
A Real-time Performance System for Virtual Theater

Qiong Wu
Computing Science
University of Alberta
Edmonton, Canada

qiong@cs.ualberta.ca

Pierre Boulanger
Computing Science
University of Alberta
Edmonton, Canada

pierreb@cs.ualberta.ca
Maryia Kazakevich

AICT
University of Alberta
Edmonton, Canada

maryia@ualberta.ca

Robyn Taylor
Computing Science
University of Alberta
Edmonton, Canada

rltaylor@ualberta.ca

ABSTRACT
The idea of combining virtual reality technology and theatrical tra-
dition to create virtual plays has captured artists’ imaginations for
some time. Using conventional technology, the use of virtual char-
acters in a theatrical performance often integrates the predefined
animations of virtual actors into the theater scene, resulting in a
performance that can feel stilted and unresponsive due to its pre-
programmed nature. This paper proposes a new system that allows
actors to animate virtual characters in real time, resulting in a more
flexible and interactive theatrical performance experience. Actors
are sequestered at a remote site, invisible to the audience, and are
digitized by a motion capture system. Using camera feeds to pro-
vide the remote actors with information about the behavior of the
live actors and audience in the theater, the remote actors can adapt
their virtual counterparts’ behavior to react to live events in real-
time, giving the illusion to the audience that the virtual characters
are responsive to their actions.

The system integrates display peripherals, networked cameras,
real-time motion capture system, gesture recognition, and a virtual
environment development suite (Virtools) to create a true virtual
theatrical performance environment. In the paper, we will present
the various concepts developed so far and an example of a virtual
theatrical performance called Trickster at the Intersection that was
presented during Smart Graphics 2010 at Canada’s Banff Centre.

Categories and Subject Descriptors
H.5.1 [Information interfaces and Presentation]: Multimedia In-
formation Systems—Artificial, augmented, and virtual realities;
J.5 [Computer Applications]: Arts and Humanities—Performing
arts (e.g., dance, music)

General Terms
System, Performance, Human-Computer Interaction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

Keywords
Virtual Theater, Motion Capture, Audience Interaction, Real-time
3D Graphics, Gesture Recognition

1. INTRODUCTION
Over the past decade, Virtual Reality (VR) have been used in a

wide range of artistic applications including virtual theater. Vir-
tual theater preserves the theatrical performance form through di-
rect mediated interaction of avatars and objects, and it is known
for its flexibility of interaction [1], and its potential to create novel
theatrical elements [19] that would be impossible to do in the real-
world. However, performances in virtual theater are often pre-
recorded which make them pre-programmed, difficult to use, and
lifeless compared to the spontaneity and improvisation of a real
performance.

This paper presents a new system that preserves the interactiv-
ity of real theater by allowing for a better sense of presence and
the ability of improvisation. The system features immersive dis-
play peripherals used as part of the theatrical set, networked cam-
eras, real-time motion capture and gesture recognition, integrated
into a virtual environment development suite (Virtools). The sys-
tem allows natural interaction between the audience and the virtual
characters without the aid of tethered input devices. In the current
system, the audience can view the virtual actor in an immersive
three-wall CAVE (see Figure 1(a)) to interact with a remote actor
digitized in real-time by a motion capture system (Figure 1(b)) al-
lowing the actor to control an avatar (see Figure 1(c)) and to create
actions in the virtual world using gesture. While the audience does
not know that the virtual character is controlled by a remote ac-
tor, the remote actor can see and listen in real time to the audience
and other actors located on the real theater set by using networked
cameras and microphones.

One of the key component of the system is the use of gesture
recognition technology to create actions in the virtual world. For
example, as the actor performs his/her gestures, one can create ac-
tions that materialize objects, stretch objects, turn them transparent
or appear/disappear, and emit sparkles etc. In many ways, many
gesture-triggered special effects can be created depending on the
scenario of the play. By using gesture recognition based only on
the actor’s motion, one can smoothly integrate actions into the per-
formance, making each performance a unique experience that can
be controlled by the subtlety of the human actor and the reaction
of the audience. In addition, remote cameras on the audience side
can be used by the actor to observe the participant and to give them

(a) (b) (c)

Figure 1: Virtual theatrical performance of the Trickster at the Intersection: (a) The AMMI CAVE is used to display the trickster
and its virtual world immersively; (b) A performer in a motion capture suit who is responsible to drive the embodied trickster and to
create his magic world using gesture recognition; A video camera located in the CAVE allows the performer to monitor the audience
reaction and to improvise ways to surprise and trick them; (c) The trickster in his magic forest.

the illusion of responsiveness. This new system opens the door to
new forms of theatrical expression as well as standard theatrical
plays. For example, plays that require imaginary characters, such
as Shakespeare’s Macbeth, The Tempest, and Midsummer Night’s
Dream, could use this technology to add realistic personifications
of magic characters like the witches in Macbeth.

Two key issues are addressed in this paper. First, by using full-
body tracking and gesture recognition, manipulation of the virtual
characters and virtual world is intuitive and natural. The system
is fully automatic and trivial to experience. The actors are not
required to have specialized training and can animate the virtual
characters or create the virtual world by simply moving naturally.
Second, the system is truly interactive and fluid as the motion cap-
ture, the gesture recognition, and the rendering are performed in
real-time (100 FPS).

In Section 2, we will review the pertinent literature. In Section
3, we will describe the system architecture and its application to
virtual theater. In Section 4, we will describe a virtual theatrical
performance called Trickster at the Intersection that was presented
during Smart Graphics 2010 at Canada’s Banff Centre. We will
then conclude and discuss future work in Section 5.

2. RELATED WORK
Virtual plays have been around for decades. However, it has

never been thought as a replacement of real theatrical performance.
Reeve [15] pointed that key features of a typical theatrical rehearsal
process can significantly improve the sense of presence for partic-
ipants within a shared virtual environment. In [15], it is demon-
strated that traditional shared Virtual Environments (VEs) for the
production of theater have specific requirements to create a sense
of presence. The level of presence is dependent on the actor-avatar,
actor-space, and actor-actor relationships. Current virtual theater
environments cannot achieve this sense of presence. The difficulty
of changing normal theater to its virtual form, and to retain the
original narrative is immediately evident.

There has been extensive research and literature on increasing
user’s commitment to the virtual environment and increasing user’s
feeling of “presence" by having user involved at different levels
of interaction. The most naive interactions include the use of lim-
ited input resources, such as a simple mouse [21], a keyboard [10],
video cameras[2], Nintendo Wiimotes [17], or a pressure sensor
[20] etc, and the use of AI agents to interpret inputs. In these
systems, once the input is interpreted, a pre-defined animation is
played, during which a user has no control over its execution. Other
systems use speech and gesture inputs instead. For example, Dow

et al.[4] proposes to use remote human operators to play "behind-
the-scenes" roles (type player’s spoken utterances) to control a live
embodied character, so that it is able to recognize user speech and
gesture inputs. In such systems, users still passively play the pre-
scripted narratives, and specifying interactions remains in the do-
main of programmers.

Higher level of interactions allow characters in a virtual theater
to be treated as virtual actors and the novice user can construct nar-
ratives in which they appear [8]. For example, the “Virtual Theater"
project of Barbara Hayes-Roth [7] and the IMPROV virtual actors
system [14]. These systems allow users who would normally be
excluded from the creation of play to be involved at different lev-
els ranging from choosing their viewpoint to defining dynamic be-
havior of virtual actors using various tools, such as simple scripts,
so that authoring virtual environments maybe performed by novice
user. At a certain level, these systems simulate the improvisation
characteristic of theater performance.

Recently, there have been several efforts to build virtual charac-
ters in a more expressive way that responds to user’s direction [18,
12], in 2D multi-media environments as well as in virtual environ-
ments. Intuitive and expressive control of virtual character require
high degrees of freedom (DOFs) input in order to be as expressive
as real human actors. Ninomyia [13] allows user to control virtual
marionette characters based on computer graphics using their hand
and finger movements as if they were controlling marionettes in a
theatrical play. The system recognizes hand gesture of the mari-
onette manipulator and transforms it into motion of a marionette
character. Using network, the system allows multiple marionettes
to be included by allowing multiple users to join the networked
virtual marionette theater. This system is excellent for marionette
theater but would not allow actors or dancers to naturally interact
with their virtual counterpart. To solve some of those issues, Cheok
[3] describes an interactive virtual theater system based on embod-
ied mixed reality space and wearable computers. Here again, there
is no direct link between the actor’s normal gesture and the vir-
tual character expression. Other systems are capable of live perfor-
mances, such as puppetry [5], where human actors directly control
some features of the virtual character using hand movement. The
ability to animate virtual characters realistically using real actors
truly creates a sense of reality and presence that no AI agents have
ever been able to match so far.

Application of real-time motion capture data in live performance
has also been explored to create more direct link between the virtual
character and live dancer/actor by several researchers [11, 6, 16].
However, they do not consider virtual environments and narratives

Figure 2: System architecture for the virtual performance: Trickster at the Intersection

driven by performance as our system does. Actors also usually need
specialized knowledge to use real-time motion capture in actual
performances [6]. By using automated data processing and gesture
recognition, we will demonstrate that it is possible for actors with
limited technical knowledge to deliver high-quality performance
and also drive actions in narrative by triggering computer-generated
animations based on gesture recognition.

3. SYSTEM ARCHITECTURE
The system is basically composed of the following components.

The avatar and scene rendering are performed on two networked
high-end graphics PCs, one as a performer’s monitor and the sec-
ond one managing the display at the theater set. At the theater
location, a display peripheral can be inserted in the set using trans-
parent projection sheet technologies 1 or around the audience using
a CAVE 2 like system. At the theater location the set is equipped
with web cameras and microphones linked to the remote actor lo-
cation using a standard network. At the remote location, the actor
is tracked using an Optitrack motion tracking system calibrated to
transmit skeleton information to the theater computer. The sys-
tem is integrated using Virtools VR authoring tools from Dassault
Systems. One can see at Figure 2 the architecture of the system.
The communication between the motion tracking system and the
rendering programs is performed using a modified version of the
Open Source NATNET client/server utility.

On the performer’s monitor, performers are able to see the reac-
tions of the real audience as well as a feed showing a representa-
tion of their avatars in the virtual world that is being created dur-
ing the performance, allowing them to monitor how their actions
affect both the physical and the virtual worlds. Because the per-
formance is driven by real-time motion data, this information need
to be transmitted to both location via network (performer’s moni-
tor manager and theater manager). The virtual play that the audi-
ence sees on the set is always the same as the one performer sees
remotely. This implies that the virtual performance must be syn-

1http://www.reintek.com/index.htm
2http://en.wikipedia.org/wiki/Cave_Automatic_Virtual_Environment

chronized in real-time on the performer’s monitor as well as on the
theater screen.

The virtual world in our project is actually a media layer where
the interaction between audience and performer can be integrated
and manipulated at will. In this way, we are able to have both
audience and actor involved in the creation of the virtual world and
how it behaves and changes.

The need for real-time is critical for this application. With mo-
tion capture system, high-speed internet, and two PCs each equipped
with two high-end graphics cards (NVIDIA GeForce 5800), our
system runs in real time at a speed of 100FPS. By careful integra-
tion and system optimization there is no delay between the remote
actor performance and the live action on the theater set.

3.1 Virtools Framework
Our system is integrated using Virtools, a visual programming

environment developed by Dassault Systems to design interactive
virtual environment. It has many advanced modules (modeling, an-
imation, behavior, physics, artificial intelligence, sound etc) where
a user can simply drag-and-drop on an object to create a behav-
ior. In Virtools, each virtual world is described as a COMposi-
tion (COM) file. This file contains a number of environment mod-
els (e.g., 3D objects, cameras, lights), existing scripts and/or user
written scripts to define object’s behavior and display configuration
such as: CAVE, HMDs, and single or multiple monitors. There are
primarily two steps involved in our virtual play construction: envi-
ronment modeling and behavior specification.

3.1.1 Environment Modeling
Environment modeling is the construction of static environment,

starting with the virtual characters and adding other virtual entities,
not only visible entities but also objects like sound, light, virtual
camera etc. All visible virtual objects populated in our virtual en-
vironment can be modeled and textured using standard graphics
package, such as Maya and 3ds Max. Each model contains infor-
mation including geometry, texture, shaders etc. This object cre-
ation process may also define object animation (refer to “static"
animation as it describes changes in the object that are not defined

by interaction/behavior specified by the system [8]), such as inverse
kinematics (IK) and automatic skinning.

The virtual character is the most important object in our virtual
world, as it is the one that directly interacts with the user in real-
time. In addition, the direct stimulus that triggers other animations
must be carried out in the context of the narrative of the virtual play.
The virtual character’s body parts are connected using the skeleton
joints technique. In order to precisely map the actor’s movement
to the virtual character skeleton, one must map the measured 3-D
points on the body suite to the character skeleton using a calibra-
tion procedure, so that the model is in the same coordinate system
and the body parts are the same size as the performer. Each joint of
the skeleton has six DOFs, including the position in cartesian coor-
dinates system and rotation represented using quaternion or Euler
angles. In total, 24 joints are used to animate the virtual character
from motion capture data. Once a character is finished modeling in
Maya, it can be imported into Virtools and all its static properties
and animation (e.g. IK and skinning) are preserved.

After importing the character into Virtools, the body parts of the
character are hierarchically organized in a tree structure and par-
ented by a single “root" node. Positioning the “root" node can
properly carry positions of all children joints computed based on
IK. Therefore, to animate a character, we only need to position the
“root" node and then rotate other body joints relative to "root".

3.1.2 Behavior Specification

Figure 3: The script of the virtual character is linked to the
motion capture data client.

Behavior specification defines the dynamic behavior of objects
triggered by the performer’s actions. In Virtools, object behavior
can be defined using existing behavior module or user written mod-
ule, called a Building Block. In our system, the behavior of virtual
character is completely controlled by the performer’s actions and
is directly mapped to the real-time motion capture data. The be-
havior of other virtual entities are defined by the gesture recogni-
tion system. We implemented our behavior module as user-written
building blocks (DLL file) in the Virtools environment. Applica-
tions of these user-written building blocks in Virtools are just like
other building blocks provided by Virtools and must be compatible
to the basic framework. Figure 3 shows an example of applying the
building block developed for the project in a CMO file. Figure
3 shows the building block, “Emily_NATNET_Client_BB", that
defines character behavior. “Emily_NATNET_Client_BB" mainly
has two tasks. First, the skeleton data is streamed from the motion
capture system using an Open Source NATNET client/server utility
located at the remote site. NATNET is a specialized client/server
utility that transmits skeleton data from the Optitrack Arena envi-
ronment to the Virtools. The second task is to animate the virtual
character by re-targeting the motion data from the NATNET server
to the skeleton of the virtual character. The NATNET server IP
and re-targeting array are two input parameters of that a user can
specify for “Emily_NATNET_Client_BB" .

In order to navigate in larger space than the motion capture space,

we had to add an extra wireless joystick to our system. The per-
former can use the joystick to control the virtual character to walk
in the virtual world for long distances without having to move in
the real-world. The basic functionalities of joystick buttons include
moving forward/backward, left/right, and up/down. The motion of
the virtual character is integrated relative to the performer’s real
movement. For example, if the current position of the performer is
V1 (position vector), and the input from joystick is V1, the virtual
character’s position is V1+V2. As the motion capture system is not
precise enough to capture finger movement, the audience will not
be able to see when the performer’s hand operates a joystick.

Virtual Objects Behavior: It is defined by gestures of the per-
former. Gestures of the performer can trigger the behavioral an-
imations of other virtual objects, such as allowing objects to ap-
pear/disappear, fly, translate, and deform etc., so that the virtual
character can push forward the actions in the narrative of the per-
formance through his/her movement.

Figure 4: Behavior description trigged by gestures. Left col-
umn: gestures that trigger action. Red dots are the featured
body parts that define a certain gesture. Middle column: de-
scription of temporal features of each gesture. Right column:
object behavior.

We use the raw output of motion capture data for gesture recog-
nition, including time-varying sequence of parameters describing
positions and angles of relevant body joints. Gestures can be de-
fined using not only static body posture (spatial features, e.g. po-
sition of body parts) but also temporal features (temporal events,
e.g., time-varying pose) without having to train the system. Figure
4 shows a sample description of predefined gestures and its corre-
sponding action in our system. For example, the second gesture is
illustrated at Figure 4 and is defined as:

(a) (b)

(c) (d)

Figure 5: Dynamic virtual world driven by the actor’s performance. In each sub image, left is the skeleton computed from motion
capture system, right is the rendered virtual play. Red body parts of the skeleton is caused by occlusion or movement of markers. (a)
Hands close-up gesture triggers sparkles. (b) Lifting left hand and left foot triggers plants grow on left-hand side. (c) More plants
appears by different gestures. (d) Gestures trigger stretching animation of plants to simulate growing effect.

ACT ION = ((le f tknee,up) AND

(distance(le f tknee, le f twrist)< threshold) AND

(above(le f twrist,rightwrist)))

Each virtual entity in the virtual world includes a set of pre-
defined properties, e.g., engagement conditions C, dynamic motion
Q, geometric description G etc. When the engagement condition
of a virtual object is satisfied by the motion of the the performer, a
dynamic motion of the object is triggered which may cause changes
to the virtual environment, such as meshes stretching (to simulate
growth). Using the gesture recognition engine, actor can control
the virtual character behavior but are also able to push forward the
plots of the narrative.

4. TRICKSTER AT THE INTERSECTION
We demonstrated a sample application of our system at Smart

Graphics 2010 held at Canada’s Banff Center. The immersive and
interactive play called Trickster at the Intersection explores the re-
lationship between the real and the virtual world where a mytho-
logical creature called the Trickster plays with the audience uneasi-
ness with the virtual world. Visitors to the performance can interact
with the Trickster which at first gives the illusion of been a simple
virtual character dancing around and creating his own world but
occasionally surprises the audience by truly interacting with them
– creating a sense of uneasiness that this Trickster may be real in
some way. As the Trickster plays in his magical forest he is able to
create whimsical trees, mushrooms, and plants. For example, when
the visitor points to an area of the virtual world, the Trickster corre-
spondingly points to the same area and commands flowers to grow
in that area to welcome them. The experience brings the audience
and the character together at the intersection between the physical
and the virtual world. Contrary to the work by Mateas’ and Stern’s

2005 called "interactive drama" [9], in our system we replace the
need for standard input devices (desktop, mouse and keyboard) for
a much more expressive and intuitive tool that truly allows the per-
former to create a sense of presence of a real-virtual entity.

The gesture recognition system can be personalized to fit with
the performer style. Only notable, recognizable and definable ges-
tures are coded in our system, so that the behaviors of objects are
not trigged by some random motion during the transition of differ-
ent motion. An action script describing the specified gesture and
corresponding behavior is present to the dancer before the show.
Figure 4 shows the action script of our current system. Figure 5
shows the virtual play driven by the actor’s performance. As shown
in Figure 5, the movement of the virtual character is a mirrored mo-
tion from the real actor’s motion. This is not a problem for the actor
as it simulates how he would see himself in front of a mirror. A
dancer who has never worked with the motion capture system be-
fore can easily understand his task and his role in the performance.

5. CONCLUSION AND FUTURE WORK
In this paper, we present a system that enables true real-time in-

teraction between an audience and a virtual character. The charac-
ter which is animated through the live performance of a real actor in
a remote location can be used in a theater setting to add to the narra-
tive of a play and to interact with the audience or with other actors.
The virtual character can “see" and “listen" to the user through net-
worked cameras and microphones installed at the theater location.
This allow the performer to “respond" in real-time to the reaction of
the audience. The short performance Trickster at the Intersection
presented at the Banff Center was well received as the audience
truly felt that they had a real interaction with the trickster. They
really felt that the trickers was alive and present on the set. Con-
sidering the fact that the connection between the performer and the
audience is based on a network connection, one could imagine that

more than one remote performer could be part of a virtual play and
could interact with the real-actor present at the theater and the au-
dience. In such a system, it becomes possible for the audience to
immerse themselves and become part of the virtual world as the
action takes place, and perhaps even choose to interfere with the
action and help shape the narrative themselves, thereby becoming
part of the performance and creating a truly interactive and collab-
orative version of virtual theater.

6. REFERENCES
[1] S. C. Ahn, I.-J. Kim, H.-G. Kim, Y.-M. Kwon, and H. Ko.

Audience interaction for virtual reality theater and its
implementation. In VRST ’01: Proceedings of the ACM
symposium on Virtual reality software and technology, pages
41–45, New York, NY, USA, 2001. ACM.

[2] J. Chai and J. K. Hodgins. Performance animation from
low-dimensional control signals. ACM Trans. Graph.,
24(3):686–696, 2005.

[3] A. D. Cheok, W. Weihua, X. Yang, S. Prince, F. S. Wan,
M. Billinghurst, and H. Kato. Interactive theatre experience
in embodied + wearable mixed reality space. In ISMAR ’02:
Proceedings of the 1st International Symposium on Mixed
and Augmented Reality, page 59, Washington, DC, USA,
2002. IEEE Computer Society.

[4] S. P. Dow, M. Mehta, B. MacIntyre, and M. Mateas. Eliza
meets the wizard-of-oz: evaluating social acceptability. In
CHI ’10: Proceedings of the 28th international conference
on Human factors in computing systems, pages 547–556,
New York, NY, USA, 2010. ACM.

[5] L. Engler and C. Fijan. Making puppets come alive: how to
learn and teach hand puppetry. Dover Publications, 1997.

[6] G. Giesekam. staging the screen: the use of film an video in
theatre. Palgrave Macmillan, 2008.

[7] B. Hayes-Roth and L. Brownston. Multiagent collaboration
in directed improvisation. In Proceedings of the First
International Conference on Multi-Agent Systems, pages
148–154, 1995.

[8] Z. Hendricks, G. Marsden, and E. Blake. A meta-authoring
tool for specifying interactions in virtual reality
environments. In AFRIGRAPH ’03: Proceedings of the 2nd
international conference on Computer graphics, virtual
Reality, visualisation and interaction in Africa, pages
171–180, New York, NY, USA, 2003. ACM.

[9] M. Mateas and A. Stern. Facade: An experiment in building
a fully-realized interactive drama. In Game developer’s
Conference: Game Design Track, 2003.

[10] M. v. d. P. Matthew Thorne, David Burke. Motion doodle:
An interface for sketching character motion. In Proc. of
SIGGRAPH ’04 (Special issue of ACM Transactions on
Graphics), 2004.

[11] W. S. Meador, T. J. Rogers, K. O’Neal, E. Kurt, and
C. Cunningham. Mixing dance realities: collaborative
development of live-motion capture in a performing arts
environment. Comput. Entertain., 2(2):12–12, 2004.

[12] C. P. N. Badler. Simulating Humans: Computer Graphics,
Animation and Control. Oxford University Press, 1993.

[13] D. Ninomiya, K. Miyazaki, and R. Nakatsu. Networked
virtual marionette theater. In KES ’08: Proceedings of the
12th international conference on Knowledge-Based
Intelligent Information and Engineering Systems, Part I,
pages 440–447, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] K. Perlin and A. Goldberg. Improv: a system for scripting
interactive actors in virtual worlds. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 205–216, New
York, NY, USA, 1996. ACM.

[15] C. Reeve. Presence in virtual theater. Presence: Teleoper.
Virtual Environ., 9(2):209–213, 2000.

[16] M. Shiba, A. Soga, and J. Salz. A virtual performance
system and its application on a noh stage. In VRST ’09:
Proceedings of the 16th ACM Symposium on Virtual Reality
Software and Technology, pages 267–268, New York, NY,
USA, 2009. ACM.

[17] T. Shiratori and J. K. Hodgins. Accelerometer-based user
interfaces for the control of a physically simulated character.
ACM Transactions on Graphics (SIGGRAPH Asia 2008),
27(5), 2008.

[18] S. Strassman. Desktop Theater: Automatic generation of
Expressive Animation, PhD thesis. MIT Media Lab, 1991.

[19] S. Ullrich, H. Prendinger, and M. Ishizuka. Mpml3d: agent
authoring language for virtual worlds. In ACE ’08:
Proceedings of the 2008 International Conference on
Advances in Computer Entertainment Technology, pages
134–137, New York, NY, USA, 2008. ACM.

[20] K. Yin and D. K. Pai. Footsee: an interactive animation
system. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 329–338, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[21] P. Zhao and M. van de Panne. User interfaces for interactive
control of physics-based 3d characters. In I3D ’05:
Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 87–94, New York, NY, USA,
2005. ACM.

