
A comparison of Neural and Graphical Models for Syntactic and Structural
Pattern Recognition

Terry Caelli and Walter F. Bischof
Department of Computing Science

University of Alberta, Canada
tcaelli,wfb@ualberta.ca

Mario Ferraro
Dipartimento di Fisica Sperimentale

University of Turin, Italy
ferraro@ph.unito.it

Abstract

Recent developments in the theory and uses of
Bayesian Networks in pattern recognition and image un-
derstanding (PRIU) raise questions about the relation-
ships between Bayesian compared to non-Bayesian ap-
proaches. In this paper we compare Neural-based verses
Bayesian-based methods for PRIU. We conclude with the
view that a singular PRIU architecture that models “from
pixels to predicates” in one explicit system model, is most
desirable from an optimization perspective and that hier-
archical hidden Markov random fields are one example
of such an approach but where algorithms from neural
computing also apply.

1. Introduction

Pattern recognition and Image Understanding (PRIU)
models are differentiated by their data structures and al-
gorithms. and over the past decade or so, a number of PR
models have evolved to address the limitations of stan-
dard PR classifier methods. These include:

1. Modular and model-based neural networks

2. Graph matching

3. Relational rule learning - conditional rule generation

4. Graphical models - Bayesian nets, hidden Markov
random fields

In this paper we discuss similarities and differences be-
tween these approaches and point to how experience with
them all is leading to new insights about a unified theory
of syntactic and structural PR for complex signal under-
standing.

Figure 1 attempts to organize current PRIU problems
in terms of the richness of the data models and types of al-
gorithms used. The first cluster of models have input data
structures that can very from pure attributes (as with sta-
tistical pattern recognition and normal feedforward neu-
ral nets, for example) to labeled, attributed vertices of

Statistical

pattern

classifiers

Model-based

Neural Nets

Relational

Learners

Data Model
 Algorithms

Numerical Optimization

Least Squares

Gradient Descent

Levenberg-Marquardt,etc.

Probabilistic Optimization

Dynamic Programming

Probabistic Relaxation

Expectation-Maximization

Markov Chain Monte Carlo

Tree search

a
1

a
n

c
1

c
m

S

S
O

O

1

1

n

n

Graph

Matching

Bayesian

Networks

f
n

f
1
 g

1

g
m

Figure 1. Neural, statistical and recent graph matching ap-
proaches to PRIU perform interpretation by solving optimiza-
tion problems in terms of minimizing errors between mappings
of the model onto data using numerical optimization meth-
ods. Bayesian methods solve the same optimization problem
by usually having a more explicit minimum description length
data model, MAP (maximum a posterior probability) image la-
beling criteria and probabilistic optimization methods. Here
a, c, f, g, s, o refer to attributes, classes, input functions, output
functions, states (labels) and observations respectively.

graphs (as occurs in Model-based Neural Nets and Graph
matching). Outputs vary from classes, labels to labeled
and attributed vertices as well - for graph matching. In
all these cases, however, the estimation problem is typ-
ically that of determining a single transformation from
input to output data structures using techniques from nu-
merical optimization. For example in graph matching, the
aim is to determine the least squares approximation to the
permutation matrix that maps one set of graph vertices
into another [21]. That is, this class of methods typically
solve PRIU via global optimization procedures although
depending on the degree of decomposition, model-based
Neural Nets do allow for global solutions with explicit
subprocess constraints.

The second cluster of models (Bayesian Networks,
Relational Learners) assume an explicit relational data
model where the inputs and outputs are generally de-
fined as attributed and labeled nodes vertices all within

the same network flow model. The states of each node are
inferred from other state and/or observation nodes and de-
pendencies are defined by contingency (conditional prob-
ability) tables for Bayes Nets and relational learners (for
example, Conditional Rule Generation (CRG) [7]).

What particularly differentiates this second cluster of
models from the first is the nature of what is being op-
timized and how it is being performed. Such models
typically attempt to determine the optimal state at each
node, given the model and observations and no partic-
ular distinction is made between “input” and “output”.
For example, in image annotation, a hierarchical hid-
den Markov Random Field model is used to determine
the optimal labels at each pixel, feature or region given
the model and observations [5, 11]. As a consequence
of this, the derivation of optimal states over the graphi-
cal model is determined by quite different algorithms in-
cluding dynamic programming, probabilistic relaxation
labeling Expectation-Maximization, through to a range
of sampling methods including Markov Chain Monte
Carlo [14].

In the following we provide some illustrate examples
of these different approaches and point to benefits and
deficits of the approaches.

2. Model-Based Neural Networks

Although traditional statistical and neural-based PR is
not relational over the past years there has been a good
deal of research in using neural architectures for solving a
wide range of problems including graph matching and re-
lational learning. This is basically accomplished by defin-
ing input nodes in terms of functions or pre-identified
(labeled) graph nodes having observable attributes and
matching (this form of PR) reduces to determining the
mapping of input labeled nodes to the output nodes and
so determining the correspondences [20]. This illustrates
how a neural net model actually provides another type of
approximation to the permutation matrix that minimizes
the mapping between the vertices of two attributed graphs
as recently studied by [21].

In general, a neural net can be defined as a directed
graph [16] whose nodes (neurons) are characterized by
input-output functions with connections between pairs of
nodes (i, j) characterized by a weight matrix W ≡ wij .
Tree-like neural net topologies are commonly used in pat-
tern recognition [3], even though recurrent network, such
as Boltzmann Machines have also been used for classify-
ing image features [15].

In practice, however, constraints must be imposed for
the net to work properly, and this is particularly true in
the case of PRIU where the dimensionality of the input
space is very high and would require a large number of
neurons to carry out even simple tasks. Prior informa-
tion on the nature of the perceptual problem is defined by
the distribution p(W), and this result in the presence of a

regularizing term in the error function,

E (wij) =
∑

i

∑

µ

(Oµi − tµi)
2

+ P (W), (1)

where P is the regularization term. For instance, it is of-
ten assumed that the weight values must be limited, and
this leads to p(w = Z exp(−λ/2w2)), where λ is a pa-
rameter andZ a normalizing constant. This, in turn, leads
to P = λ/2

∑
ij w

2
ij the well known weight decay regu-

lerizer. Analogous to the role of priors in Bayesian meth-
ods, here such constraints improve the ability of general-
ization of the net since it makes it less dependent on the
training set.

Alternatively, one can attain minimization of the er-
ror function by using variational techniques and deriving
the activation functions as Green functions of the opera-
tor P : this leads to a Gaussian form for the output y and
to the well known Radial Basis Function Networks [3],
[19]. That is such prior information is used to guide the
search procedure being encoded in the net in an implicit
way via the the error function and are aimed at guaran-
teeing specific characteristics of the encoding and recog-
nition/matching scheme.

It is clear that specific problems require specific weight
models for the net to carry out the desired task. For
instance, most traditional approaches to pattern recog-
nition lack explicit shift, rotation, and scale invariance.
Considering again in invariant pattern recognition a well
known solution to the problem is via the so called sigma-
pi units [3], in which the linear relation hi =

∑
j wijxj

is replaced by sum of products of the inputs, and where
the weights are made to depend on these specific relation
between input coordinates to ensure that the net respond
to the transformed pattern Tf(x) in the same way as to
the original pattern f(x): h(Tf) = h(f).

A more general approach is provided by the theory of
Model Based Neural Networks (MBNN) [9, 12, 8] that
aims to include more specific constraints on the network
geometry and weights. MBNN have the feed-forward ar-
chitecture of perceptrons, but they are buit specifically to
respond to features in the data that are known a priori, to
characterize the task or to have desired invariance, rather
than hoping that the training data will produce, via the
optimization techniques, the optimal set of weights.

To this aim, in MBNNs input-ouput realizations,
weights and activation functions all are subject to mod-
eling via constraints which control the search procedures
or guide the information flow through the network in such
a way to guarantee given solutions. In MBNNs weight are
parameterized and their values can be made to depend on
the position in the net. Nodal distances are thus defined
[9] to parametrically structure information processing in
terms of the relative position of the neuron within each
layer such that neurons in different positions perform dif-
ferent operations on the input.

Weights are of the form

wij = w (a, dij) , (2)

where a is a vector of weights. In general the dimen-
sion of a can be kept less the number of weights, so re-
ducing the space in which the search for the solution takes
place.

Also, in Model-based Neural Networks, activation
functions are not restricted to a bounded monotonic func-
tions of the input, such as the logistic function or the hy-
perbolic tangent, but can be any function, whose form is
determined by the problem to be solved. The use of spe-
cialized units with given activation functions provides a
significant simplification of the net and allows for com-
plex computations without an excessive computational
load. Note, however, that MBNNs remain in the gen-
eral framework of perceptron models since every specific
functional form of such specialized units is equivalent to
the output of a network of the traditional type. Any con-
tinuous function can be approximated, up to a given pre-
cision, by a perceptron with just one layer of hidden neu-
rons with activation functions φi(hi). That is, the contin-
uous function, f , is approximated via a linear combina-
tion

f (x1 · · ·xn) =

M∑

i=i

αiφi




N∑

j=1

wijxj


 , (3)

where φi are logistic.
The problem is how many hidden units are necessary?

In general it seems that their number grows exponentially
with the number of input units, xj . Thus, although any
specialized units with given activation function f could be
represented by a multilayered perceptron the computation
load would be typically significant.

The freedom in the choice of activation functions
makes it possible to build specialized units that can be
connected to form more complex nets making the MBNN
modular. Networks for solving complex problems can be
formed by considering a set of simple netsNi performing
computations in parallel such that the output of Ni is the
input ofNj , j > i for every i; thus for instance,

N1 ∪ N2 → N3, (4)

denotes two nets N1, N2 working in parallel and
whose outputs are inputs to a third netN3 [8].

Advantages of modularitiy has been discussed in sev-
eral works (see for instance (for a review see [8], or [15]).
Since it decomposes complex task in simpler one in mod-
ular networks speed of learning is increased, since com-
plex task are and also the representation of the input data
developed by a modular network tends to be easier to un-
derstand than in the case of ordinary NN.

Thus, it can be said that MBNN replace the generic im-
plicit constraints used in traditional NN with explicit rep-
resentations of the form the desired solution must take,
this reduces the computational load of the network but,
perhaps more importantly, improves its generalization ca-
pabilities, since important features of the solution do not
depend on the training data.

MBNN has been proved successful to perform pattern
recognition tasks [9] and, and more generally, to carry out
algebraic calculations, differential operations and compu-
tations of geometrical entities of the theory of surfaces
(first and second fundamental forms, Gaussian and mean
curvatures) [12].

Finally, the concatenations of subnets into complex
structures enables MBNN to perform many task that
usually require some symbolic form of processing, thus
showing that NN are not necessarily “subsymbolic”
and that the distinction between connectionist and sym-
bolic approaches to knowledge representation has be-
come somehow blurred.

In all, then, over the past decade or so it has become
clear the neural computing models for pattern recogni-
tion are quite capable of performing all types of classifica-
tion and matching problems at numerical, structural and
symbolic levels. However, common to all neural com-
puting models is the use of either perceptrons or non-
linear normalizers (including probability-types) and cast-
ing the processing models in terms of a singular network
architecture where inputs, outputs and processing units all
share common properties. As will be seen, the main dif-
ference between neural computing models and Bayesian
networks is how the estimation and prediction problems
are solved since neural computing algorithms mainly em-
ploy numerical optimization methods compared to those
derived from sampling and, more generally, probabilistic
models.

2.1 Conditional Rule Generation

Analogous to the encoding and matching graphs or
structures using model-based and modular neural net-
works piece-wise decomposition and inductive learning
approaches to PRIU have recently been developed using
rule-based methods [6]. These methods combine the ad-
vantages of numerical learning methods with those of re-
lational learners by induction over numerical attributes
constrained by relational pattern models. Conditional
Rule Generation (CRG), generates rules that take the
form of numerical decision trees that are linked together
so that relational constraints of the data are satisfied. Gen-
eration of a rule tree proceeds is illustrated in Figure 2).

Once CRG has generated rules from training samples,
the problem of recognition reduces to part labeling with
respect to different models and their parts. Again, the
very purpose of the CRG method has been to pre-compile
the types of part and relational attribute states that are nec-
essary and sufficient for recognition.

Fortunately this can be accomplished by a direct acti-
vation of the CRG rules in a parallel, iterative deepening
method. Starting from each scene part, all possible se-
quences of parts, termed chains, are generated and clas-
sified using the CRG rules. CRG generates classification
rules for spatial (and spatio-temporal [1, 2]) patterns in-
volving a small number of pattern parts subject to the fol-

U1U

UBU21

1−2
8−11

8−7

UB3

3−2
6−5
5−6

9−8

7−810−8
UB21 UB22

UB2

8−10
8−9

11−8

UB31
UB32

5
6

8

2
UBU211

UBU212

U2U3
1

2

3

4

5

6

7

89 10

11

2
4

1
8
11 3

9
7

10

5
6

Figure 2. Example of input data and conditional decision
tree generated by CRG method. The left panel shows input data
and the attributed relational structures generated for these data,
where each vertex is described by a unary feature vector ~u and
each edge by a binary feature vector ~b. The right panel shows
a cluster tree generated for the data on the left. Numbers re-
fer to the vertices in the relational structures, rectangles indi-
cate generated clusters, grey ones are unique, white one contain
elements of multiple classes. Classification rules of the form
Ui −Bij − Uj . . . are derived directly from this tree.

lowing constraints: 1) The pattern fragments involve only
pattern parts that are adjacent in space (and time), 2) the
pattern fragments involve only non-cyclic chains of parts,
3) temporal links are followed in the forward direction
only to produce causal classification rules that can be used
in classification and in prediction mode.

A set of classification rules is applied to pattern in the
following way. Starting from each pattern part (at any
time point), all possible chains (sequences) of parts are
generated using parallel, iterative deepening, subject to
the constraints the only adjacent parts are involved and
no loops are generated. Note that spatio-temporal adja-
cency and temporal monotonicity constraints were also
used for rule generation. Each chain S is classified us-
ing the classification rules, and the evidence vectors of all
rules instantiated by S are averaged to obtain the evidence
vector ~E(S) of the chain S. Further, the evidence vectors
of all chains starting at a part p is averaged to obtain an
initial evidence vector for p.

Evidence combination using simple averaging is ad-
equate only if it is known that a single pattern is to be
recognized. However, if the test pattern consists of mul-
tiple patterns then this simple scheme can easily produce
incorrect results because some some part chains may not
be contained completely within a single pattern. These
chains are likely to be classified in a arbitrary way, and to
the extent that they can be detected and eliminated, part
classifications can be improved. We use general heuris-
tics for detecting rule instantiations [2] involving parts be-
longing to different patterns. They are based on measur-
ing the compatibility of part evidence vectors and chain

evidence vectors.
This compatibility measure can be characterized as

follows. For a chainSi of parts pi1, pi2, . . . , pin, the com-
patibility of evidence vectors is defined as

~w(Si) =
1

n

n∑

k=1

~E(pik) (5)

where ~E(pik) refers to the evidence vector of part pik.
This can be initially found by averaging the evidence vec-
tors of the chains which begin with part pik . Then the
compatibility measure can be used for updating the part
evidence vectors in an iterative relaxation scheme:

~E(t+1)(p) = Φ


 1

Z

∑

S∈Sp
~w(t)(S)⊗ ~E(S)


 , (6)

where Φ is the logistic function, Z a normalizing fac-
tor Z =

∑
S∈Sp w

(t)(S), and where the binary operator
⊗ is defined as a component-wise vector multiplication
[a b]T ⊗ [c d]T = [ac bc]T . The updated part evidence
vectors then reflect the partitioning of the test pattern into
distinct subparts.

Figure 3 shows an example of how relational struc-
tural rules are generated from 3D objects for tolerancing.

c

b

View 1 View 2

e

d

f

Each label corresponds to model attributed parts

then {evidence for model x is y}

2
3

5

a

4 AND part j has these attributes..etc..}

 views/samples of different models.

U(a)

Typical model rule
(c) Model Projection by rule instantiation.

B(a,b)

 AND has these relations to part j (B(i,j))
If {part i has these attributes (U(i))

U(3)

U(c)

U(b)

(d) Tolerancing Process

U(4)

1

 (focal features/datum):-
lists of parts, relations and their attributes

B(3,4)

(b) Generate Model Description rules:(a) Training with segmented

in known rules

DEFECT
No instantiation

Figure 3. Example of the CRG method for industrial tol-
erancing: finding correspondences between model features to
identify product deformations.

Such learning and recognition methods can be com-
pared with MBNN in so far as different rules, more
or less, could correspond to different sub-modules of a
MBNN. However, since these rules are derived using
principles of Minimum Description Length(MDL) and
information reduction [2], the algorithms differ signifi-
cantly than those used in neural computing. The benefits
of CRG over MBNN lie in the expressibility of the rules,

the induction procedure and the simplicity of the rule in-
stantiation procedures. Of particular importance is the in-
duction procedure that essentially performs a relational
hashing in the form of “rule graphs” [17].

2.2 Hierarchical hidden Markov random fields

Both MBNNs and CRG can be formulated, in
Bayesian terms, as specific types of network decompo-
sition models in the form:

p(a1, .., an, b1, ..bm) = p(b1/a1)p(a1/a2, ..ar)..p(bm/ai, ..)..
(7)

where ~a,~b correspond to input and output structures (at-
tributes, labels, etc.) respectively. In this sense, then,
both representations and algorithms can be replaced by
Bayesian Nets and the use of probabilistic learning (f0r
example Expectation-Maximization), exact or inexact in-
ference methods (for example, Loopy Belief Progagation)
for classification and matching [18].

What is missing, however, in these models is an as-
sociated topology that permits a simplification of choices
of possible connections and a single transparent model
for progressing from “pixels-to-predicates”. Hierarchi-
cal (multiscaled) Markov Random Fields(HHMRF) pro-
vide such a topology and associated algorithms includ-
ing Dynamic Programming and Expectation Maximiza-
tion (EM) [4, 5]. The model we discuss here is closest, but
not identical to, that of Cheng et. al. [10] using supervised
learning to help estimate the important features within
and between observation and label hierarchies. The ba-
sic mode is shown in Figure 4. What differentiate this
approach from the others is that it incorporates a form of
hierarchical constraint propagation using bijective opera-
tors (short range and long support kernels) and the tuning
of the model parameters to best fit expert annotation and
the use of colour images.

Y
X

1
1

� � � � �
� � � � �X
3

X

2

Y
3

Y

2
� � �

� � �

Figure 4. The basic hierarchical hidden Markov tree
(HHMT) model. Here only three levels (l − 1, l,l + 1) of the
multiscale representation are shown. At each level there are two
random fields corresponding to observed pixels, Y, image region
labels defined by X. The bijection operations shown in grey and
black colors (with corresponding arrows) represent upward and
downward support kernel operators and associated region label
transitions over movements upwards and downwards in scale,
encapsulating two types of contextual constraints: long-range
(downward) and short-range(upward).

The observed image Y is a random field sampled from
an underlying stochastic process X , which is a Markov

random field (MRF). In this model (see Figure 4), each
layer l consists of two random fields to encode the hid-
den labeling process (X l) and the observed image (Y l).
The ith node (pixel) for the hidden and observation ran-
dom fields are denoted by xli and yli, respectively. Since
the posterior (label) probability at any given layer l,
p(X l|Y l), is computational intractable we introduce fur-
ther assumptions which enable us to perform model pa-
rameter estimation in a feasible way. These are:

1. In any given layer l, the observed random field Y l

is solely depended on the hidden states at the same
level, X l:

p(Y l|XALL, Y ALL) = p(Y l|X l) (8)

where XALL, Y ALL refer to the complete label-
ing/observation hierarchy. Further, each observed
data pixel is dependent only on its corresponding
state (label):

p(Y l|X l) =
∏

i

p(yli|xli). (9)

2. The intra-layer hidden states are only dependent on
their adjacent layers, i.e.:

p(X l|XALL) = p(X l|X∂l) (10)

where XALL refers to the whole hidden hierarchy,
and X∂l corresponds to the neighborhood layers of
X l, i.e., X l−1, and X l+1.

3. In each layer l, the inter-layer hidden states (labels)
are independent of each other, that is:

p(X l|Y l) =
∏

i

p(xli|yli). (11)

Consequently, the hierarchical hidden Markov tree
(HHMT) encodes image content or structure (Figure 4)
by:

λ = {(πl, A+
l−1,l, A

−
l,l−1, Bl); l = 1, .., L} (12)

where the upward state transition matricesA+ are defined
by:

A+
l−1,l(

~i, j) = p(x(l)
s = j/∂̂s

(l−1)
=~i). (13)

The downward transition matrices A− are defined by:

A−l,l−1(~i, j) = p(x(l−1)
s = j/∂̂s

(l)
=~i). (14)

For position j in layer l, ∂̂s
(l+1)

=~i defines its contextual

parents (clique, kernel), and ∂̂s
(l−1)

= ~j corresponds to
its contextual children. In both cases, these kernels are
defined by indexed histogram (see below). For each layer
the prior probabilities of each label is defined by:

πli = p(X l = i). (15)

the relative frequencies of expected image labels at a
given scale, l. The observation matrices Bl are defined
by B ≡ {Bl, l ∈ [1..L]}, where Bl(o, c) ∈ Bl character-
ize the likelihood of the observed pixel values (o) at level
l, given label c ∈ [1..C], which are selected from a set
of Gaussian mixtures in the label-dependent cluster space
and correspond, after normalization, to

Bl(o, c) = p(yl = o/xl = c). (16)

Once the model is extracted any image can be inter-
preted with respect to the model by simply running the
model on the new image until it converges. An exam-
ple of this is shown in Figure 5 and demonstrates how,
over iterations, even with similar images, the HHMT en-
ables differential image classification (maximum poste-
rior probability (MAP) score differences), segmentation
and interpretation of image structure all within a single
process.

As can be seen the HHMRF’s are an explicit rela-
tional model for PRIU in so far as all model compo-
nents and identified and modeled. This is comparable to
MBNNs and relational learners although the learning, es-
timation and matching algorithms differ being formally
Bayesian in nature. Albeit, the HHMRF algorithms are
only approximations to the exact estimation problem and,
as such, fall into local minima as do relaxation and non-
exact least squares models used in neural computing.

3 Conclusions

Perhaps, then, the greatest difference between recent
Bayesian Network models for PRIU (as illustrated here
with HHMRFs) is the use of single highly constrained
graphical models whose topology is designed to enable
the development of complete PRIU systems in one sin-
gle explicit architecture and set of learning, classification
and matching algorithms. This explicit form, and asso-
ciated MAP formulation, makes clearer how the differ-
ent optimization techniques apply in contrast to the more
“hidden” states view of neural computing - excluding
MBNNs.

However, the issues of appropriate priors, the inex-
act estimation and inference methods used in Bayesian
models do not necessarily place such probabilistic mod-
els as provably superior to neural-based on rule-based
approaches. What Bayesian methods do offer is a rich
expressive representational language for PRIU modeling
and the formulation of what is to be optimized and reg-
ularized typically in MAP terms and without assuming a
single gaussian model as, for example, is the case with
least squares formulations. Such Bayesian approaches
has already been demonstrated to be successful in other
areas of computer vision including stereo and basic im-
age segmentation [13]. Such results, and the initial type of
model described here, suggest that Bayesian models may
well be a fertile unifying language for PRIU that enables

Using Similarity Scores for Forestry Image
Segmentation/Recognition

-15500

-13500

-11500

Number of Iterations

S
im

ila
ri

ty
 S

co
re

s

Image (a) -14444 -13613 -13616 -13616 -13616

Image (d) -15452 -14715 -14718 -14721 -14720

1 2 3 4 5

(d)(a)

(e)(b)

(c) (f)

Figure 5. The HHMT model was estimated using image (a)
and tested on images (a) and (d). We have used 4 classes cor-
responding to Aspen, Spruce, Shadows (both the shadow on the
trees and on the ground) and Ground. Labeling results are shown
using different colours. (b) and (e) show labeling after the first
iteration (i.e., Naive Bayes Classifier) while (c) and (f) after five
iterations. The bottom graph (g) shows the similarity scores (av-
erage log MAP probabilities per image) for the image data given
the model as a function of the number of iterations of the algo-
rithm.

us to incorporate past experience with model-based neu-
ral nets, relational learning. What is still an open ques-
tion issue is the discovery of truly optimal algorithms for
learning, inference, classification and matching.

References

[1] W. F. Bischof and T. Caelli. Learning structural descrip-
tions of patterns: A new technique for conditional cluster-
ing and rule generation. Pattern Recognition, 27:689–698,
1994.

[2] W. F. Bischof and T. Caelli. Learning complex ac-
tion patterns with crgst. In S. Singh, N. Murshed, and
W. Kropatsch, editors, Advances in Pattern Recognition -
IACPR 2001, pages 280–289. Springer, Berlin, 2001.

[3] C. M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, UK, 1995.

[4] C. Bouman and B. Liu. Multiple resolution segmentation
of textured images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, PAMI-13(2):99–113, 1991.

[5] C. Bouman and M. Shapiro. A multiscale random field
model for bayesian image segmentation. IP, 3(2):162–
177, March 1994.

[6] T. Caelli and W. Bischof. Machine Learning and Image
Interpretation. Plenum Books, 1997.

[7] T. Caelli and W. F. Bischof, editors. Machine Learning
and Image Interpretation. Plenum, New York, NY, 1997.

[8] T. Caelli, L. Guan, and W. Wen. Modularity in neural
computing. Proceedings of the IEEE, 87(9):1497–1518,
1999.

[9] T. Caelli, D. Squire, and T. Wild. Model-based neural
networks. Neural Networks, 6:613–625, 1993.

[10] H. Cheng and C. A. Bouman. Multiscale bayesian seg-
mentation using a trainable context model. IEEE Trans-
actions on Image Processing, 10:51–525, 2001.

[11] L. Cheng, T. Caelli, and V. Ochoa. A trainable hierarchi-
cal hidden markov tree model for color image segmenta-
tion and labeling. In ICPR 2002, pages 192–195, Quebec
city, Canada, 2002. IEEE Press.

[12] M. Ferraro and T. Caelli. Neural computations of al-
gebraic and geometrical structures. Neural Networks,
11:699–707, 1998.

[13] D. Forsyth and J. Ponce. Computer Vision: A Modern
Approach. Prentice Hall, 2002.

[14] W. Gilks, S. Richardson, and D. Spiegelhalter, editors.
Markov Chain Monte Carlo in Practice. CRC Press, New
York, NY, 1995.

[15] S. Haykin. Neural Networks. A Comprehensive Introduc-
tion. Prentice-Hall International, London, UK, 1994.

[16] B. Muller, R. Reinardt, and M. Strickland. Neural Net-
works. Springer-Verlag, Berlin, 1995.

[17] A. Pearce, T. Caelli, and W. Bischof. Rulegraphs for graph
matching and pattern recognition. Pattern Recognition,
27:1231–1248, 1994.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, San Mateo, California, 1988.

[19] T. Poggio and F. Girosi. Networks for approximation and
learning. Proceedings of the IEEE, 78:1481–1497, 1997.

[20] P. Suganthan, E. Teoh, and D. Mital. Pattern recognition
by grpah matching using the potts mft neural networks.
Pattern Recognition, 28:997–1009, 1995.

[21] A. van Wyk, T. Tariq, and B. van Wyk. A rkhs
interpolator-based graph matching algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 24(7):988–995, 2002.

