Voronoi-based surface 

reconstruction algorithm", SIGGRAPH’98, pp.415–421, 1998. 

3. Bajaj, C., Bernardini, F., and Xu, G., "Automatic Reconstruction of Surfaces and 

Scalar Fields from 3D Scans", SIGGRAPH’95, pp.109–118, 1995. 

4. Bertalmio, M., Shapiro, G., Caselles, V., and Ballester, C. "Image Inpainting", 

SIGGRAPH’00, pp.417–424, 2000. 

5. Besl, P., "Advances in Machine Vision", Advances in Machine Vision, Springer

Verlag, Chapter 1 – Active Optical Range Sensors, pp. 1–63, 1989. 

6. Besl, P. and McKay, N., "A method for registration of 3D shapes", IEEE Trans. on 

PAMI, 14 (2). pp. 239–256, 1992. 



430

7. Carr, J., Beatson, R., Cherrie, J., Mitchell, T. Fright, W., and McCallum, B., 

"Reconstruction and Representation of 3D Objects with Radial Basis Functions", 

SIGGRAPH’ 01, pp. 67–76, 2001. 

8. Curless, B. and Levoy , M., "A Volumetric Method for Building Complex Models 

from Range Images", SIGGRAPH’ 96, pp. 303–312, 1996. 

9. Davis, J., Marschner, S., Garr, M., and Levoy, M., "Filling Holes in Complex Surfaces 

Using Volumetric Diffusion" Proc. First International Symposium on 3D Data

Processing, Visualization, Transmission, pp. 428–861, 2002. 

10. Efros, A. and Freeman, W., "Image Quilting for Texture Synthesis and Transfer", 

SIGGRAPH’01, pp. 341–348, 2001. 

11. Gopi, M. and Krishnan, S., "A Fast and Efficient Projection Based Approach for 

Surface Reconstruction", Intern. Journal of High Performance Computer Graphics,

Multimedia and Visualization, 1 (1), pp. 1–12, 2000. 

12. Hoppe, H., DeRose, T., Duchamp, McDonald, T. J.A., and Stuetzle, W., "Surface 

reconstruction from unorganized points", SIGGRAPH’92, pp. 71–78, 1992. 

13. Lancaster, P. and Salkauskas, K., Curve and Surface Fitting: an Introduction.

Academic Press. 1986. 

14. Lorensen, W. and Cline, H., "Marching cubes: A high resolution 3D surface 

construction algorithm", Proc. SIGGRAPH’87, pp. 163–169, 1987. 

15. McAllister, D., Nyland, L., Popescu, V., Lastra A. and McCue, C., "Real Time 

Rendering of Real World Environments", Proc. Rendering Techniques’99, pp. 145–

60, 1999. 

16. Nyland, L., et al., "The Impact of Dense Range Data on Computer Graphics", 

Proceedings of Multi-View Modeling and Analysis Workshop, pp. 3–10, 1999. 

17. Nyland, L., Lastra, A., Mc Allister, D., Popescuand, V., McCue, C., and Fuchs, H., 

"Capturing, Processing and Rendering Real-World Scenes", In Videometrics and 

Optical Methods for 3D Shape Measurement, Electronic Imaging,, Photonics West,

SPIE Vol. 4309, pp. 107–116, 2001. 

18. Oliveira, M., Bowen, B., McKenna, R., and Chang, Y., "Fast Digital Image 

Inpainting", International Conference on Visualization, Imaging and Image 

Processing (VIIP 2001), Marbella, Spain, pp. 261–2665, 2001. 

19. Hartigan, J. and Wong, M. A., "A K–Means Clustering Algorithm", Journal of 

Applied Statistics, 28 (1), pp. 100–108, 1979. 

20. Pulli, K., "Multiview Registration for Large Data Sets", 3DIM’99, pp. 160–168, 1999. 

21. Wang, J. and Oliveira, M., "Improved Scene Reconstruction from Range Images", 

Proc. EUROGRAPHICS’ 2002, pp. 521–530, 2002. 

22. Wei, L.Y. and Levoy, M., "Texture Synthesis over Arbitrary Manifold Surfaces", 

SIGGRAPH’01, pp. 355–360, 2001. 

23. Ying, L., Hertzmann, A., Biermann, H., and Zorin, D., "Texture and Shape Synthesis 

on Surfaces", Eurographics´2001, Rendering Workshop,  pp. 301–312, 2001. 

24. Yu, Y., Ferencz, A., and Malik,  J., "Extracting Objects from Range and Radiance 

Images", IEEE Transactions on Visualization and Computer Graphics, 7 (4), pp. 351–

364, 2001. 

25. Carr, J. C., Beatson, R. K., McCallum, B. C., Fright, W. R., McLennan, T. J., and 

Mitchell, T. J., "Smooth surface reconstruction from noisy range data", Proceedings of 

the 1st international conference on computer graphics and interactive techniques in 

Australasia and South East Asia, Melbourne, Australia,   February 11 –14, ACM

Press, pp. 119–ff,2003.

26. Buhmann, M., "Radial Basis Fuction: Theory and Implementations", Cambridge

Monographs on Applied and Computational Mathematics, 2003. 

J. Branch et al.



A Hole-Filling Algorithm for Triangular Meshes Using Local Radial Basis Function     431

27. Carr, J.C., Beatson, R.K., Cherrie, J. B., Mitchell, T.J., Fright, W. R., McLennan, T.J., 

and Evans, T.R., "Reconstruction and representation of objects with radial basis 

function", Proceedings of the 28th annual conference on Computer graphics and 

interactive techniques, pp. 67–76, 2001.

28. C. Montani, R. Scateni, R. Scopigno, A modified look-up table for implicit 

disambiguation of marching cubes, Visual Comput. 10 (1994) 353–355. 




