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Abstract. Volumetric data rendering has become an important tool in
various medical procedures as it allows the unbiased visualization of fine
details of volumetric medical data (CT, MRI, fMRI). However, due to
the large amount of computation involved, the rendering time increases
dramatically as the size of the data set grows. This paper presents several
acceleration techniques of volume rendering using general-purpose GPU.
Some techniques enhance the rendering speed of software ray casting
based on voxels’ opacity information, while the others improve tradi-
tional hardware-accelerated object-order volume rendering. Remarkable
speedups are observed using the proposed GPU-based algorithm from
experiments on routine medical data sets.

1 Introduction

Volume rendering deals with how a 3D volume is rendered and projected onto
the view plane to form a 2D image. It has been broadly used in medical applica-
tions, such as for the planning of treatment [1] and diagnosis [2]. Unlike surface
rendering, volume rendering bypasses the intermediate geometric representation
and directly renders the volumetric data set based on scalar information such as
density, and local gradient. This allows radiologists to visualize the fine details
of medical data without prior processing such as the visualization of isosur-
faces. Transfer functions are commonly employed for color mapping (including
opacity mapping) to enhance the visual contrast between different materials.
However, due to the large amount of computation involved, the rendering time
increases dramatically as the size of the data set grows. Our objective is to pro-
vide radiologists with more efficient volume rendering tools to understanding
the data produced by medical imaging modalities, such as Computed Tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI). Hence, we introduce several
techniques, including hardware implementation using commercial graphics pro-
cessing unit (GPU), to enhance the rendering speed. This increased speed will
allow radiologists to interactively analyze volumetric medical data in real-time
and in stereo.

According to [3], volume rendering approaches can be classified into three
main categories: object-order, image-order and domain methods. Some hybrid
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methods [4] [5] are proposed by researchers in recent years, but their funda-
mental operations still fall into one of the three categories. The object-order
approaches [6] [7] evaluate the final pixel values in a back-to-front or front-to-
back fashion, i.e., the scalar values in each voxel are accumulated along the
view direction. Such intuitive approaches are simple and fast, but often yield
image artifacts due to the discrete selection of projected image pixel(s) [8]. This
problem can be solved by using splatting [9], which distributes the contribu-
tion of one voxel into a region of image pixels. While resampling in splatting is
view-dependent, shear-warp [10] alleviates the complications of resampling for
arbitrary perspective views. The input volume composed of image slices is trans-
formed to a sheared object space, where the viewing rays are perpendicular to
the slices. The sheared slices are then resampled and composited from front to
back to form an intermediate image, which is then warped and resampled to get
the final image. The image-order volume rendering [11] [12] is also in the category
of ray casting or ray tracing. The basic idea is that rays are cast from each pixel
on the final image into the volume and the pixel values are determined by com-
positing the scalar values encountered along the rays with some predefined ray
function. One typical optimization is early ray termination, which stops tracing
a ray when the accumulated opacity along that ray reaches a user-defined thresh-
old. Another common optimization is empty space skipping, which accelerates
the traversal of empty voxels. Volume rendering can also be performed in the
frequency domain using Fourier projection-slice theorem [13]. After the volume
is transformed from the spatial domain to the frequency domain, a specific 2D
slice is selected and transformed back to the spatial domain to generate the final
image. All of the previous three categories of methods can be partially or en-
tirely implemented in GPU for acceleration [14] [15] [16]. Hardware-accelerated
texture mapping moves computationally intensive operations from the CPU to
the GPU, which dramatically increases the rendering speed.

A detailed comparison between the four most popular volume rendering tech-
niques, i.e., ray casting, splatting, shear-warp and 3D texture hardware-based
methods, can be found in [17]. Experimental results demonstrate that ray casting
and splatting generate the highest quality images at the cost of rendering speed,
whereas shear-warp and 3D texture mapping hardware are able to maintain an
interactive frame rate at the expense of image quality. When using splatting for
volume rendering, it is difficult to determine parameters such as the type and
radius of kernel, and the resolution of the footprint table to achieve an optimal
appearance of the final image [8]. In shear-warp, the memory cost is high since
three copies of the volume need to be maintained. The frequency domain meth-
ods perform fast rendering, but is limited to orthographic projections and X-ray
type rendering [13].

2 Software-Based Accelerated Ray Casting

Software-based ray casting produces high-quality images, but due to the
huge amount of calculation, the basic algorithm suffers from poor real-time
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performance. To accelerate software ray casting, there are two common accel-
eration techniques as mentioned in the previous section: empty space skipping
and early ray termination.

Empty space skipping is achieved via the use of a precomputed min-max oc-
tree structure. It can only be performed efficiently when classification is done
before interpolation, i.e., when the scalar values in the volume are converted to
colors before the volume is resampled. This often produces coarser results than
applying interpolation first. If empty space skipping is applied with interpola-
tion prior to classification, one additional table lookup is needed to determine
whether there are non-empty voxels in the current region. Nevertheless, the ma-
jor drawback with such kind of empty space skipping lies in that every time the
transfer functions change, the data structure that encodes the empty regions or
the lookup table needs to be updated.

Early ray termination exploits the fact that when a region becomes fully
opaque or is of high opacity, the space behind it can not be seen. Therefore, ray
tracing stops at the first sample point where the cumulative opacity is larger
than a pre-defined threshold. The rendering speed is often far from satisfactory,
even for medium-size data sets (e.g., 2563). In order to accelerate the speed, one
can use acceleration techniques such as β-acceleration [18]. The fundamental
idea of the β-acceleration is that as the pixel opacity (the β-distance) along a
ray accumulates from front to back, less light travels back to the eye, therefore,
fewer ray samples need to be taken without significant change to the final image
quality. In other words, the sample interval along each ray becomes larger as the
pixel opacity accumulates. Unlike β-acceleration, which depends on a pyrami-
dal organization of volumetric data, here the jittered sample interval is applied
directly to the data set. This reduces the computational cost of maintaining an
extra data structure, especially when the transfer function changes. Instead of
going up one level in the pyramid whenever the remaining pixel opacity is less
than a user-defined threshold after a new sample is taken, the sample interval is
modified according to a function of the accumulated pixel opacity:

s = s × (1.0 + α × f) (1)

where s denotes the length of the sample interval; α denotes the accumulated
opacity; and f is a predefined jittering factor. The initial value of s is set by
the user. Normally, the smaller s the better image quality. For every sample
point, the remaining opacity γ is compared against a user-specified threshold. If
γ is less than the threshold, the current sample interval is adjusted according to
Equation 1. We term this acceleration technique as β′-acceleration.

To further enhance the performance of software ray casting during interaction,
the sample interval is automatically enlarged to maintain a high rendering speed,
and once interaction stops, the sample interval is set back to normal. When
multiple processors are available, the viewport is divided into several regions
and each processor handles one region.

The whole process is executed in the CPU and main memory. The enhanced
algorithm is illustrated in the following pseudo-code. Not only is this software
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approach suitable for computers with low-end graphics cards, but since parallel
ray tracing is used, it is also suitable for multi-processor computers or clusters.

Accelerated Software-Based Ray Casting

Break current viewport into N regions of equal size
Initialize early ray termination threshold Γ
Initialize jittering start threshold Γ ′

Initialize jittering factor f
Initialize sample interval s
For each region

For every pixel in the current region
Compute ray entry point, direction, maximum tracing distance D
While the traced distance d < D and γ < Γ

Interpolate at current sample point
Get opacity value α according to opacity mapping function
If α �= 0

Compute pixel color according to color mapping function
γ = γ × (1.0 − α)

End If
If γ < Γ ′

s = s × (1.0 + α × f)
End If
d = d + s
Compute next sample position

End While
End For

End For

3 GPU-Based Object-Order Volume Rendering

GPU-based object-order volume rendering has several advantages over GPU-
based image-order volume rendering. First, perspective projections can be more
easily implemented in object order, since only a proper scaling factor needs to
be assigned to each slice based on several viewing parameters. In ray casting,
the direction of each ray needs to be determined individually. Second, as pointed
out in [19], GPU-based ray casting has the limitation that it can only render
volumes that fit in texture memory. Since ray tracing needs to randomly access
the whole volume, it is impossible to break the volume into sub-volumes and load
each sub-volume only once per frame. Finally, most of the speedup from GPU-
based ray casting comes from empty space skipping, and ray casting with only
early ray termination shows close performance to object-order volume rendering
while both implemented in the GPU, as compared in [15].

Other implementations generate the proxy polygons that textures are mapped
to in the CPU, and use the fragment shader for trilinear interpolation and tex-
ture mapping. Little work has been done to exploit the vertex shader in the
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Fig. 1. The five intersection cases between a proxy plane and the volume bounding
box, and the traversal order of the bounding box edges

hardware-accelerated volume rendering pipeline. Our accelerated rendering algo-
rithm is based on the algorithm proposed by Rezk-Salama and Kolb [20], which
balances the workload between the vertex shader and the fragment shader. Based
on the observation of different box-plane intersection cases, the generation of
proxy polygons can be moved from the CPU to the GPU. The intersection be-
tween a proxy plane and the bounding box of the volume may have five different
cases, ranging from three intersection points to six, as illustrated in Figure 1.
Let n · (x, y, z) = d represent a plane, where n is the normalized plane normal
and d is the signed distance between the origin and the plane, and let Vi + λei,j

represent the edge Ei,j from vertex Vi to Vj , where eij = Vj − Vi, then the
intersection between the plane and the edge can be computed by

λi,j =
{ d−n·Vi

n·ei,j
, n · ei,j �= 0;

−1, otherwise.
(2)

If λi,j ∈ [0, 1], then it is a valid intersection; otherwise, there is no intersection.
The edges of the volume bounding box are checked following a specific or-

der, so that the intersection points can be obtained as a sequence that forms a
valid polygon. If V0 is the front vertex (the one closest to the viewpoint) and
V7 is the back vertex (the one farthest from the viewpoint), then the edges are
divided into six groups, as shown in Figure 1 marked with different gray levels
and line styles. For a given plane Pl parallel to the viewport that does intersect
with the bounding box, there is exactly one intersection point for each of the
three groups (solid lines), and at most one intersection point for each of the other
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three groups (dotted lines). The six intersection points P0 to P5 are computed
as described in Table 1. For the other seven pairs of front and back vertices, the
only extra computation is to map each vertex to the corresponding vertex in this
case, which can be implemented as a simple lookup table.

Table 1. The computation of the intersection points

Point Checked Edges Intersection Position
P0 E0,1, E1,4 and E4,7 λi,j , where (i, j) ∈ {(0, 1), (1, 4), (4, 7)} ∧ λi,j ∈ [0, 1]

P1 E1,5

�
λ1,5, λ1,5 ∈ [0, 1];
P0, otherwise.

P2 E0,2, E2,5 and E5,7 λi,j , where (i, j) ∈ {(0, 2), (2, 5), (5, 7)} ∧ λi,j ∈ [0, 1]

P3 E2,6

�
λ2,6, λ2,6 ∈ [0, 1];
P2, otherwise.

P4 E0,3, E3,6 and E6,7 λi,j , where (i, j) ∈ {(0, 3), (3, 6), (6, 7)} ∧ λi,j ∈ [0, 1]

P5 E3,4

�
λ3,4, λ3,4 ∈ [0, 1];
P4, otherwise.

In Rezk-Salama and Kolb’s method, the coordinates of a sample point in the
world coordinate system are required to be the same as the coordinates of the
corresponding sample point in the texture coordinate system. However, this is
not true for most cases, where the sizes of one volume are different in the two
coordinate systems. The box-plane intersection test is carried out in the data
coordinate system. Since typically the texture coordinates need to be normalized
to the range between [0, 1], a conversion of valid intersection points’ coordinates
is required. If the point Pk intersects the edge Ei,j at position λi,j , then each
coordinate of the resulting texture-space intersection point P ′

k is obtained by

P ′
k.p =

⎧⎨
⎩

Vi.p−min(Bp)
max(Bp) , ei,j .p = 0;

λi,j , ei,j .p > 0;
1 − λi,j , ei,j .p < 0.

(3)

where p denotes either x, y or z and B denotes the volume bounding box. The
coordinates of P ′

k are then scaled and translated in order to sample near the
center of the cubic region formed by eight adjacent voxels in texture memory.

To further accelerate the rendering process, we also propose another enhance-
ment that the sample interval is adjusted based on the size of the volume in
the world coordinate system and the distance from the viewpoint to the volume.
This idea of adaptive sample interval is similar to the concept of level-of-detail
(LOD) in mesh simplification. The sample interval is calculated by:

s = S × F
max(d)

max(Bx,By,Bz) (4)

where S denotes the constant initial sample interval; F � 1 denotes the pre-
defined interval scale factor; Bx, By and Bz denote the length of the volume
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bounding box B in the x, y, and z-direction respectively; and max(d) denotes
the distance between the farthest vertex of B and the view plane.

Now that the proxy polygons are generated, one can then perform texture
mapping. The fragment shader performs two texture lookups per fragment to
attach textures onto the proxy polygons. The first texture lookup gets the scalar
value associated with the sample point from a 3D texture that holds the vol-
umetric data. The hardware does the trilinear interpolation automatically for
every sample. The second texture lookup uses the scalar value to get the cor-
responding color from a 2D texture that encodes the transfer function. Then,
the textured polygons are written into the frame buffer from back to front to
produce the final image.

The vertex program and the fragment program are both written in Cg, a
high-level shading language developed by NVIDIA. To exploit the most power-
ful profile supported by a graphics card, the shader programs are compiled at
runtime instead of at compile time. To accommodate graphics cards with dif-
ferent vertex processing capabilities, the amount of work assigned to the vertex
shader should vary from card to card as graphic cards do not have all the same
processing capabilities. The more capable the programmable graphics hardware
is, the larger the amount of processing load is moved from the CPU to the vertex
shader. Currently, our vertex program has variations for all the OpenGL ver-
tex program profiles supported by the Cg compiler. The fragment program only
requires basic Cg profiles to compile. Therefore, theoretically the proposed GPU-
based volume rendering program can be executed on most commodity computers
with a good-quality programmable graphics card.

4 Results

The algorithms were tested on a dual-core 2.0GHz computer running Windows
XP with a 256MB-memory NVIDIA GeForce 7800 GTX graphics card. The data
used for testing is a medium-size (512x512x181) CT-scan of the pelvic region.

Software-based ray casting provides high quality images, but only with small
viewports or for small data sets it can maintain an acceptable rendering speed,
even with the proposed β′-acceleration. The rendering times using software ray
casting with both early ray termination and β′-acceleration and with only early
ray termination are enumerated in the first two columns of Table 2. Figure 2(a)
depicts the two cases’ performance curves with respect to the viewport size. The
x-axis is the size of the viewport in pixels and the y-axis is the rendering time
in seconds. The dark gray line denotes the performance of the method without
β′-acceleration, and the other line denotes the performance of the one with β′-
acceleration. On average, software ray casting with both early ray termination
(Γ=0.02) and β′-acceleration (Γ ′=0.6 and f=0.1) takes 28% less time than that
with only early ray termination (Γ=0.02). The resulting images are shown in
Figure 3(a)(b). There is no noticeable difference between these two images.

High-quality images and interactive rendering speed are both achieved by
exploiting the processing power of the GPU. The rendering times under four
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Table 2. The rendering times using different acceleration techniques

Viewport Size Rendering Time (unit: second)
(unit: pixel) Without β′ With β′ Tex’ 1.0 Tex’ 1.15 Tex 1.0 Tex 1.15

200x200 0.172 0.125 0.031 0.016 0.015 0.015
300x300 0.422 0.281 0.031 0.016 0.015 0.015
400x400 0.688 0.484 0.031 0.016 0.015 0.015
500x500 1.078 0.750 0.047 0.031 0.031 0.015
600x600 1.641 1.125 0.047 0.031 0.031 0.016
700x700 2.078 1.562 0.062 0.047 0.047 0.031
800x800 2.704 2.187 0.062 0.047 0.047 0.031
900x900 3.391 2.469 0.078 0.062 0.062 0.047

1000x1000 4.312 3.062 0.094 0.078 0.078 0.047
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Fig. 2. The comparison of the rendering times using different acceleration techniques

different conditions are enumerated in Table 2. Tex’ 1.0 denotes no acceleration;
Tex’ 1.15 denotes adaptive sample interval with interval scale factor F=1.15;
Tex 1.0 denotes only with vertex shader acceleration; Tex 1.15 denotes with
both acceleration techniques and F=1.15. Figure 2(b) gives a comparison of
the performance curves under the four different conditions. In all cases, the
rendering time increases as the viewport grows, but even for the 1000x1000
viewport the rendering times are below 0.1 second, i.e., the rendering speeds are
above the psycho-physical limit of 10 Hz. With only adaptive sample interval
enabled, when F=1.15, we get an average 33% speedup. With only vertex shader
acceleration enabled, the algorithm’s performance is almost the same as Tex’
1.15. With both acceleration techniques enabled, when F=1.15, an average 53%
speedup is achieved with respect to the Tex’ 1.0 case and an average 28% speedup
is achieved with respect to the Tex’ 1.15 case. The final images are shown in
Figure 3(c)-(f), together with the images produced by software ray casting. From
these images, no significant difference can be observed between the image quality
of image-order methods and that of object-order methods, as long as the original
data set is at high resolution.
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(a) Without β′. (b) With β′. (c) Tex’ F = 1.0.

(d) Tex’ F = 1.15. (e) Tex F = 1.0. (f) Tex F = 1.15.

Fig. 3. Volume rendering results of a CT-scanned pelvic region

5 Conclusion

In this paper, we have presented several volume rendering acceleration techniques
for medical data visualization. β′-acceleration enhances the rendering speed of
software-based ray casting using voxels’ opacity information, while vertex shader
proxy polygon generation and adaptive sample interval improve the performance
of traditional hardware-accelerated object-order volume rendering. Remarkable
speedups are observed from experiments on average-size medical data sets. We
are now working on incorporating the β′-acceleration into the GPU ray casting
pipeline, which may be more efficient than our current GPU-based object-order
method. Moreover,we are also exploring more efficient and effective rendering
algorithms using GPU clusters to handle larger and larger data sets produced
by doppler MRI and temporal CT.
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