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Abstract 

Efficient online visualization of 3D mesh and photo realistic texture is essential for a variety of applications, such as 

museum exhibits and medical images. In these applications synthetic texture and a predefined set of views is not an 

option. We propose using a mesh simplification algorithm based on scale-space analysis of the feature point distribution, 

combined with an associated analysis of the surface texture, to address the needs of adaptive online transmission of high 

quality 3D objects. The premise of the proposed textured mesh (TexMesh) simplification is the following: minor 

variations in texture can be ignored in relatively smooth regions of a 3D surface, without significantly affecting human 

perception. Statistics on 3D feature point distribution and their associated texture fragments are gathered during 

preprocessing. Online transmission is based on these statistics, which can be retrieved in constant time. Based on 

monitored bandwidth a scaled mesh is first transmitted. Starting from a default texture quality, we apply an efficient 

Harmonic Time Compensation Algorithm based on the current bandwidth and a time limit, to adaptively adjust the texture 

quality of the next fragment. Properties of the algorithm are proved. Experimental results show the usefulness of our 

approach. 
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1. Introduction 

Efficient bandwidth utilization and optimal transmission 

quality are among the main objectives when transmitting 3D 

models. Since mesh data is usually small compared with 

texture data, our focus is to adapt the texture quality to the 

current bandwidth and a specified time. A historic average 

can be used to estimate current bandwidth [6], but this 

approach can cause unacceptable over or under estimation 

because of bandwidth fluctuations. An optimal bandwidth 

monitoring approach can provide a more accurate 

estimation by sacrificing a portion of the transmission time 

[28]. In this paper, we propose an adaptive approach, which 

does not need to sacrifice transmission time for bandwidth 

estimation, while efficiently adjusting the quality of the 

fragments not yet transmitted.  

In order to optimize bandwidth, a multi-scale incremental 

simplification approach is most suitable for online 

applications. Multi-scale allows a coarse version to be 

refined incrementally. However, if a simplification process 

involves relocation of mesh vertices or texture coordinates 

between scales, then an entirely new version, instead of the 

vertices added to the previous version, has to be transmitted 

[4, 11, 21, 25]. In the progressive meshes method, although 

the original mesh can be recovered exactly after all data are 

received, the edge collapse transformation creates new 

vertices and the vsplit record stream increases network 

workload [13]. Xia’s adaptive real-time LOD technique also 

involves vertex relocation [27]. We apply vertex removal 

and hole filling without affecting the 3D point and texel 

coordinates. 

In recent years, researchers started to incorporate color and 

texture into their mesh simplification models. When texture 

is mentioned in the literature, it often refers to synthetic or 

animated texture [24]. Synthetic texture can be estimated. 

For example, when walking through an animated scene, the 

next frame can be predicted based on available neighboring 

data [8]. Experimental results show that this technique has 

better quality and higher compression factor than MPEG. 

An image-driven simplification method is used to display 

textures using images from multiple views [17]. However, 

rendering the entire model for every edge in every 

viewpoint for different scales is expensive, even with 

hardware-accelerated rendering. The high-resolution texture 

used in our TexMesh model is different from the per pixel 

color stored in each vertex [10,12,22,23]. For applications 

requiring real life texture, interpolating colors between 

vertices is not acceptable. The non-interpolated texture we 

use has resolution much higher than the mesh. It was 

observed in perceptual experiments that the human visual 

system is more sensitive to higher texture resolution after 

the mesh reaches an optimal density [20]. Our TexMesh 

model uses photo-realistic texture images, with resolution 

up to millions of pixels, suitable for displaying on small 

monitors or high definition screens in reality centers. Photo-

texture is used in compressed texture maps [29], but their 

effort is on recovering geometry from texture patches 

retrieved from multiple photographs. A distance-based 

technique is applied to photo-textured terrain [16]; however, 

color interpolation between pixels is necessary to avoid 

blocky appearance of terrain texture.   

In [19], the joint geometry/texture progressive coding 

method applies wavelet transform to encode the mesh and 

texture data for transmission, but the method is not adaptive 

to fluctuating bandwidth. Wavelets were also used to create 

space optimized texture maps, which did not require any on-

chip compression support [2]. In our method, we apply 

scale-space filtering and zero-crossing detection to extract 

feature points. Each scale is associated with a default texture 

quality, and the quality of each fragment is allowed to 
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deviate within a limit based on the number of feature points 

in it. The quality is later readjusted according to current 

bandwidth. By relating each scale to a viewing distance, 

automatic selection of a corresponding simplified textured 

mesh is possible. Another advantage of using scale-space 

analysis is its capability of handling both local and global 

smoothing, which is controlled by the filter window size and 

parameter σ. Many simplification techniques are restricted 

to smoothing in the local neighborhood. For example, the 

simplification envelopes algorithm [9] is based on the 

principle that each vertex is displaced within ±ε to the 

extent constrained by surface curvature. Avoidance of self-

intersections prevents drastic simplification.  

Ever since the introduction of scale-space filtering in 1983 

the technique has aroused intense research interest [26], but 

previous applications focused on image deformation, vortex 

tracking, noise elimination and segmentation in 2D images 

[2, 3, 14, 15]. As far as we know, scale-space filtering has 

not been used in the literature to compute feature point 

distribution, and thereby determine texture quality 

adaptively. In recent research, we discussed an approach for 

variable compression of texture based on model complexity 

[5]; and discussed the relative importance of texture and 

mesh in human perception [20]. In the current paper we 

address the issue of adaptive quality adjustment taking into 

account bandwidth fluctuations within a given time period. 

The work is based on the observation that texture quality is 

more important in regions with high feature density. Our 

technique for detecting small changes vs. major variations is 

based on scale-space filtering. Note that one major 

difference between wavelets and our scale-space approach 

is that wavelets scale up or down by a factor of 2; by 

contrast, in scale-space the scales at which changes occur 

are object dependent and not fixed beforehand. 

In this work, we extend our basic textured mesh (TexMesh) 

model to incorporate the adaptive capability to transmit 3D 

objects. We use scale-space analysis and zero-crossing 

detection to extract feature points at different levels of 

details (LOD). A scale map and a fragment map are 

generated based on feature point distribution. The TexMesh 

model applies a dynamic strategy and adapts to the current 

bandwidth when computing texture quality of the next 

transmitted fragment. We apply a Harmonic Time 

Compensation Algorithm to ensure optimal use of the time 

limit and bandwidth. This approach supports efficient online 

transmission. By splitting the texture into fragments, 

distributed transmission and parallel processing is possible. 

The remainder of this paper is organized as follows: Section 

2 overviews the online adaptive strategy. Section 3 gives a 

summary of our basic TexMesh model, explaining how to 

apply a modified version of the Gaussian filtering and 

Laplacian, to extract feature points. Section 4 explains 

fragment map generation, and how texture quality is 

assigned to each fragment. Section 5 analyzes the adaptive 

transmission strategy. Section 6 concludes the work and 

outlines future directions. 

2. Overview of Adaptive Strategy

Our strategy for adaptive online transmission of 3D objects 

has several components, which are shown in Figure 1. 

Figure 1: Summary of the adaptive online transmission 

strategy. 

The components are divided into two groups: preprocessing 

is described in the upper group, and the online process is 

described in the lower group. The feature point distribution 

is a value ∈ [0,1], which is mapped onto a compression 

scale. For example, in the current implementation, we use 

the JPEG compression scale [0,100]. While wavelet coding 

applies to the entire image and is geometry-independent, our 

approach supports variable quality determined by the 

density of surface structures. Note that we use JPEG for 

convenience and wide support on the web and in JAVA; 

however, standards such as JPEG2000 can be used as well 

in the future to code fragments. 

3. Basic TexMesh model 

In this paper, we extend our basic model to address the issue 

of online adaptive transmission. A summary of the basic 

model is given in this section for completeness. Interested 

readers can refer to [7] for additional detail. 

3.1 Level of details (LOD) in scale-space

The Gaussian filter is an efficient smoothing tool in 

computer vision. However, scale-space filtering had mainly 

been applied in 2D images and only recently has this 

Assign initial texture quality to each fragment 

based on feature point distribution 

Bandwidth (historic average)

Estimate transmission time for each fragment

Current bandwidth 

Time (+/-) allocated from fragments 

already transmitted 

Re-estimate transmission time T & maximum 

data size that can be transmitted in time T.

Obtain corresponding quality level for current 

fragment

Transmit current fragment & determine time 

overestimated/ underestimated ∆T

Update current bandwidth 

If all fragments transmitted, stop; otherwise 

reallocate ∆T to fragments not yet transmitted.  
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technique been used in computer graphics, with limited 

applications in 3D visualization. We use scale-space 

filtering (SSF) for adaptive on-line 3D TexMesh 

simplification and transmission. Traversal between the 

different scales, or LOD is achieved by varying the standard 

deviation parameter σ; the higher the value of σ the more is 

the smoothing. SSF is based on locating the zero-crossings 

of a signal at multiple scales. Zero-crossings can be used to 

detect the degree of persistence of a structure (feature) in a 

3D model. Minor structures tend to diminish as σ increases, 

and only major structures survive at higher scales. When 

using a small window size, SSF eliminates signal noise in 

the local region. By using a bigger window size, the filtering 

or averaging effect covers a larger surface. Fig. 2 is an 

example of global smoothing using a window size of 201 on 

a signal of 256 values. To obtain global smoothing, the 

window size has to be at least twice the standard deviation 

computed from the sample space (covering at least 97.7% of 

the sample data in a normal distribution). If a smaller 

window size is used, smoothing will be restricted and 

converge before reaching the bottom scale in Fig. 2.  

Theoretically, 100% global smoothing will end up with a 

monotonous surface losing all the surface features. When 

considering the human visual system, this is not necessary 

because human vision is insensitive to details beyond a 

certain distance. For a perceivable object, the filter window 

can be smaller than twice the standard deviation to save 

computation time. In our experiments, we applied a window 

size of 1.4 times the standard deviation. We found that this 

window size provides sufficient simplification for objects 

placed at a distance close to infinity in the virtual world. 

Further simplification beyond this point by using a bigger 

window is not necessary. Perceptual evaluation is not the 

focus of this paper, and will be discussed in future work. 

Fig. 2: Increasing scale Si from top to bottom. S0 is the original 

signal extracted near the bottom of the Nutcracker 360 scan-points 

(per row) model. Note that local variations (fine details) in the 

original signal are gradually removed and the scaled signal 

becomes smoother. 

The zero-crossings at different scales can be computed by 

applying the second derivative of the Gaussian (called 

Laplacian-of-Gaussian or LoG). 18 feature points are 

identified in the original signal (Fig. 3, right). By increasing 

σ, the number of feature points decreases from 18 to 2 as 

reflected by the increasing smoothness of the scaled values 

(Fig. 3, left). 

3.2 Spherical approach on scanned range data 

Modern laser scanners detect depths and generate 3D 

vertices in the form of point clouds. Fig. 4 (left) shows a 6-

inch dog model. The generated point cloud (Fig. 4 middle) 

is then mapped with the scanned texture (Fig. 4 right) to 

generate the texture mapped 3D model. 

Fig. 3: (Left) The top is the original signal with 18 zero 

crossings, generated by 36 scan points extracted from the 

Nutcraker model. The other four smoothed scales have 8, 6, 

4, and 2 zero crossing respectively from top to bottom. 

(Right) 18 zero crossings detected in the original signal S0.

Fig. 4: (left) Zoomage
®
 3D scanner, (middle) sample of 3D 

points, and (right) scanned texture. 

We achieve SSF of a 3D model as follows: First note that 

the data acquired (Fig. 4 middle) can be represented as 

Rx(α,y);  where α is the angle on a horizontal plane around 

the y-axis of rotation of an object, y is the vertical location, 

and Rx denotes the distance to the surface of an object for a 

given (α,y) pair. SSF for a 3D model is thus similar to a 2D 

image I(x,y), for the simplified mesh representation 

considered here, with I(x,y) replaced by Rx(α,y).  Also, the 

appropriate scaling along the horizontal and vertical 

directions can be significantly different, depending on the 

variance of the sample points for a given region. Thus, SSF 

in 3D can be summarized by the following equations:  










∈=
−−

elsewhere

Wyeyw

y

G

0

),(
2

1
),(

2
22

2

2
12

2

21

α
σπσα

σ
ϕ

σ
φα

      (1) 

∫ ∫
− −

++=
t

t

t

t

xx dudvvuwvyuRySR ),(),(),(* αα    (2) 








∈







 +−−=

+
−

elsewhere

Wye
y

yw

y

LoG

0

),(
2

1
1

),(
2

22

2
2

22

4
α

σ
ϕφα

πσα
σ

ϕφα

 (3)

Here wG(α,y) represents the weight at pixel (α,y), Rx*S 

represents the smoothed image, and wLoG is the Laplacian of 

Gaussian function. The weights are defined in a square 

window W of length 2t+1. In the discrete case, e.g. with a 

real image, we actually use summation instead of integrals, 

Zero crossing at 

scaleS0
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and normalize the Gaussian weights so that the sum of all 

the weights equals 1. 

For uniform sample points, φ and ϕ equal 1, but for irregular 

sampling, φ and ϕ are used to accommodate the variable 

inter-sample distance. Note that in the actual 

implementation we use two passes of 1-D filters, since all 

the filters discussed above are separable. The vertices are 

first smoothed along the x-axis and then the resulting values 

are filtered once more along the y-axis. Fig. 5 shows the 

face features, of a head model, change towards a smoother 

spherical surface when going from low to high scales (left to 

right). The original mesh contains 1,872 vertices and 3,672 

faces. The other five meshes are generated at increasing 

scales as follows: 

Scale # of vertices removed # of faces in mesh 

5 685 2226 

7 744 2108 

10 824 1948 

15 985 1624 

20 1196 1190 

Fig. 5: Increasing scales from left to right (Top) 3D mesh 

with texture, (Middle) 3D mesh and (Bottom) feature points 

extracted at scale Si.

4. Variable texture quality based on feature point 

distribution

In [18] it was suggested that 3D mesh simplification has 

come to maturity. However, previous simplification 

methods focused mainly on geometry without integrating 

real texture in a coherent approach. Many studies 

emphasized the importance of millions of triangles in order 

to present fine surfaces, but ignored high resolution real 

texture which has been shown through user evaluations to 

have more impact on perceptual quality in 3D visualization 

[20]. Adaptive texture quality is essential for online 

transmission. In our approach, statistics on feature points 

collected through preprocessing are used for efficient 

transmission of geometry and texture data given limited 

network resources. 

Feature points are defined as a set of vertices, which can 

best represent the geometry of a 3D model. In Fig. 5, for 

example, the original head model contains 1872 feature 

points (scale S0). After removing 1196 vertices, it is 

represented by 676 feature points at scale S20. At any scale 

Si, feature points are detected by applying LoG. Vertices 

creating zero crossing are recorded as feature points and 

assigned the value i. Each feature point is then represented 

by three components: (i, (tx,ty), (gx,gy,gz)).

The second and third components are the 2D texture and 3D 

vertex coordinates, respectively. Based on scale-space 

theory, the number of feature points (structures in the 

sample space) decreases as scale level increases. This 

concept best describes how objects are perceived by the 

human visual system when they move from close to far. 

4.1 Fragment map and geometry-driven texture quality 

estimation 

The texture image of a 3D model can be transmitted as one 

block or a collection of sub-blocks. The advantage of using 

sub-blocks is to facilitate distributed transmission and 

applying variable qualities to different texture regions as 

explained below. The main concern is whether the 

additional headers and meta-data will increase the overall 

volume of data that needs to be transmitted. In this section, 

we will show that sub-dividing into smaller blocks of 

optimal dimension does not increase the overall volume for 

high-resolution texture images. Instead, the sub-block 

approach helps to fully utilize the available bandwidth.  

The texture image is fragmented into NX*NY equal pieces 

after determining the optimal size of a fragment. To apply 

JPEG compression efficiently, keeping in mind the size of 

macro-blocks, the optimal dimension of a fragment is 

chosen as a multiple of 16. The entire texture is also 

adjusted so that there is no partial fragment. For example, a 

texture image with dimension 4800*1600 pixels, can be 

divided into 7,500 fragments of size 32*32 pixels.  

Fragments are arranged in a matrix with NY rows and NX

columns. Since each 3D vertex is associated with a 2D 

texel, it is possible to distribute the vertices into the NX*NY

fragments. We used five texture patterns (Fig. 6) to compare 

the fragmented and non-fragmented size in different 

qualities using the Intel JPEG compression library. Each 

fragment has a dimension of 16*16 pixels. Experimental 

results show that the sum of the fragments is significantly 

less than the size of the non-fragmented JPEG file for 

images of dimension greater than 256 pixels. For high-

resolution images, it is therefore advantageous to transmit 

individual fragments to the client site before recombining 

and rendering. This fragmented approach is also suitable for 

distributed network retrieval. 

     (a)                (b)               (c)              (d)              (e) 

Fig. 6: Texture images used in experiments to show that 

sum of sub-blocks of optimal size is significantly less than 

the size of non-fragmented image for high resolution 

texture. 

Since the human visual system is less sensitive to details far 

away, the texture quality Qi at each scale Si needs to 

increase only when i decreases. In other words, display 

quality is inversely proportional to viewing distance. Given 
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a viewing distance, the corresponding Si and Qi are selected. 

Instead of applying uniform quality to all fragments, we use 

a variable approach so that texture quality of each fragment 

(x,y) varies depending on the number of feature points 

associated with it. We illustrate how the distribution of 

feature points relates to the quality of texture as follows: In 

Fig. 8, the grenade has vertical structures on the surface, and 

therefore the feature point distribution is higher than the 

back of the nutcracker, which is comparatively flat. Note 

that even if the texture quality is reduced to half, there is no 

significant perceptual degradation on the nutcracker (Fig. 

7). However, the grenade on the right (Fig. 8) shows 

noticeably lower perceptual quality. Based on this finding 

we adopt a variable approach by applying different qualities 

on texture fragments depending on the feature point 

distribution, instead of applying a fixed quality to all 

fragments. Furthermore, the variable qualities are computed 

adaptively based on the current bandwidth. An adaptive 

approach is necessary when transmitting data on the Internet 

because bandwidth fluctuates and can adversely affect the 

expected Quality of Service (QoS). 

Fig. 7: A snap shot of the rear-view of nutcracker: (left) original 

texture quality, and (right) half of the original texture quality. 

Fig. 8: A snap shot of the grenade 3D model: (left) original 

texture quality, and (right) half of the original texture quality. 

Before discussing the adaptive approach, we first explain 

how variable qualities are assigned to different fragments. 

Let (x ,y) be the coordinates in the NX*NY fragment map, and 

),( yxfi be the # of feature points in fragment (x,y) at scale 

Si.

At a given scale i, ),( yxfi  is normalized to: 

minmax

min
ii

ii

i
ff

f(x,y)f
(x,y)

−
−=η   (4) 

max

i
f  and min

if  are respectively the maximum and 

minimum # of feature points per fragment at scale Si.

The texture quality of fragment (x,y) at scale Si is computed 

as: 

) Q(x,y)(Q ii −+ η   (5) 

where: 

∆Q: Quality tolerance limit for each scale controlled by an 

upper and a lower bound; analogous to the depth of field in 

photography. ∆Q is the tolerance range when displaying 3D 

objects at a given distance. Given a viewing distance, the 

human visual system finds this range of qualities 

satisfactory. 

Qi: Default quality assigned to scale Si.

In the current implementation, threshold Γ ∈ [0,1] is the 

average of ),( yxiη . Fragment (x,y) is assigned quality Qi if 

),( yxiη  = Γ. ∆Q controls the deviation (+/-) from Qi.

Regions on the 3D model surface with more feature points 

are displayed with higher quality, and less populated regions 

are displayed with lower quality. The overall texture quality, 

along with the data size, can be adjusted by changing Γ.

Let Di be the total data size of all fragments at Si. For each 

model texture, a lookup table is used to record Di, and also 

the size and quality of individual fragments, for a range of 

Γ. Given a time limit and current bandwidth, the appropriate 

Di, and the associated fragments are selected. The actual 

data size and quality transmitted will change according to 

the current bandwidth. This adaptive strategy is discussed in 

the next section. 

5. Adaptive bandwidth monitoring and texture quality 

determination

Because of bandwidth fluctuation, current bandwidth has to 

be monitored periodically in order to maintain a good 

estimate of the data size that can be transmitted in a 

specified time T0. To minimize the discrepancy, we 

reallocate the time surplus/deficit to the fragments not yet 

transmitted.  

The n = NX*NY fragments are pre-sorted in decreasing 

),( yxiη  values, i.e., from 1 to 0,  

}F,.....,F.....,,F{F n1list = , i.e., F  has quality  Qi.

The first fragment to be transmitted is F with quality Qi.

Based on a time limit T0 and a historic bandwidth average 

0β , we estimate maximum data size to be transmitted as: 

001 * βTD =
Where: 

kβ  is the current bandwidth (KB/sec.) recorded after k

fragments are transmitted, i.e., 0 ≤ k < n. 0β  is the historic 

average bandwidth before transmission. 

kT  is the time left after k fragments are transmitted. T0 is the 

original time limit (seconds) specified, and 

Dk+1 is the maximum data size that can be transmitted given 

kβ  and kT .

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04) 
0-7695-2223-8/04 $ 20.00 IEEE 



The fragment list Flist, best matching 1D , is selected from 

the lookup table. Size of F  is used to estimate the 

transmission time of the first fragment: 

1

1
01 *

D

d
Test =  , or 

0

1
1 β

d
est =   (6) 

Where: kd  represents the data size of the thk  fragments, 

kest : The estimated time required to transmit fragment k

We estimate the transmission time gest  for all the 

remaining fragments, i.e., 2 ≤ g ≤ n:

1
0

D

d
*Test

g

g =      (7) 

After 1d is transmitted, we have the updated bandwidth 1β
based on the time 1act recorded when transmitting 1d :

1

1
1

act

d=β     (8) 

Where kact  is the actual time needed to transmit the 

fragment k.

The next fragment is selected as follows: 

(a) The leftmost fragment in Flist if 1β ≤ 0β , and 

(b) The rightmost fragment in Flist if 1β  > 0β

Let: kT∆ = Difference between estimated and actual 

transmission time for thk  fragment; i.e., kest  – kact

kt∆  be the cumulated compensating time (+/-) allocated to 

the thk  fragment from the previous k-1 fragments (refer to 

Algorithm 1 below), and  

fwt  be the weight applied to the thf fragment when 

allocating 1−∆ kT , i.e., k ≤ f ≤ n.

(a) If the actual bandwidth is lower than the estimated one, 

loss of time 1T∆  has to be compensated when transmitting 

the remaining n-1 fragments, so that each remaining 

fragment has to share a portion of 1T∆ . Instead of the initial 

2est  computed in Equation (7), the 2nd fragment has 

2wt * 1T∆  seconds less, where 2wt  is the assigned weight. 

We regain the time by transmitting the leftmost fragment in 

Flist with reduced quality. 

(b) Similarly, if the actual bandwidth is greater than the 

estimated one, the gained time 1T∆  is allocated to the 

remaining n-1 fragments, so that each remaining fragment 

can have additional time. Instead of the initial 2est , the 2nd

fragment has 2est   + 2wt * 1T∆  seconds. We adjust the time 

by transmitting the rightmost fragment in Flist with increased 

quality. 

Based on the revised 2est , we compute: 2d  = 1β * 2est ;

and then obtain corresponding quality for the 2nd fragment 

from the lookup table using 2d . In general, after k-1

fragments are transmitted: 

1−∆ kT  = 1−kest  – 1−kact (9) kkkk wtTtt *1−∆+∆=∆  (10) 

The computation of weight kwt  is explained in Algorithm 

1.

kgk testest ∆+=    (11) 

1

1
1

−

−
− =

k

k
k

act

dβ  (12), and, kkk estd *1−= β (13)

The quality for the kth fragment is obtained from the lookup 

table based on kd .

Since bandwidth fluctuation has a larger impact on the 

quality if kT∆  has to be shared by a smaller number of 

fragments, fragments with quality ≅ Qi are transmitted last 
to allow more flexibility for adjustment within the control 

limit ∆Q. Once the transmission is started, the quality of a 
fragment is self-adjusted depending on the updated 

bandwidth. 

5.1 Harmonic Time Compensation Algorithm 

Since later fragments have to share all preceding 

allocations, Algorithm 1 assigns decreasing weights 

( .
4

1

3

1

2

1
,....,, ) to fragments (k+1)th to nth, when reallocating 

kT∆ .

Algorithm 1 – Harmonic Time Compensation 

After transmitting kth fragment, 

div=2;

∑
+

= +−≈= 1

2
1ln

1n-k

jk )k(n
j

ς ;

for (i = k+1; i ≤ n; i++) {

1

k
i

div*
wt = ;

iki wtTt *∆=+∆ ; // allocate to remaining fragments 

div++;

}
There are two questions we have to address: 

(1) How efficient is the algorithm with respect to 

bandwidth optimization in a given time, and 

(2) How does the adaptive approach affect the 

perceptual quality. 

To prove the efficiency of the algorithm, we define Π as the 

time surplus/deficiency with respect to the limit T0. Π is 

composed of three errors: estimation Eest, allocation Ealloc,
and compensation Ecomp errors. In Theorem 1 we establish 

the upper and lower bound of Π (Proof: See Appendix A).  

Theorem 1: Π is bounded by:    

nT∆  + ( 2/1−∆ nT ) + Λ+ |))ln(|ln088.1( n

 Where Λ is defined as the average difference between the 
estimated and actual transmission time for n-1 fragments, 

i.e. Λ = 
1

1

1

−
∑

−
=

n

T
n

j j
.
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The upper and lower bounds in Theorem 1 are verified by 

experimental results in the next section. We will show that 

our adaptive approach does not have an adverse effect on 

perceptual quality for reasonable bandwidth fluctuation. 

5.2 Experimental results

Let n=256. Applying Theorem 1, we obtain:   

Εcomp ≤ 2.8Λ if Λ ≥ 0, and Εcomp ≥ 2.8Λ if Λ < 0 

Since Λ is the average deviation over the entire transmission 
period, it is expected to be small. The other two components 

of Π: estimation error Εest ( nT∆ ) and allocation error Εalloc

( 2/1−∆ nT ), can be minimized by using sufficiently small 

data size for the last two fragments. 

In order to see how Π responds to bandwidth fluctuation, 
we implemented a bandwidth monitor, and extracted three 

sets of bandwidths from an Ethernet connection on different 

days and different times. We then vary the value of 0β
below and above the average of the sample set within a 

reasonable range. The test file is 418KB with 256 

fragments. 

Bandwidth 

sample set 

Actual bandwidth 

avg. (KB/sec) 

1 41.68 

2 45.64 

3 42.07 

0β
(KB/sec) 

Λ
(sec)

Surplus/deficit 

(+/-)% of 

limit 

Time 

Limit 

(sec)

Static 

%

20 0.038 0.399 20.9 52.0 

23 0.031 0.346 18.17 44.8 

26 0.023 0.280 16.07 37.6 

29 0.015 0.195 14.41 30.4 

32 0.011 0.142 13.06 23.2 

35 0.003 0.010 11.94 16.0 

38 -0.001 0.010 11 8.8 

41 -0.004 -0.027 10.19 1.6 

44 -0.008 -0.034 9.5 -5.5 

47 -0.008 -0.058 8.89 -12.0 

50 -0.012 -0.058 8.36 -19.8 

53 -0.012 -0.090 7.88 -27.2 

Fig. 9: Experimental results show that the Harmonic Time 

Compensation Algorithm has less than 1% deviation for a given 

time limit. 0β  is used for initial bandwidth estimation (Sample set 

1). 

One can observe that Π is minimum, when Λ is close to 
zero. Similar trends were obtained from Samples 2 and 3. 

By keeping the nth and (n-1)th fragments sufficiently small, 

as in our experiments, the deviation from the time limit is 

within 1%. For comparison, the last column shows the 

discrepancy in percentage of time limit, should historic 
average bandwidth be used in a static approach. 

To see how variable quality affects the overall visualization, 

we used 0β  = 32 and 50, together with a sample average of 

41.68 (KB/sec), and applied to the dog texture. The original 

texture has quality Qi = 80% and ∆Qi is [40%, 100%]. Fig. 

10 shows that the perceptual quality is maintained, after 

applying variable qualities to fragments adaptively in order 

to satisfy the time limit. Given the estimated texture in the 

middle, actual quality is increased in case of 

underestimation of actual bandwidth (left), and actual 
quality is decreased for overestimation (right). 

Fig. 10: Initial estimated texture (middle), increased quality 

(left) and decreased quality (right). 

6. Conclusion and future work

The adaptive TexMesh model proposed in this paper applies 
scale-space analysis to extract feature points at different 

scales. Quality of a texture fragment is determined by the 

number of feature points, and the current bandwidth in a 

given time period. We apply LoG to detect zero crossings at 

each scale and generate statistics on fragment map during 

preprocessing. These statistics are then used during runtime 
for efficient extraction and transmission of texture data. 

Experimental results show that this adaptive approach 

utilizes bandwidth more efficiently, and thus provides better 

control on QoS for online transmission of 3D objects.  

In the current implementation, we use the Intel JPEG 
Library. We plan to combine the advantages of both the 

wavelet and TexMesh approaches to develop a better coding 

technique for transmitting textured meshes. In future work, 

we will perform experiments with more 3D models and 

formulate the relation between viewing distance, scale, and 

the quality tolerance interval ∆Q. We will also look into the 
effect of other factors on perceptual quality and 

compression.  
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Appendix A - Proof  of Theorm 1:

The time deviation kT∆  caused by the kth fragment can be 

expressed as Λ + εk where Λ is the average deviation. Let ςk

be )1ln( +− kn , as defined in Algorithm 1. 

After 1st fragment is transmitted, ∆T1 is allocated to the 
remaining n-1 fragments as follows: 

1T∆  = 1T∆  * (1/(2*ς1) + 1/(3*ς1) + … + 1/(n*ς1))

After 2nd fragment, 2T∆  is allocated to the remaining n-2

fragments as follows: 

2T∆  = 2T∆  * (1/(2*ς2) + 1/(3*ς2) + … + 1/((n-2)*ς2) + 

1/((n-1)*ς2))
 ….. 

In the last two allocations, 

2−∆ nT  = 2−∆ nT  * (1/(2*ςn-2) + 1/(3*ςn-2); allocated to (n-1)th

and nth fragments, 

1−∆ nT  = 1−∆ nT  * (1/(2*ςn-1) + 1/(2*ςn-1); allocated to nth

fragment. 

Since there is no other fragment after n, the nth fragment has 

to share 100% of 1−∆ nT . nest  is revised by adding the 

cumulated compensating time nt∆  applied to the nth

fragment, and we compute Π as follows: 

Π = nest  + nn actt −∆
Π = 0/ βnd  + ( 1T∆ /(n*ς1) + 2T∆ /((n-1)*ς2) + … + 

2−∆ nT /(3*ςn-2) + 1−∆ nT ) – nnd β/

= ( nnn dd ββ −0/ ) + ( 1T∆ /(n*ς1) + 2T∆ /((n-1)*ς2) + … + 

2−∆ nT /(3*ςn-2) + 1−∆ nT /(2*ςn-1)) + ( 1−∆ nT /2)  

We define Π = Εest + Εcomp + Εalloc

Εest − Estimation Error nT∆  = ( nnn dd ββ −0/ ) caused by 

the discrepancy between the historic average and the actual 

bandwidth for nth fragment. Note that the 1st
nd  is before 

adjustment of nt∆ , and the 2nd is after. 

Εcomp − Compensation Error nt∆  = ( 1T∆ /(n*ς1) + 2T∆ /((n-

1)*ς2) + … + 2−∆ nT /(3*ςn-2) + 1−∆ nT /(2*ςn-1))  allocated 

from fragments 1 to n-1, shared by the nth fragment. 

Εalloc − Allocation Error ( 1−∆ nT /2) = 

( 1101 / −−− − nnn dd ββ )/2, incapable of allocating further. 

Εcomp can be further analyzed by splitting iT∆  into εi and Λ:

Εcomp = (ε1/(n*ς1) + ε2/((n-1)*ς2) + … + εn-2/(3*ςn-2) + εn-

1/(2*ςn-1)) + Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 

1/(2*ςn-1))

≤ (ε1/(2*ςn-1) + ε2/(2*ςn-1) + … + εn-2/(2*ςn-1) + εn-1/(2*ςn-1))

+ Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 1/(2*ςn-1))

= Λ(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 1/(2*ςn-1))

because i
1-n

1i∑ = = 0;

Note that: Εcomp ≥ (ε1/(n*ςn) + ε2/(n*ςn) + … + εn-2/(n*ςn) + 

εn-1/(n*ςn)) + Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 

1/(2*ςn-1))

So we establish: Εcomp = Λ(1/(n*ln(n)) + 1/((n-1)*ln(n-1)) + 
… + 1/(3*ln3) + 1/(2*ln2))  

Since 
)ln(

1

xx
 is a continuous decreasing function, the sum 

can be bounded using integration: 

∑ ∫∫ =
+

≤≤ n

i

nn
dx

xxii
dx

xx 3 2

1

3 )ln(

1

)ln(

1

)ln(
1

Thus if Λ ≥ 0, (ln|ln(n+1)| – ln|ln(3)| + 1/2ln(2))Λ ≤ Εcomp ≤
(ln|ln(n)| − ln|ln(2)| + 1/(2ln(2)))Λ
and if Λ < 0: (ln|ln(n+1)| – ln|ln(3)| + 1/2ln(2))Λ ≥ Εcomp ≥
(ln|ln(n)| − ln|ln(2)| + 1/(2ln(2)))Λ
Therefore, we have proved the upper and lower bound of Π
in Theorem 1. 
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