
*
The support of an NSERC Ph.D. Scholarship is gratefully acknowledged.

Adaptive Online Transmission of 3D TexMesh Using Scale-Space Analysis

Irene Cheng
*
 and Pierre Boulanger

Department of Computing Science, Univ. of Alberta, Edmonton, CANADA, {lin,pierreb}@cs.ualberta.ca

Abstract

Efficient online visualization of 3D mesh and photo realistic texture is essential for a variety of applications, such as

museum exhibits and medical images. In these applications synthetic texture and a predefined set of views is not an

option. We propose using a mesh simplification algorithm based on scale-space analysis of the feature point distribution,

combined with an associated analysis of the surface texture, to address the needs of adaptive online transmission of high

quality 3D objects. The premise of the proposed textured mesh (TexMesh) simplification is the following: minor

variations in texture can be ignored in relatively smooth regions of a 3D surface, without significantly affecting human

perception. Statistics on 3D feature point distribution and their associated texture fragments are gathered during

preprocessing. Online transmission is based on these statistics, which can be retrieved in constant time. Based on

monitored bandwidth a scaled mesh is first transmitted. Starting from a default texture quality, we apply an efficient

Harmonic Time Compensation Algorithm based on the current bandwidth and a time limit, to adaptively adjust the texture

quality of the next fragment. Properties of the algorithm are proved. Experimental results show the usefulness of our

approach.

Keywords: 3D transmission, Scale-space analysis, Bandwidth monitoring, Time-compensation algorithm

1. Introduction

Efficient bandwidth utilization and optimal transmission

quality are among the main objectives when transmitting 3D

models. Since mesh data is usually small compared with

texture data, our focus is to adapt the texture quality to the

current bandwidth and a specified time. A historic average

can be used to estimate current bandwidth [6], but this

approach can cause unacceptable over or under estimation

because of bandwidth fluctuations. An optimal bandwidth

monitoring approach can provide a more accurate

estimation by sacrificing a portion of the transmission time

[28]. In this paper, we propose an adaptive approach, which

does not need to sacrifice transmission time for bandwidth

estimation, while efficiently adjusting the quality of the

fragments not yet transmitted.

In order to optimize bandwidth, a multi-scale incremental

simplification approach is most suitable for online

applications. Multi-scale allows a coarse version to be

refined incrementally. However, if a simplification process

involves relocation of mesh vertices or texture coordinates

between scales, then an entirely new version, instead of the

vertices added to the previous version, has to be transmitted

[4, 11, 21, 25]. In the progressive meshes method, although

the original mesh can be recovered exactly after all data are

received, the edge collapse transformation creates new

vertices and the vsplit record stream increases network

workload [13]. Xia’s adaptive real-time LOD technique also

involves vertex relocation [27]. We apply vertex removal

and hole filling without affecting the 3D point and texel

coordinates.

In recent years, researchers started to incorporate color and

texture into their mesh simplification models. When texture

is mentioned in the literature, it often refers to synthetic or

animated texture [24]. Synthetic texture can be estimated.

For example, when walking through an animated scene, the

next frame can be predicted based on available neighboring

data [8]. Experimental results show that this technique has

better quality and higher compression factor than MPEG.

An image-driven simplification method is used to display

textures using images from multiple views [17]. However,

rendering the entire model for every edge in every

viewpoint for different scales is expensive, even with

hardware-accelerated rendering. The high-resolution texture

used in our TexMesh model is different from the per pixel

color stored in each vertex [10,12,22,23]. For applications

requiring real life texture, interpolating colors between

vertices is not acceptable. The non-interpolated texture we

use has resolution much higher than the mesh. It was

observed in perceptual experiments that the human visual

system is more sensitive to higher texture resolution after

the mesh reaches an optimal density [20]. Our TexMesh

model uses photo-realistic texture images, with resolution

up to millions of pixels, suitable for displaying on small

monitors or high definition screens in reality centers. Photo-

texture is used in compressed texture maps [29], but their

effort is on recovering geometry from texture patches

retrieved from multiple photographs. A distance-based

technique is applied to photo-textured terrain [16]; however,

color interpolation between pixels is necessary to avoid

blocky appearance of terrain texture.

In [19], the joint geometry/texture progressive coding

method applies wavelet transform to encode the mesh and

texture data for transmission, but the method is not adaptive

to fluctuating bandwidth. Wavelets were also used to create

space optimized texture maps, which did not require any on-

chip compression support [2]. In our method, we apply

scale-space filtering and zero-crossing detection to extract

feature points. Each scale is associated with a default texture

quality, and the quality of each fragment is allowed to

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

deviate within a limit based on the number of feature points

in it. The quality is later readjusted according to current

bandwidth. By relating each scale to a viewing distance,

automatic selection of a corresponding simplified textured

mesh is possible. Another advantage of using scale-space

analysis is its capability of handling both local and global

smoothing, which is controlled by the filter window size and

parameter σ. Many simplification techniques are restricted

to smoothing in the local neighborhood. For example, the

simplification envelopes algorithm [9] is based on the

principle that each vertex is displaced within ±ε to the

extent constrained by surface curvature. Avoidance of self-

intersections prevents drastic simplification.

Ever since the introduction of scale-space filtering in 1983

the technique has aroused intense research interest [26], but

previous applications focused on image deformation, vortex

tracking, noise elimination and segmentation in 2D images

[2, 3, 14, 15]. As far as we know, scale-space filtering has

not been used in the literature to compute feature point

distribution, and thereby determine texture quality

adaptively. In recent research, we discussed an approach for

variable compression of texture based on model complexity

[5]; and discussed the relative importance of texture and

mesh in human perception [20]. In the current paper we

address the issue of adaptive quality adjustment taking into

account bandwidth fluctuations within a given time period.

The work is based on the observation that texture quality is

more important in regions with high feature density. Our

technique for detecting small changes vs. major variations is

based on scale-space filtering. Note that one major

difference between wavelets and our scale-space approach

is that wavelets scale up or down by a factor of 2; by

contrast, in scale-space the scales at which changes occur

are object dependent and not fixed beforehand.

In this work, we extend our basic textured mesh (TexMesh)

model to incorporate the adaptive capability to transmit 3D

objects. We use scale-space analysis and zero-crossing

detection to extract feature points at different levels of

details (LOD). A scale map and a fragment map are

generated based on feature point distribution. The TexMesh

model applies a dynamic strategy and adapts to the current

bandwidth when computing texture quality of the next

transmitted fragment. We apply a Harmonic Time

Compensation Algorithm to ensure optimal use of the time

limit and bandwidth. This approach supports efficient online

transmission. By splitting the texture into fragments,

distributed transmission and parallel processing is possible.

The remainder of this paper is organized as follows: Section

2 overviews the online adaptive strategy. Section 3 gives a

summary of our basic TexMesh model, explaining how to

apply a modified version of the Gaussian filtering and

Laplacian, to extract feature points. Section 4 explains

fragment map generation, and how texture quality is

assigned to each fragment. Section 5 analyzes the adaptive

transmission strategy. Section 6 concludes the work and

outlines future directions.

2. Overview of Adaptive Strategy

Our strategy for adaptive online transmission of 3D objects

has several components, which are shown in Figure 1.

Figure 1: Summary of the adaptive online transmission

strategy.

The components are divided into two groups: preprocessing

is described in the upper group, and the online process is

described in the lower group. The feature point distribution

is a value ∈ [0,1], which is mapped onto a compression

scale. For example, in the current implementation, we use

the JPEG compression scale [0,100]. While wavelet coding

applies to the entire image and is geometry-independent, our

approach supports variable quality determined by the

density of surface structures. Note that we use JPEG for

convenience and wide support on the web and in JAVA;

however, standards such as JPEG2000 can be used as well

in the future to code fragments.

3. Basic TexMesh model

In this paper, we extend our basic model to address the issue

of online adaptive transmission. A summary of the basic

model is given in this section for completeness. Interested

readers can refer to [7] for additional detail.

3.1 Level of details (LOD) in scale-space

The Gaussian filter is an efficient smoothing tool in

computer vision. However, scale-space filtering had mainly

been applied in 2D images and only recently has this

Assign initial texture quality to each fragment

based on feature point distribution

Bandwidth (historic average)

Estimate transmission time for each fragment

Current bandwidth

Time (+/-) allocated from fragments

already transmitted

Re-estimate transmission time T & maximum

data size that can be transmitted in time T.

Obtain corresponding quality level for current

fragment

Transmit current fragment & determine time

overestimated/ underestimated ∆T

Update current bandwidth

If all fragments transmitted, stop; otherwise

reallocate ∆T to fragments not yet transmitted.

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

technique been used in computer graphics, with limited

applications in 3D visualization. We use scale-space

filtering (SSF) for adaptive on-line 3D TexMesh

simplification and transmission. Traversal between the

different scales, or LOD is achieved by varying the standard

deviation parameter σ; the higher the value of σ the more is

the smoothing. SSF is based on locating the zero-crossings

of a signal at multiple scales. Zero-crossings can be used to

detect the degree of persistence of a structure (feature) in a

3D model. Minor structures tend to diminish as σ increases,

and only major structures survive at higher scales. When

using a small window size, SSF eliminates signal noise in

the local region. By using a bigger window size, the filtering

or averaging effect covers a larger surface. Fig. 2 is an

example of global smoothing using a window size of 201 on

a signal of 256 values. To obtain global smoothing, the

window size has to be at least twice the standard deviation

computed from the sample space (covering at least 97.7% of

the sample data in a normal distribution). If a smaller

window size is used, smoothing will be restricted and

converge before reaching the bottom scale in Fig. 2.

Theoretically, 100% global smoothing will end up with a

monotonous surface losing all the surface features. When

considering the human visual system, this is not necessary

because human vision is insensitive to details beyond a

certain distance. For a perceivable object, the filter window

can be smaller than twice the standard deviation to save

computation time. In our experiments, we applied a window

size of 1.4 times the standard deviation. We found that this

window size provides sufficient simplification for objects

placed at a distance close to infinity in the virtual world.

Further simplification beyond this point by using a bigger

window is not necessary. Perceptual evaluation is not the

focus of this paper, and will be discussed in future work.

Fig. 2: Increasing scale Si from top to bottom. S0 is the original

signal extracted near the bottom of the Nutcracker 360 scan-points

(per row) model. Note that local variations (fine details) in the

original signal are gradually removed and the scaled signal

becomes smoother.

The zero-crossings at different scales can be computed by

applying the second derivative of the Gaussian (called

Laplacian-of-Gaussian or LoG). 18 feature points are

identified in the original signal (Fig. 3, right). By increasing

σ, the number of feature points decreases from 18 to 2 as

reflected by the increasing smoothness of the scaled values

(Fig. 3, left).

3.2 Spherical approach on scanned range data

Modern laser scanners detect depths and generate 3D

vertices in the form of point clouds. Fig. 4 (left) shows a 6-

inch dog model. The generated point cloud (Fig. 4 middle)

is then mapped with the scanned texture (Fig. 4 right) to

generate the texture mapped 3D model.

Fig. 3: (Left) The top is the original signal with 18 zero

crossings, generated by 36 scan points extracted from the

Nutcraker model. The other four smoothed scales have 8, 6,

4, and 2 zero crossing respectively from top to bottom.

(Right) 18 zero crossings detected in the original signal S0.

Fig. 4: (left) Zoomage
®
 3D scanner, (middle) sample of 3D

points, and (right) scanned texture.

We achieve SSF of a 3D model as follows: First note that

the data acquired (Fig. 4 middle) can be represented as

Rx(α,y); where α is the angle on a horizontal plane around

the y-axis of rotation of an object, y is the vertical location,

and Rx denotes the distance to the surface of an object for a

given (α,y) pair. SSF for a 3D model is thus similar to a 2D

image I(x,y), for the simplified mesh representation

considered here, with I(x,y) replaced by Rx(α,y). Also, the

appropriate scaling along the horizontal and vertical

directions can be significantly different, depending on the

variance of the sample points for a given region. Thus, SSF

in 3D can be summarized by the following equations:

∈=
−−

elsewhere

Wyeyw

y

G

0

),(
2

1
),(

2
22

2

2
12

2

21

α
σπσα

σ
ϕ

σ
φα

 (1)

∫ ∫
− −

++=
t

t

t

t

xx dudvvuwvyuRySR),(),(),(* αα (2)

∈

 +−−=

+
−

elsewhere

Wye
y

yw

y

LoG

0

),(
2

1
1

),(
2

22

2
2

22

4
α

σ
ϕφα

πσα
σ

ϕφα

 (3)

Here wG(α,y) represents the weight at pixel (α,y), Rx*S

represents the smoothed image, and wLoG is the Laplacian of

Gaussian function. The weights are defined in a square

window W of length 2t+1. In the discrete case, e.g. with a

real image, we actually use summation instead of integrals,

Zero crossing at

scaleS0

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

and normalize the Gaussian weights so that the sum of all

the weights equals 1.

For uniform sample points, φ and ϕ equal 1, but for irregular

sampling, φ and ϕ are used to accommodate the variable

inter-sample distance. Note that in the actual

implementation we use two passes of 1-D filters, since all

the filters discussed above are separable. The vertices are

first smoothed along the x-axis and then the resulting values

are filtered once more along the y-axis. Fig. 5 shows the

face features, of a head model, change towards a smoother

spherical surface when going from low to high scales (left to

right). The original mesh contains 1,872 vertices and 3,672

faces. The other five meshes are generated at increasing

scales as follows:

Scale # of vertices removed # of faces in mesh

5 685 2226

7 744 2108

10 824 1948

15 985 1624

20 1196 1190

Fig. 5: Increasing scales from left to right (Top) 3D mesh

with texture, (Middle) 3D mesh and (Bottom) feature points

extracted at scale Si.

4. Variable texture quality based on feature point

distribution

In [18] it was suggested that 3D mesh simplification has

come to maturity. However, previous simplification

methods focused mainly on geometry without integrating

real texture in a coherent approach. Many studies

emphasized the importance of millions of triangles in order

to present fine surfaces, but ignored high resolution real

texture which has been shown through user evaluations to

have more impact on perceptual quality in 3D visualization

[20]. Adaptive texture quality is essential for online

transmission. In our approach, statistics on feature points

collected through preprocessing are used for efficient

transmission of geometry and texture data given limited

network resources.

Feature points are defined as a set of vertices, which can

best represent the geometry of a 3D model. In Fig. 5, for

example, the original head model contains 1872 feature

points (scale S0). After removing 1196 vertices, it is

represented by 676 feature points at scale S20. At any scale

Si, feature points are detected by applying LoG. Vertices

creating zero crossing are recorded as feature points and

assigned the value i. Each feature point is then represented

by three components: (i, (tx,ty), (gx,gy,gz)).

The second and third components are the 2D texture and 3D

vertex coordinates, respectively. Based on scale-space

theory, the number of feature points (structures in the

sample space) decreases as scale level increases. This

concept best describes how objects are perceived by the

human visual system when they move from close to far.

4.1 Fragment map and geometry-driven texture quality

estimation

The texture image of a 3D model can be transmitted as one

block or a collection of sub-blocks. The advantage of using

sub-blocks is to facilitate distributed transmission and

applying variable qualities to different texture regions as

explained below. The main concern is whether the

additional headers and meta-data will increase the overall

volume of data that needs to be transmitted. In this section,

we will show that sub-dividing into smaller blocks of

optimal dimension does not increase the overall volume for

high-resolution texture images. Instead, the sub-block

approach helps to fully utilize the available bandwidth.

The texture image is fragmented into NX*NY equal pieces

after determining the optimal size of a fragment. To apply

JPEG compression efficiently, keeping in mind the size of

macro-blocks, the optimal dimension of a fragment is

chosen as a multiple of 16. The entire texture is also

adjusted so that there is no partial fragment. For example, a

texture image with dimension 4800*1600 pixels, can be

divided into 7,500 fragments of size 32*32 pixels.

Fragments are arranged in a matrix with NY rows and NX

columns. Since each 3D vertex is associated with a 2D

texel, it is possible to distribute the vertices into the NX*NY

fragments. We used five texture patterns (Fig. 6) to compare

the fragmented and non-fragmented size in different

qualities using the Intel JPEG compression library. Each

fragment has a dimension of 16*16 pixels. Experimental

results show that the sum of the fragments is significantly

less than the size of the non-fragmented JPEG file for

images of dimension greater than 256 pixels. For high-

resolution images, it is therefore advantageous to transmit

individual fragments to the client site before recombining

and rendering. This fragmented approach is also suitable for

distributed network retrieval.

 (a) (b) (c) (d) (e)

Fig. 6: Texture images used in experiments to show that

sum of sub-blocks of optimal size is significantly less than

the size of non-fragmented image for high resolution

texture.

Since the human visual system is less sensitive to details far

away, the texture quality Qi at each scale Si needs to

increase only when i decreases. In other words, display

quality is inversely proportional to viewing distance. Given

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

a viewing distance, the corresponding Si and Qi are selected.

Instead of applying uniform quality to all fragments, we use

a variable approach so that texture quality of each fragment

(x,y) varies depending on the number of feature points

associated with it. We illustrate how the distribution of

feature points relates to the quality of texture as follows: In

Fig. 8, the grenade has vertical structures on the surface, and

therefore the feature point distribution is higher than the

back of the nutcracker, which is comparatively flat. Note

that even if the texture quality is reduced to half, there is no

significant perceptual degradation on the nutcracker (Fig.

7). However, the grenade on the right (Fig. 8) shows

noticeably lower perceptual quality. Based on this finding

we adopt a variable approach by applying different qualities

on texture fragments depending on the feature point

distribution, instead of applying a fixed quality to all

fragments. Furthermore, the variable qualities are computed

adaptively based on the current bandwidth. An adaptive

approach is necessary when transmitting data on the Internet

because bandwidth fluctuates and can adversely affect the

expected Quality of Service (QoS).

Fig. 7: A snap shot of the rear-view of nutcracker: (left) original

texture quality, and (right) half of the original texture quality.

Fig. 8: A snap shot of the grenade 3D model: (left) original

texture quality, and (right) half of the original texture quality.

Before discussing the adaptive approach, we first explain

how variable qualities are assigned to different fragments.

Let (x ,y) be the coordinates in the NX*NY fragment map, and

),(yxfi be the # of feature points in fragment (x,y) at scale

Si.

At a given scale i,),(yxfi is normalized to:

minmax

min
ii

ii

i
ff

f(x,y)f
(x,y)

−
−=η (4)

max

i
f and min

if are respectively the maximum and

minimum # of feature points per fragment at scale Si.

The texture quality of fragment (x,y) at scale Si is computed

as:

) Q(x,y)(Q ii −+ η (5)

where:

∆Q: Quality tolerance limit for each scale controlled by an

upper and a lower bound; analogous to the depth of field in

photography. ∆Q is the tolerance range when displaying 3D

objects at a given distance. Given a viewing distance, the

human visual system finds this range of qualities

satisfactory.

Qi: Default quality assigned to scale Si.

In the current implementation, threshold Γ ∈ [0,1] is the

average of),(yxiη . Fragment (x,y) is assigned quality Qi if

),(yxiη = Γ. ∆Q controls the deviation (+/-) from Qi.

Regions on the 3D model surface with more feature points

are displayed with higher quality, and less populated regions

are displayed with lower quality. The overall texture quality,

along with the data size, can be adjusted by changing Γ.

Let Di be the total data size of all fragments at Si. For each

model texture, a lookup table is used to record Di, and also

the size and quality of individual fragments, for a range of

Γ. Given a time limit and current bandwidth, the appropriate

Di, and the associated fragments are selected. The actual

data size and quality transmitted will change according to

the current bandwidth. This adaptive strategy is discussed in

the next section.

5. Adaptive bandwidth monitoring and texture quality

determination

Because of bandwidth fluctuation, current bandwidth has to

be monitored periodically in order to maintain a good

estimate of the data size that can be transmitted in a

specified time T0. To minimize the discrepancy, we

reallocate the time surplus/deficit to the fragments not yet

transmitted.

The n = NX*NY fragments are pre-sorted in decreasing

),(yxiη values, i.e., from 1 to 0,

}F,.....,F.....,,F{F n1list = , i.e., F has quality Qi.

The first fragment to be transmitted is F with quality Qi.

Based on a time limit T0 and a historic bandwidth average

0β , we estimate maximum data size to be transmitted as:

001 * βTD =
Where:

kβ is the current bandwidth (KB/sec.) recorded after k

fragments are transmitted, i.e., 0 ≤ k < n. 0β is the historic

average bandwidth before transmission.

kT is the time left after k fragments are transmitted. T0 is the

original time limit (seconds) specified, and

Dk+1 is the maximum data size that can be transmitted given

kβ and kT .

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

The fragment list Flist, best matching 1D , is selected from

the lookup table. Size of F is used to estimate the

transmission time of the first fragment:

1

1
01 *

D

d
Test = , or

0

1
1 β

d
est = (6)

Where: kd represents the data size of the thk fragments,

kest : The estimated time required to transmit fragment k

We estimate the transmission time gest for all the

remaining fragments, i.e., 2 ≤ g ≤ n:

1
0

D

d
*Test

g

g = (7)

After 1d is transmitted, we have the updated bandwidth 1β
based on the time 1act recorded when transmitting 1d :

1

1
1

act

d=β (8)

Where kact is the actual time needed to transmit the

fragment k.

The next fragment is selected as follows:

(a) The leftmost fragment in Flist if 1β ≤ 0β , and

(b) The rightmost fragment in Flist if 1β > 0β

Let: kT∆ = Difference between estimated and actual

transmission time for thk fragment; i.e., kest – kact

kt∆ be the cumulated compensating time (+/-) allocated to

the thk fragment from the previous k-1 fragments (refer to

Algorithm 1 below), and

fwt be the weight applied to the thf fragment when

allocating 1−∆ kT , i.e., k ≤ f ≤ n.

(a) If the actual bandwidth is lower than the estimated one,

loss of time 1T∆ has to be compensated when transmitting

the remaining n-1 fragments, so that each remaining

fragment has to share a portion of 1T∆ . Instead of the initial

2est computed in Equation (7), the 2nd fragment has

2wt * 1T∆ seconds less, where 2wt is the assigned weight.

We regain the time by transmitting the leftmost fragment in

Flist with reduced quality.

(b) Similarly, if the actual bandwidth is greater than the

estimated one, the gained time 1T∆ is allocated to the

remaining n-1 fragments, so that each remaining fragment

can have additional time. Instead of the initial 2est , the 2nd

fragment has 2est + 2wt * 1T∆ seconds. We adjust the time

by transmitting the rightmost fragment in Flist with increased

quality.

Based on the revised 2est , we compute: 2d = 1β * 2est ;

and then obtain corresponding quality for the 2nd fragment

from the lookup table using 2d . In general, after k-1

fragments are transmitted:

1−∆ kT = 1−kest – 1−kact (9) kkkk wtTtt *1−∆+∆=∆ (10)

The computation of weight kwt is explained in Algorithm

1.

kgk testest ∆+= (11)

1

1
1

−

−
− =

k

k
k

act

dβ (12), and, kkk estd *1−= β (13)

The quality for the kth fragment is obtained from the lookup

table based on kd .

Since bandwidth fluctuation has a larger impact on the

quality if kT∆ has to be shared by a smaller number of

fragments, fragments with quality ≅ Qi are transmitted last
to allow more flexibility for adjustment within the control

limit ∆Q. Once the transmission is started, the quality of a
fragment is self-adjusted depending on the updated

bandwidth.

5.1 Harmonic Time Compensation Algorithm

Since later fragments have to share all preceding

allocations, Algorithm 1 assigns decreasing weights

(.
4

1

3

1

2

1
,....,,) to fragments (k+1)th to nth, when reallocating

kT∆ .

Algorithm 1 – Harmonic Time Compensation

After transmitting kth fragment,

div=2;

∑
+

= +−≈= 1

2
1ln

1n-k

jk)k(n
j

ς ;

for (i = k+1; i ≤ n; i++) {

1

k
i

div*
wt = ;

iki wtTt *∆=+∆ ; // allocate to remaining fragments

div++;

}
There are two questions we have to address:

(1) How efficient is the algorithm with respect to

bandwidth optimization in a given time, and

(2) How does the adaptive approach affect the

perceptual quality.

To prove the efficiency of the algorithm, we define Π as the

time surplus/deficiency with respect to the limit T0. Π is

composed of three errors: estimation Eest, allocation Ealloc,
and compensation Ecomp errors. In Theorem 1 we establish

the upper and lower bound of Π (Proof: See Appendix A).

Theorem 1: Π is bounded by:

nT∆ + (2/1−∆ nT) + Λ+ |))ln(|ln088.1(n

 Where Λ is defined as the average difference between the
estimated and actual transmission time for n-1 fragments,

i.e. Λ =
1

1

1

−
∑

−
=

n

T
n

j j
.

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

The upper and lower bounds in Theorem 1 are verified by

experimental results in the next section. We will show that

our adaptive approach does not have an adverse effect on

perceptual quality for reasonable bandwidth fluctuation.

5.2 Experimental results

Let n=256. Applying Theorem 1, we obtain:

Εcomp ≤ 2.8Λ if Λ ≥ 0, and Εcomp ≥ 2.8Λ if Λ < 0

Since Λ is the average deviation over the entire transmission
period, it is expected to be small. The other two components

of Π: estimation error Εest (nT∆) and allocation error Εalloc

(2/1−∆ nT), can be minimized by using sufficiently small

data size for the last two fragments.

In order to see how Π responds to bandwidth fluctuation,
we implemented a bandwidth monitor, and extracted three

sets of bandwidths from an Ethernet connection on different

days and different times. We then vary the value of 0β
below and above the average of the sample set within a

reasonable range. The test file is 418KB with 256

fragments.

Bandwidth

sample set

Actual bandwidth

avg. (KB/sec)

1 41.68

2 45.64

3 42.07

0β
(KB/sec)

Λ
(sec)

Surplus/deficit

(+/-)% of

limit

Time

Limit

(sec)

Static

%

20 0.038 0.399 20.9 52.0

23 0.031 0.346 18.17 44.8

26 0.023 0.280 16.07 37.6

29 0.015 0.195 14.41 30.4

32 0.011 0.142 13.06 23.2

35 0.003 0.010 11.94 16.0

38 -0.001 0.010 11 8.8

41 -0.004 -0.027 10.19 1.6

44 -0.008 -0.034 9.5 -5.5

47 -0.008 -0.058 8.89 -12.0

50 -0.012 -0.058 8.36 -19.8

53 -0.012 -0.090 7.88 -27.2

Fig. 9: Experimental results show that the Harmonic Time

Compensation Algorithm has less than 1% deviation for a given

time limit. 0β is used for initial bandwidth estimation (Sample set

1).

One can observe that Π is minimum, when Λ is close to
zero. Similar trends were obtained from Samples 2 and 3.

By keeping the nth and (n-1)th fragments sufficiently small,

as in our experiments, the deviation from the time limit is

within 1%. For comparison, the last column shows the

discrepancy in percentage of time limit, should historic
average bandwidth be used in a static approach.

To see how variable quality affects the overall visualization,

we used 0β = 32 and 50, together with a sample average of

41.68 (KB/sec), and applied to the dog texture. The original

texture has quality Qi = 80% and ∆Qi is [40%, 100%]. Fig.

10 shows that the perceptual quality is maintained, after

applying variable qualities to fragments adaptively in order

to satisfy the time limit. Given the estimated texture in the

middle, actual quality is increased in case of

underestimation of actual bandwidth (left), and actual
quality is decreased for overestimation (right).

Fig. 10: Initial estimated texture (middle), increased quality

(left) and decreased quality (right).

6. Conclusion and future work

The adaptive TexMesh model proposed in this paper applies
scale-space analysis to extract feature points at different

scales. Quality of a texture fragment is determined by the

number of feature points, and the current bandwidth in a

given time period. We apply LoG to detect zero crossings at

each scale and generate statistics on fragment map during

preprocessing. These statistics are then used during runtime
for efficient extraction and transmission of texture data.

Experimental results show that this adaptive approach

utilizes bandwidth more efficiently, and thus provides better

control on QoS for online transmission of 3D objects.

In the current implementation, we use the Intel JPEG
Library. We plan to combine the advantages of both the

wavelet and TexMesh approaches to develop a better coding

technique for transmitting textured meshes. In future work,

we will perform experiments with more 3D models and

formulate the relation between viewing distance, scale, and

the quality tolerance interval ∆Q. We will also look into the
effect of other factors on perceptual quality and

compression.

7. References
[1] D. Bauer and R. Peikert, “Vortex tracking in scale-space,”

Eurographics-IEEE TCVG Symposium on Visualization, 2002.

[2] L. Balmelli,G. Taubin and F. Bernardini, “Space-optimized

texture maps,” Eurographics, 2002.

[3] P. Boulanger, O. Jokinen and A. Beraldin, “Intrinsic filtering of

range images using a physically based noise model,” VI 2002,

Calgary, Canada.

[4] D. Brodsky and B. Watson, “Model simplification through

refinement”, Proc. of Graphics Interface 2000.

[5] I. Cheng, “Efficient 3D Object Simplification and Fragmented

Texture Scaling for Online Visualization,” IEEE International

Conference on Multimedia, 2003.

[6] I. Cheng, A. Basu, Y. Zhang and S. Tripathi, "QoS

Specification and Adaptive Bandwidth Monitoring for Multimedia

delivery," Proc. IEEE EUROCON, 2001.

[7] I. Cheng and P. Boulanger, “Scale-Space 3D TexMesh

Simplification,” IEEE Int'l Conference on Multimedia, 04.

[8] D. Cohen-Or, Y. Mann, S. Fleishman, “Deep Compression for

Streaming Texture Intensive Animations”, Siggraph, August 8-13,

1999.

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

[9] J. Cohen, A. Varshney, D. Manocha, G. Turk and H. Weber,

“Simplification Envelopes”, Proc. Siggraph 1996.

[10] J. Cohen, M. Olano and D. Manocha, “Appearance-Preserving

Simplification”, Siggraph’98.

[11] M. Garland and P. Heckbert, “Surface Simplification sing

quadric error metrics”, Siggraph’97 p209-216.

[12] M. Garland and P. Heckbert, “Simplifying Surfaces with

Color and Texture using Quadric Error Metrics”, IEEE

Visualization 98.

[13] H. Hoppe, “Progressive meshes” Proceedings of SIGGRAPH

1996, L.A. pp. 99-108

[14] A. Kuijper and L. Florack, “Logical filtering in scale space”,

Institute of Information and Computing Sciences, Utrecht

University, Technical Report, 2001.

[15] T. Lindberg, “A scale selection principle for estimating image

deformations,” ICCV, Cambridge, MA, 1995.

[16] P. Lindstrom et al., “Level of Detail Management for Real-

Time Rendering of Phototextured Terrain”, Technical Report TR-

95-06, Graphics, GeorgiaTech, Atlanta, GA.

[17] P. Lindstrom and G. Turk, “Image-driven simplification”,

ACM Transaction On Graphics, 2000.

[18] D. Luebke, “A Developer’s Survey of Polygonal

Simplification Algorithms”, IEEE CGA, May/June 2001.

[19] M. Okuda and T. Chen, “Joint Geometry/Texture Progressive

Coding of 3D Models”, IEEE Int’l Conf. On Image Processing,

Vancouver, Sep. 2000.

[20] Y. Pan, I. Cheng, and A. Basu, “Quantitative metric for

estimating perceptual quality of 3D objects,” IEEE ICIP,

Barcelona, 2003.

[21] E. Shaffer and M. Garland, “Efficient Adaptive Simplification

of Massive Meshes”, IEEE Visualization 01.

[22] M. Soucy, G. Godin and M. Rioux, “A texture-mapping

approach for the compression of colored 3D triangulations”, The

Visual Computer (1996) 12: 503-514.

[23] P. Sander, J. Snyder, S. Gortler and H. Hoppe, “Texture

mapping progressive meshes”, Siggraph 2001.

[24] G Turk, “Generating texture on arbitrary surfaces using

reaction-diffusion”, Siggraph, July 1991, p289-298.

[25] G Turk, “Re-tiling polygonal surfaces”, Siggraph, 92.

[26] A. Witkin, “Scale-space filtering,” International Joint

Conference on AI, 1983, pp. 1019-1022.

[27] J. Xia, J. El-Sana and A. Varshney, “Adaptive Real-Time

Level-of-detail-based Rendering for Polygonal Models” IEEE

Trans. on Visualization and CG, June 1997.

[28] Y. Yu, I. Cheng and A. Basu, “Optimal adaptive bandwidth

monitoring,” IEEE Trans. on Multimedia, September, 2003.

[29] Y. Yu, A. Ferencz and J. Malik, “Compressing Texture Maps

for Large Real Environments”, Siggraph’00 Sketch.

Appendix A - Proof of Theorm 1:

The time deviation kT∆ caused by the kth fragment can be

expressed as Λ + εk where Λ is the average deviation. Let ςk

be)1ln(+− kn , as defined in Algorithm 1.

After 1st fragment is transmitted, ∆T1 is allocated to the
remaining n-1 fragments as follows:

1T∆ = 1T∆ * (1/(2*ς1) + 1/(3*ς1) + … + 1/(n*ς1))

After 2nd fragment, 2T∆ is allocated to the remaining n-2

fragments as follows:

2T∆ = 2T∆ * (1/(2*ς2) + 1/(3*ς2) + … + 1/((n-2)*ς2) +

1/((n-1)*ς2))
 …..

In the last two allocations,

2−∆ nT = 2−∆ nT * (1/(2*ςn-2) + 1/(3*ςn-2); allocated to (n-1)th

and nth fragments,

1−∆ nT = 1−∆ nT * (1/(2*ςn-1) + 1/(2*ςn-1); allocated to nth

fragment.

Since there is no other fragment after n, the nth fragment has

to share 100% of 1−∆ nT . nest is revised by adding the

cumulated compensating time nt∆ applied to the nth

fragment, and we compute Π as follows:

Π = nest + nn actt −∆
Π = 0/ βnd + (1T∆ /(n*ς1) + 2T∆ /((n-1)*ς2) + … +

2−∆ nT /(3*ςn-2) + 1−∆ nT) – nnd β/

= (nnn dd ββ −0/) + (1T∆ /(n*ς1) + 2T∆ /((n-1)*ς2) + … +

2−∆ nT /(3*ςn-2) + 1−∆ nT /(2*ςn-1)) + (1−∆ nT /2)

We define Π = Εest + Εcomp + Εalloc

Εest − Estimation Error nT∆ = (nnn dd ββ −0/) caused by

the discrepancy between the historic average and the actual

bandwidth for nth fragment. Note that the 1st
nd is before

adjustment of nt∆ , and the 2nd is after.

Εcomp − Compensation Error nt∆ = (1T∆ /(n*ς1) + 2T∆ /((n-

1)*ς2) + … + 2−∆ nT /(3*ςn-2) + 1−∆ nT /(2*ςn-1)) allocated

from fragments 1 to n-1, shared by the nth fragment.

Εalloc − Allocation Error (1−∆ nT /2) =

(1101 / −−− − nnn dd ββ)/2, incapable of allocating further.

Εcomp can be further analyzed by splitting iT∆ into εi and Λ:

Εcomp = (ε1/(n*ς1) + ε2/((n-1)*ς2) + … + εn-2/(3*ςn-2) + εn-

1/(2*ςn-1)) + Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) +

1/(2*ςn-1))

≤ (ε1/(2*ςn-1) + ε2/(2*ςn-1) + … + εn-2/(2*ςn-1) + εn-1/(2*ςn-1))

+ Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 1/(2*ςn-1))

= Λ(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) + 1/(2*ςn-1))

because i
1-n

1i∑ = = 0;

Note that: Εcomp ≥ (ε1/(n*ςn) + ε2/(n*ςn) + … + εn-2/(n*ςn) +

εn-1/(n*ςn)) + Λ*(1/(n*ς1) + 1/((n-1)*ς2) + … + 1/(3*ςn-2) +

1/(2*ςn-1))

So we establish: Εcomp = Λ(1/(n*ln(n)) + 1/((n-1)*ln(n-1)) +
… + 1/(3*ln3) + 1/(2*ln2))

Since
)ln(

1

xx
 is a continuous decreasing function, the sum

can be bounded using integration:

∑ ∫∫ =
+

≤≤ n

i

nn
dx

xxii
dx

xx 3 2

1

3)ln(

1

)ln(

1

)ln(
1

Thus if Λ ≥ 0, (ln|ln(n+1)| – ln|ln(3)| + 1/2ln(2))Λ ≤ Εcomp ≤
(ln|ln(n)| − ln|ln(2)| + 1/(2ln(2)))Λ
and if Λ < 0: (ln|ln(n+1)| – ln|ln(3)| + 1/2ln(2))Λ ≥ Εcomp ≥
(ln|ln(n)| − ln|ln(2)| + 1/(2ln(2)))Λ
Therefore, we have proved the upper and lower bound of Π
in Theorem 1.

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

	footer1:

