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Québec, H3C 1K3, Canada

3 University of Alberta, Department of Computing Science, 2–21 Athabasca Hall, Edmonton, Alberta, T6G 2E8, Canada
4 Institut National des Sciences Appliquées de Lyon, Laboratoire d’Automatique Industrielle, 20 avenue Albert Einstein, 69621 Villeurbanne

Cedex, France

Received: 6 May 2001 / Accepted: 8 November 2002
Published online: 13 November 2003 – c© Springer-Verlag 2003

Abstract. The use of a laser range sensor in the 3D digital-
ization process allows significant improvement in acquisition
speed and in 3D measurement point density. However, if we
want to use these 3D data in applications that require data with
a high degree of accuracy like inspection tasks, it is manda-
tory that the 3D points be acquired under the best conditions
of accuracy. During 3D capture of a part, several sources of
error can alter the measured values. Thus we must find and
model the most important parameters affecting the accuracy
of the range sensor. This error model, along with the CAD
model of the part, is used to produce a sensing plan to com-
pletely and accurately acquire the geometry of the part. The
sensing plan is comprised of the set of viewpoints that defines
the exact position and orientation of the camera relative to the
part. There is no limitation with regard to the shape of the part
to be digitalized. An autosynchronized range sensor fixed on a
coordinate measuring machine was used. For this sensor, the
accuracy of the 3D measured points is a function of the dis-
tance and of the angle of incidence relative to the surface. The
strategy proposed to find the acquisition plan guarantees that
the viewpoints meet the best accuracy conditions in the scan-
ning process, solving the occlusion problems. It was found
that the 3D data acquired by using the proposed strategy are
around 30% more accurate than the 3D data obtained in a
standard acquisition.

Key words: View planning – Range sensor – Range image –
Inspection – CAD-based vision

1 Introduction

Automatic inspection using range sensors is a complex task
that requires an exact geometrical definition of the part and
a large number of measurement points. The use of a coordi-
nate measuring machine (CMM) as a positioning device and
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recent progress in laser sensors combining measurement ac-
curacy and fast acquisition speed allow one to obtain more
accurate 3D measurements. These 3D points represent an ex-
plicit description of object surfaces. In addition, knowledge
of the corresponding CAD model provides an exact and com-
plete description of the geometry of the object under inspec-
tion. We have developed a method for automatic inspection of
parts containing curved surfaces [11]. The system uses a CAD
model (in IGES format) and 3D data provided by a range sen-
sor fixed to a CMM. The quality of the results depends almost
exclusively on the accuracy of measurements.

At present, it is nearly impossible to compare the accuracy
obtained with a CMM equipped with a contact sensor (lower
than a micron) and those delivered by a CMM equipped with
a laser range finder (about 25 µm at best). But the inspection
task with the contact sensor is too slow compared to the range
sensor. In addition, in the inspection process of soft parts,
the contact sensor could affect the part. If one wants to take
advantage of the increase in the speed of acquisition obtained
with a range sensor to make a systematic dimensional check of
manufactured parts, it is necessary to attain the best possible
accuracy of the depth images obtained with a range sensor.

In this paper, we present a 3D data acquisition strategy
to improve the overall accuracy of the data obtained with a
range sensor fixed to a CMM. The strategy uses the CAD
model of the part and the error model of the range sensor to
select the best sensor placement in the digitalization process.
The high-accuracy 3D data obtained would be very useful
for inspection tasks. In addition, in inspection we are often
interested in checking the tolerances of just some surfaces.
This strategy allows one to digitalize the surfaces of interest
or the whole part. Due to the mechanical support where the
laser sensor is fixed, we only give results for the inspection of
small objects. Occlusion problems are solved in such a way
that the acquired 3D data remain as accurate as possible.

A review of previous work on sensor planning for inspec-
tion is presented in Sect. 2. In Sect. 3, we present an exper-
imental setup to determine and evaluate the parameters that
influence the accuracy of the 3D data obtained from the range
sensor. With this experiment we find a model of the 3D data
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accuracy as a function of those parameters. The problem of
the range sensor placement is posed in Sect. 4. In Sect. 5, we
present an acquisition planning strategy for a digitalization
system built from an autosynchronized range sensor fixed on
a CMM in order to improve the 3D data accuracy. Finally, in
Sect. 6, we show the improvement of accuracy when such a
strategy is used.

2 Literature review

Three-dimensional range sensor planning is a complex task.
The problem can be stated as follows. Given the information
related to the environment (object under observation, available
sensor) and the task the measurement system must achieve
(feature detection, recognition, inspection), design strategies
automatically determine the parameters of the sensors (optics,
position, and orientation) in order to carry out the measure-
ment task within a specified precision range.

Tarabanis et al. [14] provide an interesting survey of sensor
planning strategies based on model-based vision algorithms
(e.g., camera, range sensor, illumination systems). The sur-
vey is divided into three main topics: (1) the detection of an
object’s features, (2) model-based digitalization strategies for
recognition and location, and (3) the reconstruction problem.

The definition and implementation of the planning algo-
rithm are related to measurement goals and available tools.
When the goal of the 3D measurements is toward the detec-
tion and inspection of an object’s features [1,4,15–19], an
accurate model of the object must be found in order to fulfill
the task. The model controls the offline digitalization process.
In general, the digitalization strategy is optimized to acquire
the whole object or the interesting features with a minimum
number of viewpoints.

The design of the planning algorithm depends upon the
type and number of sensors and upon the type of mechan-
ical support. Sensors include range sensor [8,10,21], CCD
camera [15], CCD camera coupled to a light source [5,17],
or a set of CCD cameras [4,19]. Mechanical supports range
from robot arms [15,21], robotized systems [20], translation
table [4,5,8,19], or rotation table [10,17]. In the literature, we
did not find any work with a CMM as the mechanical support
in the way we used it in our work.

According to the goals of the digitalization system, ev-
ery acquisition strategy must adapt to the system constraints
(topology and size of object to be digitalized, object model,
etc.). The output of the algorithm is the whole set of viewpoints
for the digitalization (position, orientation, and sensor trajec-
tory). The viewpoint parameters are obtained by optimizing
the number of viewpoints, the amount of data acquired, min-
imal trajectory, etc. The parameters must also obey system
constraints like object visibility and a sensor trajectory free of
collisions.

In this paper, we define and implement an algorithm for 3D
acquisition using a high-precision sensor mounted on a CMM.
The main goal to be attained with this algorithm is to provide
accurate real-time 3D data for tolerance control of industrial
parts by improving the accuracy of the acquired data.
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Fig. 1. Optical setup of the NRCC synchronized range sensor

3 The 3D range camera

This section describes the optical principle of the range camera
used and the accuracy of the 3D data acquired as a function
of the camera placement. The camera, an autosynchronized
range (ASR) sensor, was developed at the National Research
Council of Canada [3,13].

3.1 Optical principle

The basic geometry of this 3D laser camera is based on the
synchronization of the projected laser beam with its return
path. The main advantage of this approach is that it allows one
to simultaneously obtain high resolution and a large field of
view, as opposed to standard triangulation geometries where a
compromise is made between resolution and field of view. The
synchronized scanning geometry is based on a double-sided
mirror used to project and detect a focused or collimated laser
beam (Fig. 1). The rotation of this mirror defines the sweep of
the laser beam (called angle γ in Sect. 4).

The scanning of the target surface by the sensor results
in the output of 3D points (x, y, z) and their luminous inten-
sity (I) at the surface. The ASR sensor explores a surface line
by line at a density that can be specified by the user (usually
512 points per line). The depth (z coordinate) is measured for
every x coordinate provided by the mirror position. In order
to scan the whole part and to allow precise mechanical reg-
istration between views, the range sensor must be fixed on
a mechanical support. For our experimental setup, the ASR
sensor is mounted on a coordinate measuring machine. The
CMM movement provides the y coordinate. The CMM al-
lows six degrees of freedom, three for the space position and
three for the orientation of the sensor. The acquisition system
(mechanical support and ASR sensor) limits the workspace,
that is, the space where the part to be digitalized must be en-
closed. For our system, this space is a parallelepiped where
the sides wsx, wsy , and wsz represent, respectively, maxi-
mum displacements of the sensor in the directions x, y, and
z in such a way that the sensor is always oriented toward the
center of the workspace. The dimensions of the workspace are
wsx = 80 cm, wsy = 30 cm, and wsz = 30 cm.

3.2 Noise model of the digitalization system

In order to model the noise, we are generally interested in
obtaining a characterization of the noise introduced at each
3D measurement point. This characterization is related to a
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certain number of parameters such as the distance from the
sensor to the surface and the incidence angle between the laser
beam, when it reaches the surface, and the normal vector to
the part. The latter one affects primarily the sensor position. If
we suppose that the noise in an image is additive and random,
i.e., a random signal b(x, z) is added to the real values of the
image (x, z), then (x̂, ẑ) = (x, z) + b(x, z). The quantity of
noise in an image is estimated by the covariance matrix Σ.
Most of the time, the noise is modelled like a random function
with a Gaussian distribution of zero mean value:

b(�r) =
1

(2π)3/2
√|Σ|exp

(
−1

2
(�r − �s)T Σ−1(�r − �s)

)
(1)

where�s is a 2D vector corresponding to the point on the surface
of the given geometrical model nearest to �r, and Σ(�r) is the
covariance matrix for the measured point �r. The covariance
matrix in Eq. 2 defines for the point �r an ellipse whose form
(length of axes) is a function of the distance from the sensor
to the surface and of the incidence angle of the laser beam on
the surface.

Σ =
(
σxx σxz

σzx σzz

)
(2)

The components of the covariance matrix Σ are:

• σxx, variance in x
• σxz (σzx), covariance between x (z) and z (x)
• σzz , variance in z

In the first experiment, we averaged 256 measurements of
the same 3D point. We found that the average value converges
toward a constant mean value within 64 measurements. There-
fore, we took 128 measurements to compute the variance at
each point. In order to evaluate the accuracy of the cloud of
3D points obtained by the scanning process, we achieved 128
measurements in different positions for distance and orienta-
tion of the laser sensor with respect to a reference surface.
The measurements were completed after the camera calibra-
tion process and camera placements approached the calibra-
tion conditions.

The objective of those measurements is to determine the
covariance matrixΣ, which we define as the addition of the co-
variance introduced by each incident angle and by the object-
sensor distance. From the experiments it can be seen that these
criteria are independent. Thus the covariance matrix is defined
by:

Σ = Σ(α) + Σ(β) + Σ(d) (3)

where:

• α is the angle of incidence of the laser beam on the surface
in the direction of the laser sweep [defined around the y-
axis in Fig. 2(a)]. In the figure, the ASR sensor is seen
from the side (perpendicular to the xz plane), the dotted
lines represent the limits of the laser sweeping beam (done
by moving along the x-axis).

• β is the angle of incidence of the laser beam on the surface
in the perpendicular direction to the laser sweep [defined
around the x-axis in Fig. 2(b)]. In the figure, the ASR
sensor is seen from the top (perpendicular to the plan yz),
the sweeping of the laser beam is done by moving along
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Fig. 2. Definition of the incident angles α and β

the x-axis (aligned with the projection of the laser beam
represented by the continuous line from the sensor to the
surface).

• d is the distance from the range sensor to the surface.

Contribution of α to the covariance matrix. To determine the
components of the covariance matrix according to the angle
of incidence α grouped in the matrix

Σ(α) =
(
σxx(α) σxz(α)
σzx(α) σzz(α)

)

we have varied the orientation angle of the range sensor in
the direction of the laser beam sweep. The angle β and the
distance d were fixed to the values β = 0◦ and d = 200 mm.

We show in Fig. 3 the shape of the variance σxx in x.
In this figure and thereafter, the solid curve represents actual
measurements and the dotted curve is for the best fit approxi-
mation. Although the approximation appears a little coarse, it
is the best approximation of the behavior of the real curve in
the interval that will be specified for each curve. The scale of
the y-axis is usually about 10−6 mm2.

The curve that best approximates the real values in the
interval from 0◦ to 35◦ is defined by the equation:

σxx(α) = 1.42 × 10−7 · e5.46×10−2·|α| (5)

Figure 4 shows the behavior of covariance σxz . The curve
that best fits the measured values is given by:

σxz(α) = σzx(α) = 6.47 × 10−7 · e5.91×10−2·|α| (6)

Finally, we show in Fig. 5 the behavior of the variance in
z (σzz). The next equation defines the curve that best fits the
real values.

σzz(α) = 3.77 × 10−6 · e6.01×10−2·|α| (7)

The behavior of the components of the covariance matrix
is exponential. Therefore, a smaller value of dispersion is pro-
duced for an incident angle near zero degrees, which suggests
an optimal placement for the sensor in the normal direction
on the surface. The fitting curve displays sufficiently constant
and low values in the interval 0◦ ≤ α ≤ 35◦. The inci-
dent angle of the laser beam should be restricted to the range
−35◦ ≤ α ≤ 35◦ at measurement time.
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Fig. 3. Variance in x vs. the incident angle α
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Fig. 4. Covariance xz vs. the incident angle α
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Fig. 5. Variance in z vs. the incident angle α
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Fig. 6. Variance in z vs. the incident angle β

In Figs. 3, 4, and 5, we observe σzz > σxz > σxx. The
variance in the z direction is at least ten times larger than the
variance in the x direction.

Contribution of β to the covariance matrix. The covariance
matrix according to the incident angle β, Σ(β) was deter-
mined by changing the orientation of the range sensor in a
perpendicular direction from that of the laser beam sweep. In
this case, the angle α and the distance dwere fixed to: α = 0◦
and d = 200 mm.

Figure 6 shows the behavior of the variance in z according
to the incident angle β, σzz(β). We do not present the curves
σxx and σxz because they have the same behavior and are
smaller in amplitude. The curve that best fits the real curve
is the exponential curve defined by Eq. 10. Equations 8 and 9
define the behavior of the variance σxx in x and the covariance
σxz in xz.

σxx(β) = 1.59 × 10−7 · e4.59×10−2·|β| (8)

σxz(β) = σzx(β) = 8.30 × 10−7 · e4.40×10−2·|β| (9)

σzz(β) = 5.47 × 10−6 · e4.15×10−2·|β| (10)

At the time of digitalization, the incident angle β should
be restricted to the interval −15◦ ≤ β ≤ 15◦.

Contribution of d to the covariance matrix. By changing the
distance from the sensor to the surface, we have determined
the covariance matrix for parameter d.

Figure 7 shows the behavior of the variance in z vs. the
digitalization distance d, so σzz(d). Here the angles α and β
were fixed to 0◦.

Equations 11, 12, and 13 are the curves that best fit the
real values of the variance in x, the covariance xz, and the
variance in z, that is, σxx, σxz , and σzz , respectively.
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Fig. 7. Variance in z vs. the distance d

σxx(d) = 1.14 × 10−11 · d2 − 4.20 × 10−9 · d
+5.20 × 10−7 (11)

σxz(d) = σzx(d) = 9.92 × 10−11 · d2 − 3.82 × 10−8 · d
+4.34 × 10−6 (12)

σzz(d) = 8.86 × 10−10 · d2 − 3.47 × 10−7 · d
+3.81 × 10−5 (13)

We conclude that at digitalization time the range sensor
should be placed in the interval of distance 170 mm ≤ d ≤
240 mm.

These results confirm that we can improve the accuracy
of the data acquisition process by following some criteria de-
fined previously (normal direction, distance). Thus in order to
be able to achieve inspection tasks, we have implemented an
acquisition planning strategy. The strategy improves the 3D
data accuracy by finding the best camera placement to digital-
ize a part, using the range of parameters α, β, and d computed
in this section.

4 The range sensor placement problem

The main goal of this work is to improve the 3D data accuracy
with the aid of a sensor placement strategy. Such a strategy
consists in computing a set X of viewpoints xi in order to
obtain a complete and accurate 3D image of a surface or of the
whole part. We define an accurate 3D image as a cloud of 3D
points acquired by the scanning process in the best accuracy
conditions. Our strategy is to find the collection of viewpoints
for each surface independently. If one wants to digitalize the
whole part, one has simply to add the assembly X of all the
surfaces in the part.

We define a viewpoint as a set of seven parameters xi =
{x, y, z, θ, φ, ψ, γ}i. Six parameters are from the mechanical
support (CMM): three position parameters (x, y, z) and three
orientation parameters (θ, φ, ψ). One parameter is from the

ASR sensor specifying the instantaneous angle of the sweep
(angle γ).

• The position parameters. These parameters in R3 define
the spatial placement of the camera relative to the coordi-
nate system of the part. They are the coordinates (x, y, z).

• The orientation parameters.These parameters inR3 define
the direction that theASR sensor must take at digitalization
time. They are the Euler angles so (θ, φ, ψ). The angle θ
defines the rotation around the z-axis, the angle φ defines
the rotation around the y-axis, and the angle ψ defines the
rotation around the x-axis.

• A sweeping parameter. The parameter γ specifies the in-
stantaneous angle of the laser beam.

Figure 8 shows a viewpoint with all its parameters. These
parameters can change and others can be added according to
the type of range sensor and mechanical support used. We
do not consider optical parameters, such as the focal distance
and the opening of the lens, because we assume the system
(range sensor plus mechanical support) has been previously
calibrated. At the top of Fig. 8, φ and ψ depict the direction
for measurement and not their magnitude, their actual value
being, in fact, zero.

The set X of viewpoints xi is defined by: X = {x1x2 . . .
xi . . . xn}, with n the minimum number of viewpoints to dig-
italize a simple surface or the whole part.A whole range image
is obtained by moving the sensor throughout all the points of
view in the set X . The ASR sensor movement between two
consecutive viewpoints is performed following a straight line.

4.1 Constraints imposed on the acquisition strategy

The constraints imposed on our system, knowing that our in-
terest is to have 3D data with a high degree of accuracy, are the
following: size of the part, knowledge of the initial position
and orientation of the part, and availability of the CAD model
(in IGES format) of the part.

Size of the part. The only geometrical constraint imposed
on the system lies in the dimensions of the part. The laser
sensor, in order to sweep a given surface, must be fixed to a
precisely drivable mechanical support. As stated in Sect. 3,
we use a CMM as a mechanical support whose workspace is
defined by wkx = 80 cm, wky = 30 cm, and wkz = 30 cm.
Thus the part to be inspected must be located inside the CMM
workspace. The dimensions of all of the parts used in this work
are included in a volume of 100 × 50 × 50 mm.

Position and orientation of the part. Knowledge of the po-
sition and orientation of the part enables one to register the
reference system of the part with that of the laser sensor me-
chanical support. To deal with this constraint, we use a regis-
tration algorithm to register the 3D point cloud and the CAD
model of the part, which was implemented by Moron [6,7]
and is based on the well-known work of Besl and McKay [2].
If the part or the CAD model of the part is wrong, the regis-
tration process produces a large error between the model and
the part. In this case, the acquisition strategy is stopped.

CAD Model. The system uses the CAD model of the part,
in IGES format, not only in the process of registration but



F. Prieto et al.: A CAD-based 3D data acquisition strategy for inspection 81

(x, y, z)

Y

Y
Y

Z

Z

Z

X

X

X

φ

ψ

θ

−→n

−→n

−→n

−→n

γ

γ

ψ

−ψ

α

α

β

β

(xs, ys, zs)

d

Fig. 8. Viewpoint parameters

also for searching the set X of digitalization viewpoints. The
IGES format contains the exact representation of the part by
using nonuniform rational B-spline (NURBS) surfaces. These
surfaces are used for the computation of the sensor positions
in space and as well as for the construction of a voxel model of
the part (Sect. 5.2) to solve collision and occlusion problems.

4.2 Criteria for the acquisition strategy

We will now describe some criteria taken into account by the
acquisition planning algorithm in order to produce a correct
solution.

Position and orientation of the sensor at digitalization time.
We saw in the previous section that the accuracy of the 3D
data is a direct function of the conditions of digitalization
such as the position and orientation of the camera. For this
work, digitalization under the best conditions of accuracy is
desirable. A first criterion to be respected is that the position
and orientation parameters from each viewpoint must be in
the best condition with respect to the accuracy of the data. In
Sect. 5.2, we relate the parameters of a viewpoint to parameters
α, β, and d and select the value of those parameters in order
to improve the accuracy of the 3D data.

Visibility of surfaces to digitalize. The algorithm must guar-
antee that the area to be digitalized will be completely visible,
i.e., the surface is not occluded. A surface is occluded for a
specific viewpoint if any object intersects the laser beam be-
fore reaching the target surface or the reflected ray before it
arrives at the reception device. An algorithm to evaluate the
visibility must be implemented.

Data accuracy. To solve the visibility problem of certain sur-
faces, the sensor must be placed far away from the optimum
conditions for digitalization; in this way a poor accuracy will

be obtained. The system must evaluate the new accuracy of
the 3D data and guarantee that it is better than the minimal
accuracy required by the system.

Uniform distribution of the 3D points. The points obtained
by the digitalization process must be distributed uniformly on
the surfaces of the part. Moreover, the system must know the
areas of the part that were already digitalized.

Set X of viewpoints distribution. The set X of viewpoints
must be distributed to have minimal mechanical support dis-
placements without collisions. The ASR sensor displacement
between two viewpoints is made following a straight line. An
algorithm to evaluate the collision problems during this dis-
placement must be implemented. Although the objective of
this acquisition strategy is not to minimize the number of
viewpoints, it can be reduced when they are aligned, mov-
ing the sensor from the initial to the final point, as long as it is
guaranteed there are no collision problems. To avoid collision
during the CMM motion, a simple process that verifies that
the CMM/sensor volume model does not intersect the volume
of the inspected object during the motion was used.

5 The 3D data acquisition strategy

5.1 The optimization problem

In Sect. 3, we exposed the noise model of the digitaliza-
tion system. Let �rij be the value without noise of the point
(xi, zj), and let (x̂i, ẑj) be the measured value of the point.
The noise model for a data point measured by the sensor is
(x̂i, ẑj) = (xi, zj) + b(xi, zj). The noise was described in
Eq. 1 (and rewritten here) as a probability density function
with a Gaussian distribution.

b(�r) =
1

(2π)3/2
√|Σ|exp

(
−1

2
(�r − �s)T Σ−1(�r − �s)

)
(14)

The properties of the noise function b(�r) can be interpreted
geometrically, assigning a constant probability value to the in-
tersection of the function b(�r) with a horizontal plane. These
intersections form a family of ellipses. When the center of the
ellipse coincides with the origin of the reference frame, the
form and the orientation are defined completely byΣ. Indeed,
the length of the major and minor axes can be calculated eas-
ily as the square root of the eigenvalues of Σ. The length of
the axes of the dispersion ellipse for the point �r can then be
calculated:

Lx(�r) =

√
1
2
(σxx(�r) + σxz(�r))

Lz(�r) =

√
1
2
(σxz(�r) + σzz(�r)) (15)

where Lx(�r) is the length of the minor axis and Lz(�r) is the
length of the major axis, since for the point �r we know that
σzz(�r) > σxz(�r) (Sect. 3).

Thus, to obtain optimal 3D data with respect to the accu-
racy of the measurement system, we must minimize Lz with
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respect to the dependent parameters α, β, and d. We solve as
a minimization problem as follows:

minimize : σxz(α) + σxz(β) + σxz(d)
+ σzz(α) + σzz(β) + σzz(d)

subject to : |α| ≤ 35◦

|β| ≤ 15◦

170 mm ≤ d ≤ 240 mm

(16)

The constraints for the minimization problem were ob-
tained in Sect. 3. In this same section, we found the val-
ues for σxz(α), σxz(β), σxz(d), σzz(α), σzz(β), σzz(d) (see
Eqs.6, 9, 12, 7, 10, and 13, respectively).

The solution to this minimization problem through a gra-
dient descent method, was α = 0◦, β = 0◦, and d = 195 mm.
Those values correspond to the case where the laser beam,
when the sweeping angle is equal to zero (γ = 0◦), reaches
the surface perpendicularly (α = 0◦, β = 0◦) and the ASR
sensor is located at a distance (d) of 195 mm. This position is
in general attainable by the sensor when external surfaces of
the part are being digitalized (surfaces free of occlusion). For
the digitalization of an internal surface, the system will detect
the existence of an occlusion problem and will automatically
look for a new viewpoint. This process will be described in
the following subsections.

5.2 The implemented acquisition strategy

Now that we have posed the optimization problem, we de-
scribe a pseudocode describing our algorithm implemented as
a solution to the acquisition strategy problem.

3D data acquisition strategy algorithm
1. Input data.

1.1. Extract data from the CAD model.
1.2. Generate the 3D voxel model.

2. Find the viewpoint set.
2.1. Viewpoint projection on the surface.
2.2. Find the best viewpoint placement.
2.3. Verify the nonocclusion conditions.

3. Estimate 3D data accuracy.
4. Distribute the set X of viewpoints.

In the following paragraphs, we will describe each step of
this algorithm.

5.2.1 Step 1: Input data

Two processes generate the input data required for the algo-
rithm. A first process extracts from the CAD file the needed
data to search for viewpoints on the surfaces. The second pro-
cess generates a 3D voxel model of the part.

Step 1.1: Extract data from the CAD model. A CAD model of
the part in IGES format is input to the algorithm. The IGES file
contains the exact representation of the part by using NURBS

surface parameters. A NURBS surface of order p in the para-
metric direction u and of order q in the parametric direction v
is defined by the following equation:

�s(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

�Pi,j∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

(17)

with n and m being the number of control points in the para-
metric direction u and v, respectively, �Pi,j the control points,
wi,j the weight associated with the control point �Pi,j , andNi,p

(orNj,q) the B-spline base functions defined by the following
recurrent formula:

Ni,p(u) = u−ui−1
ui+p−1−ui−1

Ni,p−1(u) + ui+p−u
ui+p−ui

Ni+1,p−1(u)
and

Ni,0(u) =
{

1 if ui−1 ≤ u ≤ ui

0 elsewhere ,

where ui, vj are the inner knots belonging to the knot vectors
of the NURBS surface, ui ∈ [u0, u1] and vj ∈ [v0, v1]. The
range of variations for parameters u and v is defined by u0 ≤
u ≤ u1 and v0 ≤ v ≤ v1. That means that all values of u
and v must be within the interval [u0, u1] and [v0, v1], where
u0, u1, v0, and v1 are the extremes of the parametric surface.
For more details about NURBS, refer to [9].

Step 1.2: Generate the 3D voxel model. Let T be a linear
transformation that transforms a point (u, v) in the para-
metric space toward a point (x, y, z) in the 3D space, so
that T (f(u, v)) = (X(f(u, v)), Y (f(u, v)), Z(f(u, v))). Let
P (u, v) be a 3D surface representation of a part defined by the
union of its N parametric surfaces

P (u, v) =
N∑

i=1

�si(u, v) .

Let P (x, y, z) be the surface representation of a part in the 3D
space obtained by:

P (x, y, z) = T (P (u, v)) . (18)

If we divide the 3D space, into boxes or voxels (volume
elements), each point of the (x, y, z) coordinates will be con-
tained in one of these voxels. Let Inf(x) be the largest integer
inferior or equal to x. For the point (x, y, z), it can be found
that xi = Inf(x), yj = Inf(y), and zk = Inf(z). Thus the
point (x, y, z) will be contained in the voxel Vijk defined by
the coordinates (xi, yj , zk) and (xi+1, yj +1, zk+1) (Fig. 9).
If we extend the concept of a 2D binary bitmap, where each
pixel (r, s) can take just one of two values, each voxel (i, j, k)
in the 3D space can take one of two values: 0 (unoccupied)
or 1 (occupied). An occupied voxel contains some portion of
any of the surfaces that make up the part (Fig. 9).

Let us divide each surface si(u, v) into Nui ×Nvi parts,
with Nui and Nvi as two thresholds that guarantee that when
a surface is crossed by the 3D grid, more than one voxel
will be touched in the 3D space. Thus, when we move over
a surface, following its parametric coordinates, by steps of
∆ui = ui1−ui0

Nui
and ∆vi = vi1−vi0

Nvi
, it is possible to find all

voxels in the 3D space that this surface touches (occupied vox-
els). The union of all the occupied voxels generated by the 3D
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Fig. 9. The voxel Vijk and the voxel representation of the profile of
the surface �s(u, v)

surface representation of a part P (u, v) is the 3D voxel model
of the part PD(x, y, z). Clearly, P (x, y, z) ⊆ PD(x, y, z).
The importance of this 3D voxel model in the solution of the
occlusion problem will be detailed later.

5.2.2 Step 2: Find the viewpoint set

We now describe how the algorithm finds the set X of view-
points for the acquisition system composed for the ASR sen-
sor fixed to a CMM. The strategy could easily be adapted to
other systems (range sensor plus mechanical support). In [12],
we show how the strategy works for a system composed of a
BIRIS range sensor (based on defocusing of the return beam)
fixed on a robot arm.

The search for the set of viewpoints is conducted inde-
pendently for each surface of interest and in three processes.
It was shown in Sect. 5.1 that the optimal placement of the
range sensor in order to acquire accurate 3D data is obtained
when the laser beam (with γ = 0◦) reaches the surface in the
normal direction (α = 0◦ and β = 0◦). The point (xs, ys, zs)
(Fig. 8) fulfills these conditions. In general, this will be the
case when there are no occlusion or accessibility problems.

In the first step, a 2D binary representation of the surface
is created (from the NURBS surface) and processed to obtain
the viewpoint projection on the surface. Then the set of pro-
jected viewpoints is used to obtain the best viewpoint position
in space by defining all its parameters (Step 2.2). Finally, if
necessary, the viewpoint is modified to ensure the visibility of
the surface to be digitalized (Step 2.3).

Step 2.1: Viewpoints projection on the surface. We define a
viewpoint projection on the surface as the point where the laser
beam reaches the surface when the sweep angle γ is equal to
zero. We henceforth call this point the projected viewpoint.
Initially we create a 2D representation of each surface. This
image is processed to obtain the set of projected viewpoints.
We denote as PV Psi the set of projected viewpoints on the
surface �si.

Two-dimensional discrete and binary surface representation.
Let �s(u, v) be the equation of a parametric surface obtained

u

v

(u0, v0)

(u0, v1)

(u1, v0)

External curve

Inner curves

Parametric surface Region A Region B

Fig. 10. Domain of variation for parameters u and v

from the CAD model. The variation rangeD for parameters u
and v is defined by D = {(u, v)|u0 ≤ u ≤ u1, v0 ≤ v ≤ v1
and, (u, v) ∈ A ∩ B}, with A being the inner component of
the external curve andB the union of the external components
of inner curves (Fig. 10).

We define the grid M on parametric space (u, v) with a
sampling step ∆uv such that:

‖�s(ui, vj)−�s(ui +∆uv, vj)‖
= ‖�s(ui, vj) − �s(ui, vj +∆uv)‖ = 1

(19)

where ‖�p1 − �p2‖ represents the euclidean distance in R3 be-
tween the points �p1 and �p2. For the grid M we define the
discrete space (ud, vd) such that ud = 0, 1, 2..., q and vd =
0, 1, 2..., r, with q = Int(u1−u0

∆uv
+1) and r = Int( v1−v0

∆uv
+1)

and Int(a) the integer part of a.
The 2D binary and discrete representation �sdb(ud, vd) for

the surface �s is defined by:

�sdb(ud, vd) =

{
1 if (ud, vd) ∈ A ∩B
0 otherwise

(20)

In other words, �sdb is equal to the set of points (ud, vd) from
the grid included in �s.

The principal disadvantage of this type of discretization,
known as discretization by inclusion, is that a very thin sur-
face that does not contain any complete element of the grid
M results in an empty discretization. This disadvantage is
more obvious when we discretize a curved line, but this is not
the case here because we are always working with surfaces.
For thin surfaces, this disadvantage is overcome by defining
a smaller sampling step in order to always have at least ten
points (ud, vd) from the grid included in the surface.

Set of projected viewpoints. The 2D representation (�sdb(ud,
vd)) of each surface is processed to obtain the set of pro-
jected viewpoints of the surface (PV Psi ∈ �sdb(ud, vd)). The
process we chose is based on the concept of a skeleton. The
skeleton is a representation that is centered and representative
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(a) Set on a flat surface (b) Set on a flat surface (c) Set on a curved sur-
face

Fig. 11. Set of projected viewpoints involving flat and curved surfaces

of the shape of the object. Some properties of the skeleton
are: it is simple (i.e., is made of arcs and curves), it comprises
the same number of related components and holes as for the
object, and it has the same shape as the object. These proper-
ties are very interesting for digitalization because the fact of
being thin and connected makes it possible to be followed by
the CMM by small movements; in addition, because it has the
same form as the surface, we are able to digitalize the whole
surface.

In Fig. 11, we illustrate the set of projected viewpoints
found for two plane surfaces and for a curved surface (in the
figure the set is highlighted by an arrow).

The orientation of the sweeping of the laser beam (param-
eter θ of the viewpoint) must be perpendicular to the direction
of the sensor movement between the projected viewpoints in
order to have a minimal distance between these points and the
surface edges. By following the parametric directions of the
surface �sdb, we determine the best sweeping direction of the
laser beam as that where the variation of the incidence angle,
during a complete sweeping from one edge of the surface to
the other, is the smallest. The skeleton (set of projected view-
points) is always constrained to have its propagation direction
perpendicular to the best sweeping direction of the laser beam.

A CMM moves between two viewpoints in space following
the line that connects the viewpoints. The sweeping of the laser
beam is perpendicular to this line. The orientation of the range
sensor during this movement remains constant. If the speed of
this movement is smaller than the sweeping rate of the laser
beam (usually it is), then the portion of the surface digitalized
between the two points is defined by the rectangle R = a · b,
as shown in Fig. 12. Parameters a and b are a function of the
distance d from the range sensor to the part, of the sensor field
of view (2×γ maximum, 2γmax), and of the distance between
the two projected viewpoints. In most cases, the sensor field
of view is fixed, for the ASR sensor it is 15◦ (γmax = ±7.5◦).
The distance d is a parameter computed by the acquisition
strategy according to the noise model of the sensor and is
forced to remain between 170 mm and 240 mm (see Sect. 3).
For our system, a is the line formed by the projection of the
laser beam on the surface and is equal to a � 2d · tan(γmax),
and b is the distance between the two projected viewpoints
(Fig. 12). The accuracy of the measured points by an ASR

2 · γ

ad

X

Y

Z

Two projected
viewpoints.
Distance b

Fig. 12. Rectangle that defines the region digitalized between two
viewpoints

sensor is a function of the distance d between the camera and
the part, and of the incident angle of the laser beam on the
surface, and is therefore related directly to parameters a and
b.

We note in Fig. 11 that the distance from each projected
viewpoint to the edges (sweeping distance) is symmetrical and
as small as possible when measured perpendicularly to the di-
rection of propagation of the projected viewpoints. The choice
of a different orientation to measure the sweeping distance
produces a larger sweeping distance, and for the viewpoint
that means: i. The laser beam sweeps the surface with a major
angle γ (i.e., a more significant angle of incidence) or ii. The
ASR sensor is placed further from the surface. In both cases,
the conditions of digitalization change and therefore so does
the accuracy of the 3D data.
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Fig. 13. Viewpoint set to digitalize a surface using the acquisition
system

Step 2.2: Find the best viewpoint placement. In Step 2.1, we
found the set of projected viewpoints of the surface (PV Psi).
We know from Sect. 3 that the accuracy of the 3D data depends
on parameters α, β, and d. We also know from Sect. 4 that a
viewpoint is defined by seven parameters: (x, y, z, θ, φ, ψ, γ).
Now we will analyze how the viewpoint parameters are related
to the parameters that control the accuracy of the 3D data,
in order to define the best viewpoint placement to acquire
accurate 3D data.

Let Psi
= (xPsi

, yPsi
, zPsi

) be a projected viewpoint. Let
P be a viewpoint related to the projected viewpoint Psi . The
parameters for viewpoint P are:

• Parameter γ defines the amplitude of the sweeping of the
laser beam. It does not affect the position of viewpoint.
It must be considered only when an occlusion problem
occurs (Step 2.3). The laser beam coming from viewpoint
P reaches the projected viewpoint Psi

when γ = 0◦.
• Parameter θ defines the orientation of the sweeping of the

laser beam when the mechanical support is moving the
ASR sensor from one viewpoint to the next. It does not
affect the position of a viewpoint.

• Parameters φ and ψ are the incident angle in the y and
x direction, respectively, between the laser beam when
it reaches the projected viewpoint on the surface and the
normal vector to this point.

• Position parameters (x, y, z) are defined based on the φ
and ψ parameters:

x = xPsi
+ d · sin(φ)

y = yPsi
+ d · cos(φ) · sin(ψ) (21)

z = zPsi
+ d · cos(φ) · cos(ψ)

A mapping from spherical to Cartesian coordinates is per-
formed according to the direction of the laser beam and the
distance d from the ASR sensor to the projected viewpoint
Psi .

When the laser beam reaches the projected viewpoint Psi

(γ = 0◦) with an angle φ equal to α and an angle ψ equal to β
(Fig. 2), the parameters of viewpointP related to the projected
viewpoint Psi , based on parameters α, β, and d that define the

2γ

2γ
V P

Modified VP

a0

a1

d0

d1

(a) Modification of d
parameter

2γ2γ

V PV P1 V P2

swi > a1

(b) New viewpoints by
changing the position

Fig. 14. Digitalization of the whole width of the surface

accuracy of the 3D data, are defined by:

γ = 0◦

θ = in the range [−90◦, 90◦]
φ = α

ψ = β (22)

x = xPsi
+ d · sin(α)

y = yPsi
+ d · cos(α) · sin(β)

z = zPsi
+ d · cos(α) · cos(β)

To compute parameters φ and ψ, we need the normal vec-
tor to the surface �si at the projected viewpoint Psi . So we
determine for Psi

its equivalent point (u, v) ∈ �si (by using
Eq. 18), and we use the parameters of the NURBS surface.
There is always a point (u, v) equivalent to the point Psi

be-
cause Psi

∈ PV Psi
∈ �sdb(ud, vd) ∈ �s(u, v). The normal

vector to the point (u, v) is computed:

−→n =
∂

∂u�s(u, v) × ∂
∂v�s(u, v)

‖ ∂
∂u�s(u, v) × ∂

∂v�s(u, v) ‖2
(23)

with
∂

∂u�s(u, v) = AB−CD
B2 and ∂

∂v�s(u, v) = EB−FD
B2 where

A =
∑n

i=0
∑m

j=0(
∂

∂uNi,p(u))Nj,q(v)wi,j
�Pi,j

B =
∑n

i=0
∑m

j=0Ni,p(u)Nj,q(v)wi,j

C =
∑n

i=0
∑m

j=0Ni,p(u)Nj,q(v)wi,j
�Pi,j

D =
∑n

i=0
∑m

j=0(
∂

∂uNi,p(u))Nj,q(v)wi,j

E =
∑n

i=0
∑m

j=0Ni,p(u)( ∂
∂vNj,q(v))wi,j

�Pi,j

F =
∑n

i=0
∑m

j=0Ni,p(u)( ∂
∂vNj,q(v))wi,j

∂
∂uNi,p(u) = p

ui+p−1−ui−1
Ni,p−1(u)−

p
ui+p−ui

Ni+1,p−1(u) and
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Fig. 15. Searching a new viewpoint without occlusion problems by
changing its α or β parameter

∂
∂vNj,q(v) = q

uj+q−1−uj−1
Nj,q−1(v)−

q
uj+q−uj

Nj+1,q−1(v)

all the parameters for the above relations were defined for
Eq. 17.

We can now compute the 3D space viewpoint placement.
It is known from Sect. 5.1 that the accuracy of the 3D data
will be best when the values of viewpoints α, β, and d are
0◦, 0◦, and 195 mm, respectively. Thus if there are no occlu-
sion problems, the viewpoint will be defined by (γ, θ, φ =
0◦, ψ = 0◦, x = xPsi

, y = yPsi
, z = zPsi

+ d) following the
normal direction to the projected viewpoint. For each point
belonging to the set of projected viewpoints PV PSi

in the
discrete space sdb(ud, vd), we place the viewpoints within the
optimum distance and orientation conditions. In Step 2.3, we
will explain how the parameters α, β, and d are relaxed when
there are occlusion problems.

In Fig. 13, we illustrate the viewpoints found to digitalize
a small region of a curved part (corresponding to one surface
in the CAD model). Each line represents the projection of the
laser beam from the viewpoint where the sensor is placed in
relation to the projected viewpoint when the sweeping angle
(γ) is equal to zero. The free end of the line (in the space) rep-
resents parameters (x, y, z). The point where the line reaches
the surface represents a projected viewpoint. The parameters
α and β are equal to zero, so the propagation of the laser beam
follows the normal direction for each projected viewpoint. The
d parameter is the euclidean distance from the viewpoint to
the projected viewpoint, that is, the line length.

Fig. 16. New viewpoints to solve occlusion problems remaining as
near as possible to the normal direction

Case when not all of the surface is covered. The width of
surface sw(Psi) for a skeleton point is obtained by adding
the distances from the point to each edge of the surface. Let
sw(Psi) be the minimal distance that must be swept by the
laser beam (passing by the point Psi) in order to digitalize
the whole width of the surface. The optimal value of a (pa-
rameter of the digitalization rectangle), called a0, is obtained
when the viewpoint is placed under the optimal accuracy con-
ditions (α = 0◦, β = 0◦, and d = 195 mm) with respect to
the projected viewpoint (Psi) and with γmax = ±7.5◦, so
a0 = 51 mm (Fig. 14). For point Psi , two cases can arise:
swi ≤ a0 or swi > a0. In the first case, except for occlusion
problems, the viewpoint remains defined under the optimal
accuracy conditions. For the second case, we must modify the
parameters of the viewpoint.

We have two types of parameter modification required to
widen a. The first consists of modifying parameter d up to its
maximum value; therefore, d = 240 mm. For this value we
define a1 = 63 mm [Fig. 14(a)]. We modify d in order not
to increase the number of viewpoints, even if we lose some
accuracy of the 3D data. The other modification consists in
defining new projected viewpoints. If swi > a1, new projected
viewpoints are defined and placed on the same line of the laser
beam sweeping, at an equal distance between the point and
the edge of the surface [Fig. 14(b)]. These two processes are
repeated until the whole width of the surface is digitalized.
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Fig. 17. Evaluation of α and β parameters

Step 2.3: Verify the nonocclusion conditions. Until now, the
viewpoints were found for the best accuracy conditions, i.e.,
placed at the optimal distance and with the optimal orientation.
The following step of the strategy is to check if the viewpoint
is free of occlusion problems, i.e., the laser beam is not inter-
cepted by any object and can thus reach the desired surface.
For the evaluation of nonocclusion conditions, a ray is traced
from the viewpoint toward the area to digitalize. The strategy
verifies (using the model voxel of the part PD(x, y, z)) that no
portion of the part is intersected by the ray, i.e., that the ray
arrives freely to its objective.

When an occlusion problem is detected, the system sear-
ches a new viewpoint by changing its parameters α or β. The
parameter d is not changed because, in general, it does not
solve occlusion problems. The movement is performed by in-
creasing or decreasing the incidence angle of the laser beam
in the direction of the sweeping laser beam for parameter α,
or perpendicular to it for parameter β. This process is illus-
trated in Fig. 15. The initial point P1 defined under the best
conditions of accuracy presents an occlusion problem. Points
P2 and P3 do not solve the occlusion problem. P4 provides
a solution, but the strategy continues to seek a point that is
closest to P1 and finds P5 and P6. The process stops when the
variation of the angle between two valid points is smaller than
5◦.

To obtain a new viewpoint, Eq. 16 is used, but we change
the constraints imposed on α and β to be between the new
values found (αfo, βfo) and the maximum value, so: αfo ≤
α ≤ 35◦ and βfo ≤ β ≤ 15◦. The solution of Eq. 16 allows
us to define a viewpoint placement that is able to digitalize the
desired area having good conditions relative to the accuracy
of the 3D data. Sometimes αfo and βfo, the parameter values
found, are such that αfo > 35◦ and βfo > 15◦. In this case,
there is no solution to the occlusion problem.

Figure 16 shows the new viewpoints found to solve the oc-
clusion problems. We notice that the new viewpoints remain
as close as possible to the normal direction. In the figure, each
line represents the projection of the laser beam from the point
where the sensor is placed (the free end) to the projected view-
point on the surface.

Viewpoint accessibility. By accessibility we mean that the
viewpoint must be reachable by the mechanical support.
For accessibility, we must guarantee that the part is in the
workspace of the system (ASR sensor/mechanical support).
This space defines the area where the sensor could be moved.
As stated in Sect. 3.1, for the acquisition system used, this
space has the form of a parallelepiped with: wsx = 80 cm,
wsy = 30 cm, and wsz = 30 cm. The viewpoint is trans-
formed from the coordinate system of the part to the coordi-
nate system of the workspace, and if we obtain a valid position,
we say that the viewpoint is accessible.

In a valid position, the viewpoint is not superimposed on
the part model. The strategy verifies that the viewpoint is not
included within the voxel model of the part. All the parts used
for this work are included in a volume of 100 × 50 × 50 mm
(Sect. 4.1). Since the placement distance of the viewpoint rel-
ative to the surface is usually at least 195 mm, we conclude
that in general there are no accessibility problems. For parts
with different sizes, an algorithm to detect the accessibility
conditions using a complete model system (range sensor plus
mechanical support) could be developed.

5.2.3 Step 3: Estimate 3D data accuracy

Once all the viewpoints have been located satisfying nonoc-
clusion conditions, the strategy computes the accuracy of the
3D measured points from the obtained set of viewpoints. We
know from Sect. 3 that the accuracy of the measured points by
a range sensor is a function of the distance d between the cam-
era and the part being digitalized and of the incident angles α
andβ of the laser beam. Thus, to estimate the accuracy of mea-
sured points, we must compute these parameters to each 3D
acquired point. Here the angle α is dependent upon the instan-
taneous sweeping angle γ. Figure 17 illustrates some special
configurations for the determination of α and β parameters.
The parameter d was defined above.

Figure 17(a) illustrates the case where the field of view
of the range sensor is greater than the width of the surface to
measure. The angular amplitude of the sweeping ray is com-
puted from the field of view 2 · γ and distance d. The width of
the surface sw is obtained from the CAD model.

In Fig. 17(b), we present the computation of the inci-
dent angle α over a curved surface. The point P where the
ray touches the surface is computed by using the 3D surface
model. The normal to the surface at this point is obtained from
the NURBS surface. Finally, the angle α is computed by de-
veloping the inner product of two vectors �ri · �n.

Once parameters d, α, and β are known, the accuracy is
computed as the sum of the noise introduced by each 3D point
by using Eq. 1. The dispersion introduced by each parameter
is obtained from the models developed in Sect. 3. Sometimes
the required precision could not be obtained, particularly for
surfaces having an occlusion problem. For such surfaces, the
range sensor must have a large inclination to be able to scan
the surface. When this happens, the system will indicate the
regions that could not be digitalized with the required accu-
racy.
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(a) Part 1, composed of flat surfaces

(b) Part 2, composed of flat surfaces

(c) Part 3, composed of flat and curved surfaces

(d) Part 4, composed of curved surfaces

Fig. 18. CAD model, sensing strategy to digitalize and range images of some manufactured parts
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5.2.4 Step 4: Distribute the set X of viewpoints

The last step of the strategy consists in distributing the set X
of viewpoints in such a way that the parameters of two consec-
utive points are as similar as possible. The movement between
the viewpoints is carried out by the mechanical support. It is
desired that changes of the parameters from one viewpoint to
another be minimal in order to reduce digitalization time.

For the acquisition system, because set X is derived from
the skeleton of the surface, we have posed the problem as one
of searching for the path of minimum cost in a graph. The
problem is solved for each surface independently. The critical
components of this method are: to have a good starting point,
to know how the obtained results influence the choice of the
next point, and to define a good criterion for stopping.

Let Psii be the ith projected viewpoint of the set PV Psi ,
and letV8(Psii) be the number of points with 8-connectivity to
Psii. An extremal point is defined as having less connectivity
with its neighbors and corresponds to the starting or stopping
point of the digitalization path. We define as junction points
those points with at least three 8-connectivity points.

The starting point is the extremal point closest to the origin
of the surface in the parametric space. The (x, y, z) parameters
of this point are compared with those of all the remaining
points by computing the euclidean distance. The closest point
is selected as the next point. If there are several points of
equal distance, the distance between the (θ, φ, ψ) parameters
is used. When a junction point is found, the selected path is that
which minimizes the distance, and as soon as it arrives at an
extremal point, the junction point is taken back to optimize the
remaining junctions. This process is repeated until all points
in PV Psi

are taken into account. Since the set of projected
viewpoints is finite (PV Psi), the set of viewpoints is also
finite, and it is guaranteed that this process will terminate.

Free collision movement. The movement between two view-
points must be collision-free. For this work we assume that
within the workspace we only have the part. We have rep-
resented the part by a voxel model. The movement of the
ASR sensor between two viewpoints is carried out by the me-
chanical support (CMM) following a straight line. The move-
ment is accomplished without collisions when, after check-
ing throughout this line, the model of the part is not touched.
When a collision problem is detected, the system tries to solve
it by defining intermediate positions of movement. For a more
complex workspace (parts with different sizes, other parts in
the workspace, etc.), an algorithm that takes into account the
model of all the parts and the model of the acquisition system
could be developed.

6 Sensor placement strategy results

In the previous section, we described our strategy to automat-
ically set a sensor’s placement for completely and accurately
acquiring the geometry of a surface or of the complete part
whenever possible. In this section, we present some results
of a sensing strategy for the complete digitalization of some
manufactured parts.

P1 P2

P3 P4

Digitalized region

Sensor movement

Fig. 19. Standard digitalization process

In Fig. 18, we show the CAD model, the sensing strat-
egy for digitalization, and the range images of different man-
ufactured parts, respectively. Part 1 [Fig. 18(a)] and part 2
[Fig. 18(b)] are composed of flat surfaces, part 3 [Fig. 18(c)]
is composed of both flat and curved surfaces, and part 4
[Fig. 18(d)] is composed of curved surfaces.

The CAD model of each part is a wire model represent-
ing its NURBS surfaces. The sensing strategy is designed for
the digitalization of the whole part and for an acquisition sys-
tem composed of an ASR sensor mounted on a CMM. All the
viewpoints are represented by a line that is the projection of the
laser beam from the point where the sensor is placed (the free
end) to the projected viewpoint on the surface. For inner sur-
faces, some occlusion problems were solved. The viewpoints
always remain close to the normal direction of surfaces. Fi-
nally, we present the range images of the parts acquired by the
acquisition system using the sensing strategy.

A standard digitalization is a systematic discretization of
the part. It is a process in which the part is swept by the laser
beam when the sensor is moved from one preset viewpoint to
another (the viewpoints are manually selected). These view-
points are at a fixed orientation with respect to the part. In this
work, we swept the part from four different positions of the
sensor, as shown in Fig. 19. The slope of the sensor was 45◦,
and the sensor movement was from viewpointsP1, P2, P3, and
P4 to another viewpoint perpendicular to the sheet.

In order to evaluate the improvement of the accuracy of the
3D data when they were acquired using the sensing strategy,
a standard digitalization of each part was done. An accuracy
evaluation of the two images of each part was done by using an
algorithm that computes the distance between each measured
point and the nearest point on the NURBS surface. We sum-
marize in Table 1 the results of measurement of the average
distance between each point of the cloud and the closest point
on the NURBS surface. The average distance for the standard
digitalization is shown in the column Stand Dig. The aver-
age distance for the digitalization using the sensing strategy is
present in the column Strat Dig. In the last column, we present
the improvement obtained when the strategy is used.

The smallest average distance is obtained for parts 1 and 2,
which is not surprising since these parts are composed of flat
surfaces. For these two parts, we obtain an improvement of
about 33%. For the curved part (part 4), we obtain an im-
provement of 35%, which is better because in the digitaliza-
tion process the laser beam is closer to perpendicular when we
use the strategy. Finally, for part 3, some occlusions permit no
more than a 13% improvement.
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Table 1. Average distance between each point of the cloud and the
closest point on the NURBS surface

Part Stand Dig Strat Dig Improvement

Part 1 73 µm 48 µm 25 µm(34%)
Part 2 99 µm 66 µm 33 µm(33%)
Part 3 106 µm 92 µm 14 µm(13%)
Part 4 153 µm 100 µm 53 µm(35%)

7 Conclusion

We have presented an automated acquisition planning strategy
to improve the accuracy of a cloud of measured 3D points. The
strategy computes a set of viewpoints in order to obtain a com-
plete and accurate 3D image of the part or selected surfaces of
the part. The viewpoints are constrained to have the best accu-
racy conditions in the scanning process. For the range sensor
used, it was shown that accuracy of the 3D measured points is
a function of the distance to the part and of the incident angle
with which the laser beam reaches the surface.

The system does not have any limitation in the geometry of
parts to be scanned, meaning that it works as well with flat or
curved parts. Knowledge of the exact position and orientation
of the part and its CAD model are the only system require-
ments. The strategy can be easily adapted to use other kinds
of range sensors and mechanical supports. For these, a new
model of the sensor accuracy must be found.

The planning strategy allows us to digitalize the whole
part or the surfaces of interest with a specified accuracy. This
property is important for inspection tasks, where we are largely
interested in verifying the specification of a few surfaces, be-
cause we are able to have an accurate cloud of 3D measured
points of the surface.

Although some elements of the algorithm can be expensive
in computation time, like the generation of the voxel model or
the solution to occlusion problems, all of the processes for
digitalization planning are carried out offline.
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