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Abstract

This paper presents a new multi-scales range data fil-
tering technique which produces a scale-space filtering
analogous to Gaussian filtering but has several interest-
ing properties such as viewpoint invariance and auto-
matic edge preservation. One of the main contribution
of this paper is that it takes into account a physical
model of the sensor to ensure optimum filtering of the
signal. Using this filter, new algorithms can be devel-
oped to detect at multi-scale depth and orientation dis-
continuities or segment robustly range data based on the
sign of Gaussian and mean curvatures.

1 Introduction

More often than not, the computer vision community
has processed range images with techniques developed
in the context of intensity images, in spite of the fact
that range data and images are a sampled set of mea-
surements corresponding to a 3–D surface, observed
from a particular viewpoint. In that sense, they are
fundamentally different from intensity images. Haral-
ick et al. [13] and later Besl and Jain [4, 5] were among
the first to consider range images as true geometric in-
formation, using differential geometry to compute in-
trinsic properties of surfaces such as the Gaussian and
mean curvatures.

To properly detect geometric features in range im-
ages one must be able to represent them at various
scales in order to compute variation of surface proper-
ties of increasing globality. In the past, several authors
have proposed different methods to solve this prob-
lem. One of these methods consists of convolving the

image signal with Gaussian kernels of increasing size
(scale) and then analyzing the evolution of signal fea-
tures along the scale dimension. These stack of images
as a function of increasing inner scale was coined as
a linear ”Scale Space” by Witkin [Witkin 1983] and
Koenderink [Koenderink 1984]

Instead of using a few discrete scales, Witkin [31]
has proposed the use of a continuum of scales and has
studied the properties of this scale space for 1-D signals.
In the case of more complex signals, the discretization of
the formulation led to nontrivial heuristics to establish
the correspondence between scales.

Koenderink [15] realized that the generating equa-
tion of linear scale-space can be expressed by a linear
diffusion equation:

∂L

∂s
= �∇ · �∇L = �L = Lxx + Lyy (1)

for the 2–D case. This equation states that the deriva-
tive to scale s equals the divergence of the gradient of
the luminance function L, which is the Lapacian, the
sum of the second derivatives. The blurring is consid-
ered as a diffusion of the intensity over time where time
is the scale parameter. The standard Gaussian kernel
is the Green’s function of the diffusion equation. The
derivation of the diffusion equation for scale-space by
many other researchers among which we mention:

• Analysis of Causality [15]: coarser scales can only
be the causal result of what happened in the finer
scales;

• Maximum principle [14]: any increase of the inner
scale the maximum luminance of the coarser scale



is always lower than the maximum intensity at the
finer scale, the maximum is always larger;

• No new extrema are formed at larger scales [18]

This method was applied to range data analysis with
some success by Asada and Brady [2] for 2-D curves and
then by Ponce and Brady [24] and Fan et al. [12].

Adaptive smoothing, instead of Gaussian smooth-
ing, has been proposed to ease the interpretation of
scale-space representations. The general idea behind
adaptive smoothing is to apply variable convolution
kernels, whose supports and shapes vary with the local
properties of the signal to be smoothed. An overview of
adaptive smoothing techniques can be found in Mastin
[20] and more recently in Romery [25]. One of the first
investigations of adaptive smoothing is done by Lev et
al. [17] where an iterative weighted averaging method
is proposed. The weight of each point in the convo-
lution kernel is determined locally by calculating the
difference between the pixel value at the center of the
kernel and the pixel value of the neighborhood inside
the kernel. A similar method is suggested by Wang et
al. [32], in which the weights of the coefficients are de-
fined as the normalized inverse of the signal gradient
magnitude.

Other methods [9, 24, 30] perform adaptive smooth-
ing based on variational methods. In these methods
smoothing across previously detected discontinuities is
prevented by the use of variable operators composed
of computational molecules. One major drawback of
these methods is that they imply a prior knowledge of
the position of the signal discontinuities.

A different approach, proposed by Saint-Marc and
Richetin [27], uses a directional mask in the direction of
the lowest curvature in the case of highly curved areas
and a standard square kernel in other regions. Other
researchers such as Perona and Malik [22] have pro-
posed the modelling of the image signal at all scales
as the solution to the heat propagation equation in an
anisotropic medium. This method seems to produce
good results but requires extensive iterative calcula-
tions. Using a similar method, Saint-Marc et al. [28]
have generalized and improved the method described
by Perona by using repeated convolutions of a simple
3× 3 operator where the coefficients of the window are
modulated by a measure of the signal discontinuity at
each point. This measure is defined as the magnitude of
the gradient computed in a 3 × 3 window. Other work
using similar approach can be classified in a number of
distinct categories:

• Vector value diffusion [34], where the simulations
influence of differential properties is viewed as a
set of coupled PDE’s

• Tensor value diffusion [33], where the conductance
is made-up of the second moment matrix

D =
{

L2
x LxLy

LyLx L2
y

}
.

The eigenvectors of this matrix indicate the main
directions of the local structure. The consequence
is that the diffusion is enhanced in the principle
ridge direction;

• Affine and projective scale-space [21]: In this
method the differential properties are expressed in
the invariant arc-length.

• Other method use axiomatic morphological scale-
spaces: Alvarez showed in a set of classical papers
[1] an axiomatic approach to come to the equation
Ls = Lvv which he coined the ”fundamental equa-
tion of image processing”

• Other method [11] use a diffusion process based
on a robust curvature flow operator that achieves
a smoothing of range data that is independent of
parameterization and orientation.

One of the major problems in applying all of these
methods to range data processing is that they are not
invariant with respect to the viewpoint and do not take
into account the fundamental difference in properties of
the range image noise. Since range images are sampled
versions of an object surface at a particular viewpoint,
the actual sampling on the surface of the object is far
from being isometric. Indeed, the 3–D distance between
two consecutive surface samples depends upon the local
curvatures of the scene and its orientation with respect
to the sensor. As a consequence, linear methods, which
use fixed weights in the convolution kernel, are not suit-
able because the effect on a specific 3–D surface will
vary with this surface attitude in space. Also, contrary
to intensity images the noise on range data is depen-
dent on sensor parameters and on the orientation of
the sensors relative to the surface. What is needed is a
convolution kernel whose coefficients are locally estab-
lished as a function of intrinsic surface properties and
a local noise model. The second problem with these
methods is that they do not take into account the very
different nature of the noise properties of the signal.

In the method proposed herein, a distance measure-
ment between a reference point p and a neighbor point
q on a parametric surface s(u, v) is defined. This mea-
surement (the intrinsic surface distance) is the length
of the minimum trajectory l(t) on the surface joining
these two points.

A new nonlinear operator that was first intro-
duced in Boulanger and Cohen [6] is generalized



to be applied on a parametric surface s(u, v) =
(x(u, v), y(u, v), z(u, v)T . This operator is defined as

Gσ ∗ s(u, v) = Nσ
−1

∫ ∞

−∞

∫ ∞

−∞
exp

(
−

d2
S

(p, q)

2σ2

)
Σ

−1(τ, ξ)s(τ, ξ)dτdξ

(2)

where dS represent the surface distance between two
points on the 3–D surface, of parametric coordinates
p = s(u, v) and q = s(u− τ, v− ξ) respectively, and Nσ

is the normalization factor equal to

Nσ =
∫ ∞

−∞

∫ ∞

−∞
exp

(
−d2

S(p,q)
2σ2

)
Σ−1(τ, ξ)dτdξ (3)

The function Σ−1(τ, ξ) is the covariance matrix of the
measured point determined by a physical model of the
sensor. The parameter σ controls the size of the oper-
ator.

The following properties make such an operator at-
tractive:

• Its effect on a 3-D surface is independent of the
viewpoint

• It behaves as an anisotropic filter that performs
adaptive smoothing on the signal but does not re-
quire prior determination of the surface disconti-
nuities or curvature.

• It is an optimal filter based on a physical model of
the sensor.

The following sections introduce a new model of a
real range sensor noise and how to compute an optimal
filter from this noise model. We also define what is an
intrinsic distance dS in the continuous case and then
present an algorithm to compute a discrete approxima-
tion.

2 Range Sensors and Their
Noise Model

The basic geometrical principle of optical triangulation
is shown in Figure 1. A light beam generated by the
laser is deflected by a mirror and scanned on the ob-
ject. The returning light is then focussed by a lens onto
a position sensitive photo-detector and measured. By
simple trigonometry, the X and Z coordinates of the
illuminated point on the object are calculated.

In conventional triangulation, a compromise among
field of view, precision of the 3-D measurement, and
shadow effect must be considered. A synchronized ge-
ometry provide a way to alleviate these tradeoffs. Ri-
oux [26] introduced a synchronized scanning scheme,

with a large field of view with small triangulation an-
gle can be obtained without sacrificing the precision.
By the fact that the range sensor have smaller trian-
gulation angles shadow effects is reduced significantly.
One can see in Figure 2 an illustration of NRC auto-
synchronized approach for single axis system. Let p

Figure 1: Basic geometrical principle of optical trian-
gulation.

Figure 2: Schematic of NRC auto-synchronized range
sensor geometry: single axis system.

be the measured position of a monochrome laser spot
onto the detector, let θ and φ be the deflection angles
of the laser beam in the dual axis range sensor. Then
according to the convention set, the equation of a point
(X,Y,Z) in the camera field of view as a function of
the measured parameters (p, θ, φ) are expressed by the
following calibration functions:

X(p, θ, φ) = Xs(p, θ) (4)

Y (p, θ, φ) = (Zs(p, θ) − hy) sin(2φ)
−hz cos(2φ) + hy (5)

Z(p, θ, φ) = (Zs(p, θ)) − hy) cos(2φ)
−hz sin(2φ) + hz (6)

The coordinate pair Xs(p, θ), and Zs(p, θ) is the posi-
tion of a point that would be measured with a range



camera having a single scan axis, i.e.:

Xs(p, θ) = X−∞(θ) + P∞
X0(θ) − X−∞(θ)

P∞ − p
(7)

Zs(p, θ) = Z−∞(θ) + P∞
Z0(θ) − Z−∞(θ)

P∞ − p
(8)

For a given optical angle θ of the x-axis, Z−∞(θ) is the
location of the vanishing point on the projection axis
for p → −∞, and Z0(θ) is the location corresponding to
p = 0. Similar definitions apply to X−∞(θ) and X0(θ).
The parameter P∞ is the location of the vanishing point
on the detection axis, i.e.,

P∞ = fo
sin(γ)

cos(β − γ)
=

(fo − f)
sin(β)

(9)

where f is the focal length of the collecting lens, fo

is the effective distance of the position detector to the
imaging lens, β is the tilt angle of the position detec-
tor determined by the Scheimpflug condition, and γ is
the triangulation angle corresponding to p = 0. A to-
tal of 25 parameters are used to describe a dual axis
range sensor. These parameters include also distortion
parameters not discussed here.

One of the fundamental differences between a range
image and an intensity image is the fact that one can
no longer assume that the noise present in the signal is
a Gaussian with a constant variance. Even though the
sensor parameters (p, θ, φ) are not statistically corre-
lated, because of the calibration function, the resulting
measurements X,Y,Z are. This implies that the noise
on the X, Y and Z axis can be represented by a joint
anisotropic Gaussian model expressed by:

pr(θ, φ) =
1

N
exp −

1

2
(r(θ, φ) − r̄(θ, φ)) T

Σ
−1(θ, φ)(r(θ, φ) − r̄(θ, φ)) (10)

Where N is a normalization factor equal to:
det(Σ(θ, φ))

1
2 (2π)

3
2 and Σ(θ, φ) is equal to the

variance-covariance matrix for each measurements and
is defined by:

Σ(θ, φ) =


 σxx(θ, φ) σxy(θ, φ) σxz(θ, φ)

σyx(θ, φ) σyy(θ, φ) σyz(θ, φ)
σzx(θ, φ) σzy(θ, φ) σzz(θ, φ)


 (11)

and is equal to E((r(u, v)− r̄(u, v))(r(u, v)− r̄(u, v))T )
where r̄(u, v) = E(r(u, v)). Assuming that the cali-
bration functions x = X(p, θ, φ), y = Y (p, θ, φ), and
z = Z(p, θ, φ) have no sudden jumps in their corre-
sponding domains then:

σxx �
(

∂X

∂p

)2

σ2
p +

(
∂X

∂θ

)2

σ2
θ +

(
∂X

∂φ

)2

σ2
φ (12)

σyy �
(

∂Y

∂p

)2

σ2
p +

(
∂Y

∂θ

)2

σ2
θ +

(
∂Y

∂φ

)2

σ2
φ (13)

σzz �
(

∂Z

∂p

)2

σ2
p +

(
∂Z

∂θ

)2

σ2
θ +

(
∂Z

∂φ

)2

σ2
φ (14)

σxz �
(

∂X

∂p

∂Z

∂p

)
σ2

p +
(

∂X

∂θ

∂Z

∂θ

)
σ2

θ +
(

∂X

∂φ

∂Z

∂φ

)
σ2

φ

(15)

σyz �
(

∂Y

∂p

∂Z

∂p

)
σ2

p +
(

∂Y

∂θ

∂Z

∂θ

)
σ2

θ +
(

∂Y

∂φ

∂Z

∂φ

)
σ2

φ

(16)

σxy �
(

∂X

∂p

∂Y

∂p

)
σ2

p +
(

∂X

∂θ

∂Y

∂θ

)
σ2

θ +
(

∂X

∂φ

∂Y

∂φ

)
σ2

φ

(17)
One can see in Figure 3 the variation of the noise on the
variance of the coordinate Z as a function of distance.

Figure 3: Variation of the noise on the variance of the
coordinate Z as a function of distance.

2.1 Model for Pointing Error

It was shown experimentally in [23] that the precision
of the range sensor also depends on the incident angle,
i.e., the angle between the laser beam and surface nor-
mal. This error can be described as a pointing error
which varies from point to point. In the following, we
propose a mathematical model for the pointing error
and present test results which support our model.

Let x′, y′, z′ denote a rotating coordinate system
where the origin is located in the laser projector r0

and the z′-axis points into the direction of the incident
beam. The location of the laser projector can be solved
using a model-based fitting approach described in [3] for
the single scan axis case. The dual axis case requires



further studies so that in the following, the analysis is
restricted to the single axis case where the scanning is
performed by moving the object mechanically in the
y-direction.

Let ∆ri be the error in a measurement point ri

propagated from ∆pi,∆θi,∆yi through the calibration
of the system. We have r′i = Ry(θi + γ/2)(ri − r0 −
[0, yi, 0]T ) where Ry denotes a rotation around the y-
axis. The object surface is approximated as planar in
the neighborhood of each measurement point. Figure 4
illustrates an intersection of the projection of the in-
cident beam onto the surface in the plane determined
by the z’-axis and the surface normal. It is proposed
that the uncertainty in the position of the spot on the
surface is proportional to the length of line AC. This
provides an error estimate in the direction perpendic-
ular to the surface normal. In the rotating coordinate
system, the uncertainty is increased in the direction of
the z′-axis by an amount proportional to the length of
line BC. We have |BC| = |AB| tan δ, where δ is the
incident angle and the x′- and y′-coordinates of A and
B are solved from the equation system

(x′/∆x′
i)

2 + (y′/∆y′
i)

2 = 1, y′ = (n′
y,i/n′

x,i)x
′.
(18)

After some manipulation, the error in z′i, taking into
account the incident angle, is given by

∆z′i,new = ∆z′i +
2α((n′

x,i)
2 + (n′

y,i)
2)∆x′

i∆y′
i

n′
z,i

√
(n′

x,i)2(∆y′
i)2 + (n′

y,i)2(∆x′
i)2

,

(19)
where α is a nonnegative parameter to be adjusted
during calibration. The errors in x′

i and y′
i are con-

sidered to remain the same. The error in the sen-
sor coordinate system is then given by ∆ri,new =
Ry(−θi−γ/2)∆r′i,new and the covariance matrix is ob-
tained as

E(∆ri,new(∆ri,new)T ). (20)

If we assume statistical independence between the
two model then the final combined model is simple and
is equal to the sum of the covariance matrix estimated
by equation (20) and equation (11).

3 Optimal Filtering Based on
Maximum Likelihood Esti-
mate

Let Ω be a neighborhood of size m̄ = N × N of a local
averaging filter where

Z = (x(u1, v1), y(u1, v1), z(u1, v1), · · · x(um̄, vm̄), y(um̄, vm̄), z(um̄, vm̄))
(21)

surface

C

BA

laser

incident
angle

beam

uncertainty of z’
increase in the

z’-axis

normal

Figure 4: Geometric interpretation of the model pro-
posed.

are the measurements produced by the range sensor in
the neighborhood. The problem of filtering in the max-
imum likelihood framework can be defined as: Given
the neighborhood data Z, the maximum likelihood of
the center pixel to be r̂ is provided by:

pz(S|Z) = max
A

∏
u,v∈Ω

pr|A(r(u, v)|S(u, v;A)) (22)

where pz(S|Z) is the likelihood that the data Z in the
neighborhood including the central pixel can be approx-
imated by a local surface model S(u, v;A) defined by a
set of parameters A. The likelihood is specified by the
assumed probability distribution of the fluctuations in
the measurements regarding their predicted values in
the absence of noise.

The local neighborhood is modelled by the following
parametric polynomial:

S(u, v;A) =
k∑

i=0

l∑
j=0

aijBi(u)Bj(v) (23)

where aij are the coefficient vectors of each component
of S(u, v;A). The function Bk(l) is the basis function.
Let u, v be the parameterization of the surface where
u, v ∈ U × U , and N are assumed to be odd. The set
U is defined as:

U = {−(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2}. (24)

Using a matrix notation the local surface model
S(u, v;A) = M(u, v)A is expressed by the following



equation:

S(u, v;A) =

[
H(u, v) 0 0

0 H(u, v) 0
0 0 H(u, v)

]




ax|00
ax|01

...
ax|kk

ay|00
ay|01

...
ay|kk

az|00
az|01

...
az|kk




(25)

where A is a columns matrix of size (k + 1)(k + 1)3× 1
representing the coefficients of the model. The matrix
M is a 3×(k+1)(k+1) representing the basis functions
of the interpolating polynomial expressed in compact
form by
H(u, v) = (B0(u)B0(v), B0(u)B1(v), · · · , Bk(u)Bk(v)).
The notation 0 correspond to a null vector of size
1 × (k + 1)2.

In order to evaluate the value of the central pixel
from the model parameter vector A a maximum a like-
lihood estimator is used. In this context, it is assume
that A and n(u, v) are independent and distributed in
a Gaussian fashion at each point so that:

E(A) = Ā var(A) = VA (26)
E(n(u, v)) = 0 var(n(u, v)) = Σ(u, v)

The measurements performed by the range sensor can
then be represented by the following equation:

r(u, v) = M(u, v) A + n(u, v) (27)

corresponding to a linear combination of the parameter
A and observation noise n(u, v). All the densities in
the foregoing expressions are assumed Gaussian, with

E(r(u, v)) = M(u, v) Ā var(r(u, v)) = Σ(u, v) (28)

The expression of the various density are :

pr|A(r|S) =
(
(2π)3/2(det(ŵΣ))1/2

)−1

× exp
(
− ŵvT Σ−1v

2

)
(29)

where ŵ = w(u, v) is an intrinsic weighting function
which limit the effect of neighbour geometrically dis-
tant from the central pixel and v(u, v) = (r(u, v) −
M(u, v)A) .

The probability distribution of the estimated pa-
rameters a are equal to::

pA|Z(A|Z) =
1

(2π)N/2det(Ξ)1/2
exp(−

1

2
(A − Â)T

Ξ
−1(A − Â)) (30)

where

Â =


 ∑

u,v∈Ω

w(u, v)(MT (u, v) Σ−1(u, v) M(u, v))




−1


 ∑

u,v∈Ω

w(u, v)MT (u, v)Σ−1(u, v)r(u, v)


 (31)

is the maximum likelihood estimate of A and

Ξ = (
∑

u,v∈Ω

w(u, v)(MT (u, v) Σ−1(u, v) M(u, v)))−1

(32)
is maximum likelihood estimate of the covariance ma-
trix on the estimated parameters. The weighting func-
tion used in this regression problem was first introduced
by Boulanger and Cohen [6], and is defined as:

w(u, v) =
exp(−(d2

S(p,q)/2σ2)∑
(u,v)∈Ω

exp(−(d2
S(p,q)/2σ2)

, (33)

The parameter σ controls the scope of the function and
determine in practice the size of the neighborhood. The
present weights have the following attractive properties:

• Larger weights are assigned for the points which
are geometrically closer with the center point.

• The weights are sensitive depth discontinuities.
Thus, small weights are assigned to points which
are in the opposite side of a discontinuity.

• The weights are independent of viewpoint since
there are based on an intrinsic surface metric.

3.1 Filtering Based on Constant As-
sumption

One of the most widely used local model for filtering is
based on the assumption that the neighborhood can be
approximated by a constant value. In this particular
case the filter expression is given by:

Â =


 ∑

u,v∈Ω

w(u, v)Σ−1(u, v)




−1

×

 ∑

u,v∈Ω

w(u, v)Σ−1(u, v)r(u, v)


 (34)

which can be generalized for the continuous domain by
Equation (1).



4 Intrinsic Surface Distances

To define a distance on a parametric surface s(u, v),
it is convenient to express the first fundamental form
of the surface at a point p = s(up, vp) in the basis
{su, sv} associated with the parameterization u, v. Let
l′(t) be the tangent vector to a parameterized curve
l(t) = s(u(t), v(t)), t ∈ (−ε, ε) embedded in the surface
and going through the point p. Then the first funda-
mental form at p is given by

Ip(l′(0)) = E(u′)2 + 2Fu′v′ + G(v′)2 (35)

where E =< su, su >p, F =< su, sv >p, and G =<
sv, sv >p are the coefficients of the first fundamental
form in the basis of the tangent plane at the point p.
The operator < ·, · > corresponds to the inner product.
The variables u′ and v′ are the derivatives with respect
to the parameter t.

By using the first fundamental form, one can treat
metric questions on a regular surface without reference
to the ambient space. For example, the arc length sl

between two points p = l(tp) and q = l(tq) along a
parameterized curve l(t) is given by

sl(p,q) =
∫ tq

tp

|l′(t)|dt =
∫ tq

tp

√
Ip(l′(t))dt (36)

Since only discrete surface measurements are avail-
able on discrete parametric coordinates (ui, vi), one
must have a discrete form of equation (36) to compute
the arc length between two points along the curve.

Let us consider a partition of a curve l(t) defined as
l(ti), tp = t0 < t1 < . . . < tk < tk+1 = tq. If the steps of
the piecewise approximation are sufficiently small, one
can approximate the curve by a linear equation of the
form

l(t) = (x(ti) + ai(t − ti), y(ti) + bi(t − ti), z(ti) + ci(t − ti))
(37)

where ai = [x(ti+1) − x(ti)]/(ti+1 − ti), bi, and ci have
similar expressions based on y and z. Then the deriva-
tive l′(t) of l with respect to t is given by

l′(t) = (ai, bi, ci) for ti < t < ti+1

Thus a discrete approximation of the arc length be-
tween p and q is given by

sl(p,q) =
k∑

i=0

√
a2

i + b2
i + c2

i (38)

This is equivalent to a polygonal approximation of the
surface.

Then the surface distance dS , namely the minimum
distance among all trajectories joining the two points,
is defined by

dS(p,q) = minl sl(p,q) (39)

Note that the value of dS will be large if the minimum
trajectory goes across a depth discontinuity.

4.1 Algorithm to Find Minimum Tra-
jectory

To obtain surface distances from the center point to
the other points in a moving window, one needs to find
minimum trajectories from the center point to all other
points in the window. From the definition (39), one
can design an efficient algorithm by using the Single-
Source Shortest Paths Algorithm for weighted graphs
(for example, see [19]).

The vertices of the graph correspond to the points
in the window and the edges represent neighboring
connections of points. From the equation (38), the
arc length of the edge between points (uti

, vti
) and

(uti+1 , vti+1) is given by

√
a2

i + b2
i + c2

i

The algorithm to find minimum distances is given
as follows.

Input: G = (V,E) (a weighed graph) and v (the source
vertex corresponding to the center point)

Output: for each vertex w, w.SP is the length of the
shortest path from v to w and corresponding min-
imum trajectories w.TR

begin
for all vertices w do

/* w.mark indicate if the vertex distance is determined*/
w.mark := false;
w.SP := ∞;

v.SP := 0;
v.TR := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex such that w.SP is minimum;
w.mark := true;
for all neighboring edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z);
z.TR := w;

end

In this algorithm, one needs to find the minimum dis-
tances among a set of path lengths and to update the
path lengths frequently. One can implement this ef-
ficiently by using a heap. All unmarked vertices are
kept in a heap with their current known shortest path
lengths from the center point v as their keys. To find
an unmarked vertex w such that the path length w.SP
is minimum, one can simply take it from the top of
the heap. All the edges connected to the vertex w



can be checked and the path lengths can be updated
without difficulty. Since the elements of the heap are
the vertices of the graph, the space requirement is only
O(|V |), where |V | denotes the number of vertices. The
algorithm complexity is O((|E|+ |V |)log|V |), where |E|
denotes the number of edges.

5 Experimental Results

5.1 Experimental Verification of the
Noise Model

The model in Eq. 19 was tested using the data in
[23]. This experiment involved data from a single scan
line of a planar surface measured from different view-
points. The orientation of the sensor and the sur-
face normals were known accurately and furthermore,
n′

y,i = 0, i = 1, . . . , N . Only one scan line was used to
avoid errors related to the object movement and the y′-
coordinates were considered noise-free. The measuring
was repeated several times which provided sample esti-
mates for the covariance matrices. The traces of these
matrices have been plotted as a function of the incident
angle in Figure 5a.

In this test case, the proposed model yields

Tr(Cov(ri)new) = Tr(Cov(r′i)) (40)
+2αCov(x′

i, z
′
i) tan(β + δ)

+α2Var(x′
i) tan2(β + δ)

where δ is an additional shift parameter introduced to
obtain a better fit between the observations and the
model. Instead of evaluating Cov(r′i) through error
propagation from ∆pi,∆θi, each element of the covari-
ance matrix was estimated as a sample mean over obser-
vations where the incident angle was less than a thresh-
old. The same sample means were used at all points r′i,
i = 1, . . . , N . A better result might be obtained if the
elements were interpolated from curves describing their
behavior as a function of the measuring distance.

The axis of the incident angle was divided into T
segments St of equal length the centers of which were
located at βt = π(t − 0.5)/(2T ), t = 1, . . . , T . The
model was fitted to the mean traces of covariance ma-
trices in each segment. More precisely, the parameters
α and δ were estimated minimizing the merit function.

f(α, δ) =
T∑

t=1

[Tr(Cov(r)new)(βt, α, δ) (41)

−
∑

βi∈St

Tr(Cov(ri))/Nt]2, (42)

where Nt is the number of points in St, t = 1, . . . , T .
The nonlinear least squares problem in Eq. 42 was
solved using the Newton-Gauss method. The result of
fitting is illustrated in Figure 5b.
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Figure 5: a) Tr(Cov(ri)), i = 1, . . . , N . b) Mean traces
of the sample covariance matrices in each segment and
the model fitted.

5.2 Range Image Filtering Results

In order to illustrate the property of this new filter we
did a series of experiments on a complex scene com-
posed of quadric surface of various shapes and scales.
One can see in Figure 6 the evolution of the surface re-
construction as a function of σ for an image corrupted
by a noise of 5 db. On can see in Figure 7 (a),(c), and
(d) the scale-space evolution of a standard Gaussian
kernel and in Figure 7 (b),(d), and (e) the same evolu-
tion with the intrinsic filter. From observation it is obvi-
ous that contrary to the Gaussian kernel, the new filter
preserves the position of the major discontinuities and
smooth-out the uniform regions. In order to illustrate
this unique property further, on can see in Figure 8 the
evolution of depth discontinuity for a Gaussian kernel
as compared to the new one. From observation, one can
notice that the corner edge were significantly displaced
with the Gaussian kernel and that no such phenomena
appended with the new operator.

Finally, one can see in Figure 9 an illustration of
the evolution of the filter for a range image of a face
scanned with a range sensor rotating around the person.
One can see that some of the surface detail disappear
as a function of scale without the problem of blurring
the large depth discontinuities. This property allows
us to reduce significantly the noise to compute surface
curvature using a method described in [7].



Figure 6: Evolution as a function of σ of the surface
reconstruction of a range image composed of quadrics
corrupted by a noise of 5db: (a) σ = 0.0, (b) σ = 1, (c)
σ = 2.0, (d) σ = 3.0.

6 Conclusion

One of the goal of this paper is to present a coher-
ent framework for the filtering of range images based
on fundamental principles. As discussed in the intro-
duction range image is a fundamentally different signal
from normal intensity images produced by CCD cam-
eras. We have demonstrated experimentally that the
noise of these signal is indeed very different and much
more complex. The simple noise model presented here
is a relatively good approximation of the real one but
there are many more factors contributing to the preci-
sion of these range sensors that is not modelled here.
For instance, the contribution of laser intensity fluctua-
tions and the variation of the surface albedo does have
an influence on the precision of the laser scanner and
should be modelled.

This paper is a new and improved version of a pub-
lication that was made over ten years ago [6]. In the
previous paper, we introduced the concept of intrinsic
surface distance and some of its very interesting prop-
erties. However, at the time we did not had any knowl-
edge of the real stochastic properties of this signals and
its consequence to the process of filtering. In this paper,
we demonstrate that one can create a scale-space based
on intrinsic properties that also take into account the
very different nature of these signals. We also experi-
mentally demonstrate in this paper that the new scale
space has some of the key properties necessary for a
good scale-space i.e., Causality, Localization, and max-
imum principle. Over the years we have applied this

Figure 7: Evolution of the surface reconstruction of a
range image composed of quadrics for a Gaussian kernel
(right) and an intrinsic kernel (left): (a)-(b) σ = 2.5,
(c)-(d)σ = 4.5, (e)-(f)σ = 6.0.

filter to various applications and demonstrated its use-
fulness for curvature segmentation [7], edge detection
[8], and many others.
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