
Simulating Soft Tissues using a GPU approach of the Mass-Spring Model

Christian Andres Diaz Leon∗

Virtual Reality Laboratory
EAFIT University

Medellin, Colombia

Steven Eliuk†

Advanced Man Machine Interface Laboratory (AMMi)
University of Alberta
Edmonton, Canada

Helmuth Trefftz Gomez‡

Virtual Reality Laboratory
EAFIT University

Medellin, Colombia
Pierre Boulanger§

Advanced Man Machine Interface Laboratory (AMMi)
University of Alberta
Edmonton, Canada

Abstract

The recent advances in the fields such as modelling bio-mechanics of living tissues, haptic technologies, compu-
tational capacity, and virtual environments have created conditions necessary in order to develop effective surgical
training and learning methods. Simulation environments for surgical training have no limitations on the number
of times a procedure can be executed, and most importantly have no risk to patients. Moreover, these simulations
allow for quantitative evaluation of a surgeons performance, leading to the ability to create performance standards
in order to determine a surgeons current surgical expertise.

Virtual simulators need to meet two requirements in order to be useful in a training environment: good interac-
tivity (real-time FPS) and high realism. The most expensive computational task in a surgical simulator is that of the
physical model. The physical model is the component responsible to simulate the deformation of the anatomical
structures and the most important factor in order to obtain realism.

In this paper we present a novel approach to virtual surgery. The novelty comes in two forms: specifically a
highly realistic mass-spring model, and a GPU based technique, and analysis, that provides a nearly 80x speedup
over serial execution and 20x speedup over CPU based parallel execution.

Index Terms: I.3.1 [Computer Graphics]: Hardware Architecture—Graphics Processors; I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling

∗e-mail: cdiazleo@eafit.edu.co
†e-mail: sneliuk@ualberta.ca
‡e-mail: htrefftz@eafit.edu.co
§e-mail: pierreb@ualberta.ca



1 INTRODUCTION

The current model of learning and training in laparoscopic surgery
is based on new surgeons observing and gradually participating in
laparoscopic procedures, taking active roles depending on their ex-
perience [1]. Unlike open surgery, Minimally Invasive Surgery
(MIS) requires the development of different skills due to the lack
of haptic and indirect visual feedback [2]. This makes it necessary
to develop new training methods for MIS. In this context, virtual
reality has arisen in the last decade as a tool for the development of
surgical training environments.

Nevertheless, these systems must face a trade-off between the real-
ism and the real-time performance of the surgical simulator. When
considering workload and computation for a surgery simulator the
largest computational task is that of simulation of the deformation
of the anatomical structures due to collision with surgical instru-
ments. There has been several techniques proposed to improve
the performance in terms of simulation of the deformation phase.
Some authors have chosen to implement simplistic physical mod-
els [3], others have relied on expensive configurations of multi-core
hardware and complex physical models [4]. However, these ap-
proaches have drawbacks, such as high computational cost, slow
interactivity, and low realism with respect to the deformation phe-
nomenon [5].

In recent years, the advent of programmable graphical processing
unit (GPU), has allowed for the use of the computational power
for general purposes programming on the GPU (GPGPU), such as
calculating the deformation of anatomical structures in the surgical
simulator [6]. Similarly, the recent release of the CUDA frame-
work [7], from Nvidia, has provided more accessible programming,
and implementation, of GPGPU-based calculations on the GPU.
Due to the above reasoning, and the high degree of paralleliza-
tion possible within the calculation of the mass-spring model, these
methods are a perfect candidate to be implemented on the GPU,
fulfilling the requirements of a surgical simulator.

Currently, there are some implementations of the mass-spring model
on the GPU using OpenGL superbuffers, using different types of
data structures [8] and applying different approaches of the algo-
rithm to solve the model [9]. However, these methods lack the abil-
ity to use specialized shared-memory on the GPU, available through
CUDA, where a substantial speedup can be obtained. Recently,
in [14] was explored the use of CUDA for simulating deformable
objects using the mass-spring model. Basically, in this paper was
considered two types of data structures, one is called implicit and
another is called explicit. Explicit data structure is very similar to
what we propose in this article. Moreover, the implicit data struc-
ture uses a three-dimensional grid to store the data of neighborli-
ness between the particles to facilitate the use of shared memory.
Our approach differs from the proposed in [14] particularly in two
respects. The first is the deployment of a hybrid approach that uses
shared and coalescence memory in order to increase the speed-up.
In the second, we present a comparative study between the CPU-
based with the GPU-based aproaches, analyzing variables such as
computational error, runtime and speed-up.

In general, in this paper serial and parallel CPU–based approach
were implemented to compute the real-time deformation of the anatom-
ical structures with an acceptable resolution using a mass-spring
model. Then, the CUDA framework was used for the implementa-
tion of the algorithm on the GPU, analyzing the obtained speed-up
depending on the application of different types of available mem-
ory. And finally, an experimental test was carried out to compare
the performance achieved by each of the proposed algorithms, se-
rial, CPU based parallel, and GPU approaches.

Figure 1: Data structure of the deformable objects in the Simulator.

Figure 2: Representation of the Mass-Spring Model.

2 MATERIALS AND METHODS

2.1 Data Structure of the Physical Model in the Surgical
Simulator

The surgical simulator developed in the Virtual Reality Laboratory
of EAFIT University [10] has a specific data structure to load the
tridimensional models and apply the calculation of the deformation.
Figure 1 shows the data structure of the deformable object represen-
tation in the surgical simulator.

In general, a deformable object is composed by a set of points con-
nected together to form triangles and edges, and these are grouped
into a single geometrical surface of the object. A vertex is com-
posed of two points, a point that contains the information of the
previous positions (previous frame) and information that contains
the current position (current frame), these are used to calculate the
deformation. The vertices are connected by an edge, and are ar-
ranged such that three vertices joined by three edges form a triangle,
so that two adjacent triangles share an edge and two vertices.

2.2 Overview of the Mass-Spring Model and Serial Ap-
proach

In order to determine the interactions among objects in a virtual
surgery environment, an algorithm that takes into account deformable
objects is necessary. To accomplish this objective we implemented
a physical model based on the mass-spring method. The next ex-
planation is based on the work published by Brown et al. [11].
This model represents the deformable object by a tridimensional
mesh M, of n nodes Ni(i = 1, ...,n) connected by links Li j such as
i, j, ∈ (1, ...,n) and i is different to j. Each node is mapped to a
specific point of the object, so that the displacements of the nodes
characterize the deformation of the object. The nodes and links on
the object′s surface can be triangles or tetrahedra, in our case, the
surface is triangulated. The physical model is represented in Fig-
ure 2.

The mechanical properties (viscoelasticity) of the object are de-
scribed by constants stored in the nodes and links of M. A mass mi



and a damping coefficient Ci are associated with each node Ni, and
a stiffness Ki j is associated with each link Li j. The internal force
between two nodes Ni and N j is shown in equation 1.

~Fi j =−Ki j(∆i j ~ui j) (1)

where,

∆i j = li j− rli j (2)

∆i j is the current length of the link minus its resting link, and
~ui j is the unit vector pointing from Ni toward N j. The stiffness Ki j
may be constant or a function of ∆i j. In either case, Fi j is a function
of the vectors coordinates xi and x j of Ni and N j. This representa-
tion can describe objects that are nonlinear, non-homogeneous, and
anisotropic. At any time t, the deformation and motion of M is de-
scribed by a system of n differential equations, each expressing the
motion of a node Ni:

mi~ai + ci~vi + ∑
j∈σ(i)

~Fi j(~xi,~x j) = mig+~Fext
i (3)

where ~xi is the coordinate vector of Ni; ~vi and ~ai are its velocity
and acceleration vectors, respectively, mig is the gravitational force,
and ~Fext

i is the total external force applied to Ni. σ(i) denotes the
set of indexes of the nodes adjacent to Ni in M.

It is possible to reduce the complexity of Equation 3 considering
the approach proposed on [11]. In this approach we assume that
the velocity of the nodes is small enough so that the mesh achieves
static equilibrium at each instant, that is, every frame of the simula-
tion. This is a reasonable assumption for soft objects with relatively
high damping parameters, which is the case for most human tissues.

We can then neglect the dynamic inertial and damping forces. In
this way the shape of the mesh M is described by the following
expression:

∑
j∈σi j

Fi j(xi,x j) = mig+Fext
i (4)

This system can be solved using an iterative solver method
like Runge-Kutta or Newton, however we implemented a penalty
solver algorithm most commonly used in surgical simulation, alike
to Newton’s method. The following pseudocode describes the im-
plemented method.

Algorithm to solve the cuasi-static model
Get the current position of each node

While Cont < δ then
For each i ∈ I
fi ← ∑ j∈σi j

Fi j−mig
xi ← xi+ α fi
Cont = Cont + 1
End For

End While

Cont is the current iteration of the solution system, δ is the min-
imal iteration number to guarantee the convergence of the method,
in order to reach the equilibrium state. I denotes the set nodes of
the mesh and α is a convergence factor of the solution method.

Analyzing the complexity of the physical model algorithm we can
define that the convergence of the method and the real-time perfor-
mance depends on the number of nodes composing the mesh and
the number of links to each node. Generally a node is linked to

Figure 3: Graphical representation of the parallel algorithm imple-
mented. In this case there are two threads, therefore the domain
problem (nodes) is divided in two subsets.

six another nodes, and the performace of the algorithm directly de-
pends of the number of nodes. This means that if the mesh has a
large number of nodes, the real time performance is hard to guaran-
tee.

2.2.1 Parallel CPU–based Approximation of the Mass-Spring
Model

In recent years, multi–core technologies have become very com-
mon and inexpensive. This situation has motivated the paralleliza-
tion of the costly algorithms that require real-time performance,
such as a physical models in the surgical simulation applications.
For this reason, in this section we explore the parallelization of the
algorithm described using a mesh with a large number of nodes.

The first task, when parallelizing a sequential algorithm, is to de-
fine the decomposition of the problem. The decomposition of the
problem can be made in different levels, depending of the specific
application. In general there is data decomposition, task decom-
position, data and task decomposition (pipeline) and finally mixed
solutions.

In our case, the algorithm presented in the last section applies the
same operation to each node of the mesh. This operation consist of
the calculation of the Fi (Internal Force of the node) to each node
and the updating of the node position using the previous position,
Fi is calculated as well as the convergence factor α . Taking this into
account, the problem domain can be divided in a data level, where
the grain size can be each node.

The algorithm can be parallelized making the computation of Fi and
xi+1 in a parallel way to each node of the mesh. Figure 3, shows
the graphical representation of the parallelization applied to the al-
gorithm. Communication is needed to share information between
nodes, because the algorithm is based on the summation of forces.

In order to implement the parallel algorithm we used the thread-
ing building blocks (T BB) [12] software library. This library offers
the opportunity to avoid thread management. This will result in
code that is easier to create, easier to maintain, and more elegant.
Specifically, in the project it was necessary to parallelize the f or
loop in order to sweep the nodes of the mesh and compute the next



Figure 4: Data structure used to store the information of the mesh
which deformation will be calculated on the GPU.

position of each node. To accomplish this goal we used the tem-
plate parallel f or included in T BB. This template allows for the
parallel execution of a fixed number of independent loop iterations.

2.3 GPU Approximation of the Mass-Spring Model
Next we describe the approaches implemented in the GPU to cal-
culate the deformation using four different memory setups to store
the data structure of the mesh.

2.3.1 Global Memory Implementation

In order to implement a GPU approach of the mass-spring model
it is necessary to build a special data structure to copy the infor-
mation of the mesh from the host memory to the device memory
on the GPU. The data structure consists on three 1D arrays which
are linked by the position of each point in the array. The first array
called Positions contains the x, y and z coordinates, the mass and
the boundary condition of the each point. The second array called
Neighbors has the neighbors of each point in the mesh and the third
array called Length Rest contains the length rest of the each link
in the mesh. In this implementation the data structure is stored in
the global memory of the GPU. Figure 4, shows the data structure
described above.

Once the data structure, in which information of the mesh will
be stored, is defined, one must setup the decomposition of the prob-
lem to parallelize the computation of the deformation on the GPU.
As with the parallel algorithm, described in the previous section,
the algorithm implemented on the GPU will make a spatial decom-
position of the problem, so that each thread in GPU computes the
new position of a point in the mesh. In Figure 5, one can observe
the spatial decomposition realized to implement the algorithm in
the GPU. In this example the mesh is composed of 12 points. In or-
der for each thread to process a point, four blocks with four threads
is used. Consequently, the number of blocks used depends on the
number of points in the mesh.

For meshes with a large number of points, this approach can
offer a great performance improvement, due to the high paralleliza-
tion achieved in the calculation. However, the use of global mem-
ory to store the data structure may limit the performance by this
approach due to high latency of reading and writing to global mem-

Figure 5: Example of the spatial decomposition of the deformation
calculation of the GPU. In this example a grid 2 by 2 and 2 by 2
blocks were used.

ory on the GPU, still far faster than CPU/Hot memory.

To solve this problem, three additional approaches were considered:
The first one makes use of the property of coalescence memory that
holds the global memory, the second uses shared memory on the
GPU to store the information of the processed points in each block.
This minimizes the number of accesses made to global memory in
order to read the position of the neighbors, an operation that is re-
quired to update each point of the mesh and the third simply com-
bines the use of shared memory and the property of coalescence
memory. These approaches are described next in the following sec-
tion.

2.3.2 Coalescence Memory Implementation
By performing a simple modification of the data structure described
before, it is possible to improve the performance of the algorithm
implemented on the GPU. To this end, it is necessary to apply the
concept of coalescence memory. Coalesced memory refers to prop-
erty that the global memory of the GPU has been arranged in a
way to allow memory access to the same DRAM page when mul-
tiple threads simultaneously access contiguous elements of mem-
ory [13]. In this way if it is possible to exploit this property of the
global memory, it may somewhat reduce the impact produced by
the long latency of reading and writing of the global memory.

For that reason, and in order to exploit this property of the global
memory, the data structure described before was slightly modified,
simply by organizing all information that will be accessed at the
same time for each thread in a consecutive way in the memory.
Figure 6 shows the new data structure.

The only difference between the data structure shown in fig-
ure 4 and in Figure 6, is the order in which data is stored. The
schema presented in the Figure 6 ensures that the coordinates x,
y and z, the masses, boundary conditions, neighbors of each point
and the rest length of each spring are consecutively stored in mem-
ory and in this way to favor the coalescence memory of the global
memory.

2.3.3 Shared Memory Implementation
Other option for improving the performance of the algorithm is to
use the shared memory of the GPU, which has writing and read-
ing latency that is less than that of the global memory [13]. The
idea of this approach is to copy the positions of points from the



Figure 6: Data structure implemented to exploit the property of coa-
lescence memory of the global memory of the GPU.

global memory to shared memory. Exploiting the characteristics of
a neighborhood, and in this way to minimizes the accesses made to
the global memory. However, this is only applicable if the informa-
tion contained in the array is structured, i.e. if the neighbors of a
specific point within the array, are also neighbors in the geometry
of the mesh.

It was then necessary to make some modifications to the algorithm
and the data structure. Similarly it was assumed that the maximum
number of neighbors of any point on the mesh is 8.

Changes to the data structure are basically focused on how the
neighbors of each point are stored. In the data structure imple-
mented initially, for each point of the mesh, the number of neigh-
bors and the indexes of each neighbor are stored, in this case the
index is the position of a point in the array of points. In the new
data structure each point has maximum eight neighbors, and to de-
termine if there is a connection with each of these neighbors, values
of 0 and 1 are used, where 1 refers to a connection and 0 otherwise.
The reason to propose this new configuration of the data structure is
to easily map the position of the points stored in the global memory
to the shared memory of each block. Figure 7 presents an example
showing the basic difference between the data structures used in the
global memory implementation and the shared memory implemen-
tation.

Regarding the changes of the algorithm for the computation of
deformation, an extra piece of code was added to determine the
block and thread id. This was needed in order to determine what
memory was needed to be copied from global to shared device
memory. In general each thread of the block reads a point of the
mesh and is copied to shared memory (squares inside red square in
Figure 8), but for the calculation it is necessary to have access to
the coordinates of the points around the block (squares outside red
square in Figure 8), some threads of the block must copy these ad-

Figure 7: Comparison of the data structures used in the global mem-
ory and shared memory implementations. In graphic connections
between the red point and its neighbors is represented using colors,
where color white means that there is not a connection and the color
blue means that there is a connection.

Figure 8: Scheme followed by the algorithm to copy data from the
global memory to the shared memory in order to calculate update
position of each point.

ditional positions. Figure 8 shows how a block organizes the copy
of data from the global memory to the shared memory; the colors
represent the way in which threads of each block copy the infor-
mation of the additional points from the global memory to shared
memory.

2.3.4 Shared Memory + Coalescence Memory Implemen-
tation

Finally, the last implementation carried out, took advantage of the
benefits in terms of performance offered by shared memory and the
property of coalescence memory. For this purpose we combined the
data structures used in each approach, i.e. shared and coalescence
memory implementations, and we used the same algorithm imple-
mented in the previous approach to copy the position of the points
in the mesh from global memory to shared memory.

3 EXPERIMENTAL SETUP AND RESULTS

In order to compare the sequential, CPU-based parallel and GPU
algorithms, an experimental test was developed. In the test several
performance variables were measured, such as accuracy, time exe-
cution and speed-up.

In the case of CPU-based parallel implementation, several trials
were conducted changing the number of threads. The experimental
test was carried out in a machine with Intel processor Quad core
(2.2GHz) and 2 Gb of RAM memory. For the implementation in



Table 1: Charateristics of the meshes used in the experimental test

Name Triangles Edges Points

Mesh 1 450 704 256

Mesh 2 24642 37184 12544

Mesh 3 61250 92224 30976

Mesh 4 85698 128960 43264

Figure 9: Simulation scenario used in the experimental test.

the GPU, the tests were conducted using a fixed block size for the
different resolution meshes. The experimental test was carried out
in a machine with a Nvidia GeForce 8800 GT GPU.

The simulation was be composed of a triangular mesh. We used
four meshes with different sizes, Table 1 shows the characteristics
of the meshes. We believe using different size meshes is impor-
tant because often researchers have problem specific meshes, and
we wanted to show the scope of improvement on different sized
meshes.

In order to conduct the experimental test, a perturbation on the
physical model of the mesh, produced by the gravitational force,
was applied . To avoid the fall of the mesh to the ground of the en-
vironment, the boundary nodes of the mesh were fixed to the initial
position during the simulation. Figure 9 shows the visualization of
the simulation setup used .

Figure 10 and 11 presents the results of the execution time ob-
tained for each of the approaches described before versus the num-
ber of points are possessed by each of the meshes evaluated.

Aditionally, figure 12 and 13 shows the speed-up achieved for
each of the approaches and meshes evaluated during the experimen-
tal tests.

In addition to performing the experimental tests described pre-
viously we wanted to compare different implementations. There-
fore, an experimental test was also carried out, in order to explore
whether a relationship exists between the execution time of the al-
gorithm implemented on the GPU and the block size used for spa-
tial decomposition. The results of these experimental test can be
observed in Table 2.

Figure 10: Time execution for each of the meshes evaluated for the
GPU-based approaches.

Figure 11: Time execution for each of the meshes evaluated and
parallel approaches implemented on the CPU.

Figure 12: Speed-up for CPU multi-threaded approaches compared
to single thread, using meshes of different sizes.

Finally, a test was carried out to evaluate the accuracy of the
GPU algorithm. The error was calculated from the difference be-
tween the position of each one of the nodes in the sequential al-
gorithm and the GPU algorithm. Figure 14 shows the evolution of
the error calculated between the GPU algorithm and the sequential
algorithm while the simulation iterates, showing a relatively stable
error rate, that most importantly, does not effect the visual simula-



Figure 13: Speed-up for GPU approaches, using meshes of different
sizes, measured against single-core CPU implementation.

Table 2: Relation between the block size and the time execution of
the GPU implementation

Block
Size

Number
of
Threads
by Block

Time Ex-
ecution
Mesh 1
(ms)

Time Ex-
ecution
Mesh 2
(ms)

Time Ex-
ecution
Mesh 3
(ms)

2 4 17.1 39.28 53.75
4 16 8.64 18.59 25.26
8 64 8.34 17.6 24.5
16 256 8.096 17.52 24.37

Figure 14: Accuracy test to measure the difference between the
results of the sequential algorithm and GPU algorithm, specifically
squared error is measured.

tion. This error is a result of the ordering of the iterations, the GPU
versions of the algorithm are no less accurate because of the non-
increasing and bounded error.

4 CONCLUSIONS

In this paper we explore various GPU implementations of the mass-
spring model using the CUDA framework. The purpose was to
compare the improvements offered by multi–core and GPU tech-
nologies and to explore to what extent they fulfill the current re-
quirements of surgical simulators. In this way the results shown
in Figure 10 and 11, allow one to conclude that the time execution

of the CPU-based parallel algorithm decreases when compared to
sequential time execution. Furthermore, the time execution of the
CPU-based parallel algorithm approximately owns an equal rela-
tion to the sequential time divided by the number of threads, as it
is established by the theoretical predictions. However, the number
of CPUs required to reach the performance level of one GPU is un-
realistic considering the ratio of flops/dollar. Likewise, it is clear
that the approach made in the GPU requires a shortest time execu-
tion with respect to time spent by the implementations on the CPU
(sequential and parallel). However, for very small meshes, such as
mesh1, the performance is similar to the one achieved by the ap-
proaches implemented in the CPU because in this case the kernel
does not utilize the parallel powers of the GPU fully, basically not
enough points in the mesh, therefore less GPU-cores are used, con-
sequently the highly parallel GPU is not used effectively.

This same result is visible by analyzing Figure 12 and 13 where
the speed-up of the CPU-based parallel and GPU algorithms can
be observed. In this case, the higher speed-up was obtained with
the implementation on the GPU that combines the use of shared
memory and the property of coalescence memory. However, the
methods that use shared memory, need a structured mesh to be im-
plemented, this limits the implementation of such methods to only
those with a structured mesh. The coalesced memory approach is
very flexible since it can represent arbitrary geometry, and is the
simplest strategy to be implemented.

Moreover, from Figure 10 and 11 it is possible to conclude that,
if it is necessary to simulate the deformation of meshes with up to
≈ 43K points for real time applications, the best option is to ap-
ply the approaches that use the GPU, since these can provide for a
computation time less than 16ms, and obtain an approximate update
frequency of 60Hz. This frequency guarantees the interactivity of
the simulation in a real-time surgical simulator. Whereas, the best
CPU algorithm was 15x slower.

In the experimental test carried out to evaluate how block size, af-
fects the time execution of the algorithm in the GPU, we can see
that the larger the block size, the shorter the time execution of the
algorithm, and therefore, better performance. This can be explained
considering that the CUDA compiler, and thread scheduler, sched-
ule the instructions as optimally as possible to avoid register mem-
ory bank conflicts. They achieve best results when the number of
threads per block is a multiple of 64, i.e. in the experimental test
with block size of 8 and 16. Aditionally if the block size is larger,
CUDA incurs a lower cost of scheduling to arrange the tasks of each
of the threads as there are fewer blocks. However, after 64 threads
are used we do not notice a large speedup. This is mainly because
the mesh size was to small, if a larger mesh is used a more substan-
tial speedup is seen.

With respect to the accuracy test of the GPU algorithm, it is possible
to be observe in Figure 14 that the error reached with this method
is not considerably large, if it is considered that the error depends
on the number of points in the mesh, and that in this case the mesh
is evaluated with 10K points. Furthermore, in the solver algorithm
used to calculate the deformation, one can observe that the result
is highly dependent of the order in which each point is calculated,
mainly due to the new position of the point depends on the current
position of its neighbors and therefore, is not the same calculation,
because it depends on if the neighborhood positions have already
been calculated, or not. In this case, we can conclude that for use
in a surgical simulation, the error is not sufficiently large to affect
the visual perception of the surgeon during the simulation and is
relatively stable .



Finally, regarding the approaches explored, in order to fulfill the
performance requirements of a surgical simulator, only those im-
plemented on the GPU, especially the approaches that make use
of shared memory and property of memory coalescence of global
memory. However, as mentioned above a problem that persists
when a GPU approach using shared memory, is the need for a struc-
tured mesh (very common). Additionally, the approaches imple-
mented on the GPU allow the real-time computation of the defor-
mation in meshes with high degree of resolution, which logically
results in a better realism of the visualization of the anatomical
structures in the simulator.

5 FUTURE WORK

In future research we will have three purposes (i) improve the re-
alism of physical model implemented to simulate the deformation.
For this purpose we will implement a physical algorithm to guaran-
tee the volume conservation of the deformable object. For example,
using mass-spring model with a tetrahedral mesh or implementing
special algorithms used in surgical simulation, the volume distri-
bution method.(ii) implement an algorithm to improve the perfor-
mance of the simulation. The algorithm presented before have some
problems of performance, because it calculates the spring force sev-
eral times for each point. We propose to evaluate an edge-centric
approach to resolve this performance problem. This approach cal-
culates the spring force once for point, avoiding redundant calcula-
tions, and should increase update frequency of the simulation. (iii)
Incorporate the implementations realized to the complete surgical
simulation system and carry out a experimental test to evaluate the
performance of the algorithm using real surgical environments.

REFERENCES

[1] D. Woodrum, P. Andreatta, R. Yellamanchilli, L. Feryus, P. Gauger and
R. Minter. Construct validity of the LapSim laparoscopic surgical sim-
ulator. American Journal of Surgery, Volume 191, pp. 28 32, 2006.

[2] R. Aggarwal, T. Grantcharov, K. Moorthy, J. Hance, A. Darzi. A
competency-based virtual reality training curriculum for the acquisition
of laparoscopic psychomotor skill. The American Journal of Surgery,
Volume 191, pp. 128133, 2006.

[3] A. Nealen, M. Muller, R. Keiser, E. Boxerman and M. Carlson. Physi-
cally based Deformable Models in Computer Graphics. Proceedings of
Computer Graphics Forum, p.p. 809 836, 2005.

[4] G. Szekely, Ch. Brechbuehler, R. Hutter, A. Rhomberg, N. Ironmonger
and P. Schmid. Modeling of Soft Tissue Deformation for Laparoscopic
Surgery Simulation. Medical Image Analysis, Volume 4, Issue 1, p.p.
57 66, 2000.

[5] U. Meier, O. Lopez, C. Moserrat, M. Juan, and J. Alcaniz. Real-
time Deformable Models for Surgery Simulation: A Survey. Computer
Methods and Programs in Biomedicine, Volume 77, Issue3, p.p. 183
197, 2005.

[6] T. Sorensen and J. Mosegaard. An Introduction to GPU Accelerated
Surgical Simulation. Biomedical Simulation, Volume 4073, pp. 93 104,
2006.

[7] NVIDIA. CUDA Programming Guide v. 1.1.
[8] J. Georgii, F. Echtler R. Westermann. Interactive Simulation of De-

formable Bodies on GPUs. Proceedings of Simulation and Visualisa-
tion 2005, pp. 247 258, 2005.

[9] J. Georgii and R. Westermann. Mass-Spring Systems on the GPU. Sim-
ulation Modelling Practice and Theory, Volume 13, Issue 8, pp. 693
702, 2005.

[10] C. Diaz, D. Posada, H. Trefftz and B. Bernal. Development of a Surgi-
cal Simulator to Training Laparoscopic procedures. International Jour-
nal of Education and Information Technologies, Issue 1, Volume 2, pp.
95 103, 2008.

[11] J. Brown, S. Sorkin, J.C. Latombe, K. Montgomery and
M. Stephanides. Algorithmic tools for real-time microsurgery simula-
tion. Medical Image Analysis, Issue 6, Volume 3 pp. 289 300, 2002.

[12] J. Reinders. Intel Threading Building Blocks: Outfitting C ++ for
Multicore Processor Parallelism. OReilly, 2007.

[13] W. Hwu, C. Rodrigues, S. Ryoo and J. Stratton. Compute Unified
Device Architecture Application Suitability. Computing in Science and
Engineering, Volume 11, Issue 3, pp. 16 26, 2009.

[14] A. Rasmusson, J. Mosegaard and T. Sangild. Exploring Parallel Algo-
rithms for Volumetric Mass-Spring-Damper Models in CUDA. Lecture
Notes in Computer Science, Volume 5104, pp. 49-58, 2008.


