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Abstract

In this paper, a method for surface reconstruction by means
of optimized NURBS (Non-Uniform Rational B-Splines)
patches from complex quadrilateral bases on triangulated
surfaces of arbitrary topology is proposed. To decompose
the triangulated surface into quadrilateral patches, Morse
theory and spectral mesh analysis are used. The quadri-
lateral regions obtained from this analysis is then regular-
ized by computing the geodesic curves between each corner
of the quadrilateral regions. These geodesics are then fit-
ted by a B-splines curves creating a quadrilateral network
on which a NURBS surface is fitted. The NURBS surfaces
are then optimized using evolutive strategies to guaranty the
best fit as well as C1 continuity between the patches.

1. Introduction

The process of reverse engineering consist of recovering
from a densely digitized 3-D object an approximated and
compact surface representation that is directly compatible
with advanced CAD systems such as CATIA V5, ProEng,
and many more. Finding a useful and general method for
performing this task has proven to be a nontrivial problem
and there were until recently no real automated surface ap-
proximation software capable of doing this without human
intervention, hence the flurry of commercial reverse engi-
neering packages available in industry such as Polyworks,
RapidForm, Geomagic, etc. Many of these software pack-
ages can perform some the reconstruction task automati-
cally but many of them requires a significant amount of user

inputs especially when ones deal with high-level represen-
tation such as CAD modelling.

This paper focuses on the automation of reverse engi-
neering of free-formed objects using an approximation ap-
proach; where it is assumed that there is no a priori infor-
mation of the surface topology or orientation available from
the geometric sensors; only the three-dimensional coordi-
nates of the points are available.

One can find in the literature many surface reconstruc-
tion algorithms that can convert a points-cloud into a surface
representation. Unfortunately, many of these algorithms do
not analytically describe the points cloud because they only
use representations that approximate the surface by simple
primitives, such as triangular meshes and voxel. Other algo-
rithms use implicit functions such as radial basis functions
to reconstruct the point cloud even though they are not an
industry standard. On the other hand, NURBS surfaces are
an industry standard, but have the inconvenience of not be-
ing able to represent complex surfaces easily without large
overhead associated with them. This is why, it is necessary
to develop a more robust methods which give on one hand
a more high-level analytic description of the object surface
and topology such as NURBS, and then efficiently handle
great quantity of data, preserving the fine details of the sur-
face being reconstructed.

This paper is organized as following: Section 2, de-
scribes the problem of reverse engineering. Section 3, a
review of the pertinent literature in 3-D reconstruction. Sec-
tion 4 describes the method for the adjustment of surfaces
by means of optimized NURBS patches. Section 5 de-
scribes the experimental results of the proposed algorithm,
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and finally, in Section 6 a conclusion is presented.

2. The Problem of Reverse Engineering

Computer-aided geometric design and computer-aided
manufacturing systems are used in numerous industries to
design and create physical objects from digital models.
Typically, the process consist of constructing complex ob-
jects by a combination of simple geometrical primitives.
Many of these primitives are combined by boolean opera-
tions or by specifying a boundary representation where the
topology and the geometry of the object are well known.
However the reverse problem, which is of inferring a geo-
metric model from an existing physical object digitized by
a 3-D sensor, is a much harder problem as it is hill-posed.
Even if we know the geometry of the object with the 3-
sensor, unfortunately the topology of the object was lost.
We refer to this problem as reverse-engineering. There are
various properties of a 3D object that one may be interested
in recovering, including its shape, its color, and its mate-
rial properties, and most importantly a series of geometric
primitives and its associated topology. This paper addresses
the problem of recovering 3D shape by using NURBS sur-
faces defined topologically as a network of quadrilaterals
curves over the surface. The specification of the problem to
be solved can be stated as follows:

“Given a set of sample points X assumed to lie
on or near an unknown surface U , create a surface
model S approximating U” [16].

In the general surface reconstruction problem, we con-
sider that the points X are noisy. No structure or other
information is assumed. The surface U -assumed to be a
manifold- may have arbitrary topology, including bound-
aries, they contain sharp features such as creases and cor-
ners. Since the points X are noisy samples, we do not at-
tempt to interpolate them, but instead find an approximating
surface. Of course, a surface reconstruction procedure can-
not guarantee recovering U exactly, since it is only given
information about U through a finite set of noisy sample
points. The reconstructed surface S should have the same
topological type as U and be close to U .

2.0.1. Morse Theory for Triangular Meshes. The appli-
cation of the Morse theory to triangular meshes implies a
discrete solution. The Laplacian equation is used to find a
Morse function which describes the topology represented
on the triangular mesh. In this sense, additional points of
the feature of the surface might exist, which produce a ba-
sis domain which adequately represents the geometry of the
topology itself and the original mesh. In this work, the ap-
plication of the Morse theory to triangular meshes a more
robust version is proposed finding a Morse function which
can be appropriated to a certain number of critical points.

The Morse theory relates the topology of a surface S with
its differential structure specified by the critical points of
a Morse function h : S → R [20] and is related to mesh
spectral analysis.

Spectral mesh analysis is performed by initially calcu-
lating the Laplacian at every vertices. The discrete Lapla-
cian operator on piecewise linear functions over triangu-
lated manifolds is given by:

∆fi =
∑

j∈Ni

Wij(fj − fi) (1)

where Ni is the set of vertices adjacent to vertex i and Wij

is a scalar weight assigned to the directed edge (i, j).
Representing the function f , by the column vector of its

values at all vertices f = [f1, f2, . . . , fn]
T , one can refor-

mulate the Laplacian as a matrix:

∆f = −Lf (2)

where the Laplacian matrix L is defined by:

Lij =











∑

k Wik if i = j,

−Wij if (i, j) is an edge of S,

0 in other case.
(3)

where k is the number of neighbors of the vertex i. Eigen-
values λ1 = 0 ≤ λ2 ≤ . . . ≤ λn of L form the spectrum of
mesh S. Besides describing the square of the frequency and
the corresponding eigenvectors e1, e2, . . . , en of L, define
piecewise linear functions over S of progressively higher
frequencies [24].

3. Literature Review

A wide gamut of algorithms for surface reconstruction
have been proposed in the literature in recent years [4] [16]
[3]. We can divide these methods into two main categories:
interpolation methods and approximation methods.

Interpolation Methods This type of algorithms tries to
obtain a piecewise linear manifold interpolating a sample
data set P . These methods are appropriate for noise-free
data sets.

Different approaches have been used, producing algo-
rithms based on Delaunay triangulation. Edelsbrunner and
Mucke [13] pioneered the algorithm based on Delaunay tri-
angulation introducing an alpha-shape algorithm. This al-
gorithm selects candidates Delaunay triangles based on the
radius of the smallest empty circum-sphere. They also ex-
tended this notion to weighted alpha-shapes in which the
data points can be assigned scalar weighs to cope with
non-uniform samplings. For three dimensions, Amenta and
Bern [1] gave an algorithm that selects a subset of the De-
launay triangles of P as the output surface. They defined a
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sampling condition under which their output is homeomor-
phic to the surface of the original geometric object. They
also defined the concept of poles. Other strategies use ad-
vancing fronts algorithms. Bernardini et al. [5] pivoting
ball algorithm is conceptually based on the alpha shape and
consists of rolling a ball over the data set. It is appropri-
ate for large data sets but is extremely dependent on sam-
pling. Based on Delaunay triangulation, Boyer and Peti-
jan [7] gave an incremental algorithm over a 3D Delaunay
triangulation that is based on a regular interpolant. More
recently, David Cohen-Steiner, and Frank Da [9] developed
another incremental algorithm based on the Delaunay trian-
gulation that produces satisfactory results when the models
have sharp features, irregular sampling, and large data sets.

Approximation Methods Instead of constructing a
piecewise linear manifold interpolating the sampling points,
these methods construct a polynomial or an implicit mani-
fold near the set of sample points.

A pioneering work was presented by Hoppe et al. [16].
They proposed an algorithm that locally estimates a signed
distance function defined on R

3 that returns the distance to
the closest point in the manifold. The distance is negative
at interior points to the manifold and positive at exterior
points. They use an estimation of this distance function
to the closest point in the input sample. The output sur-
face is a polygonization of the zero set of the estimated dis-
tance function. Radial Basis Function (RBF) has been pro-
posed by various authors: Savchenko [22], Carr et al. [8]
and Turk and O’Brien [23]. Carr et al. [8] presented a poly-
harmonics radial basis function that can fit very large data
sets consisting of millions of data points and arbitrary topol-
ogy. In this method the holes are smoothly filled and the
surface are smoothly extrapolated. Levin [17] developed a
mesh independent method for smooth surface approxima-
tion and moving least-squares (MLS) by introducing a dif-
ferent paradigm based on a projection procedure. This is
the closest work to our algorithm.

4. Approximation of Smooth Surfaces Using
Morse Theory

One of the most important phases in the 3D reconstruc-
tion process is the the process of fitting high-level surface
primitive such as NURBS from triangular meshes.

The majority of the literature on re-meshing methods,
focuses on the problem of producing well formed trian-
gular meshes (ideally Delaunay). However, the ability to
produce quadrilateral meshes is of great importance as it
is a key requirement to fit NURBS surface on a large 3–
D mesh. Quadrilateral topology is the preferred primi-
tives for modelling many objects and in many application
domains. Many formulations of surface subdivision such
as SPLINES and NURBS, require complex quadrilateral

bases. Recently, methods to automatically quadrilateralize
complex triangulated mesh have been developed such as the
one proposed by Dong et al. [11]. These methods are quite
complex, hard to implement, and have many heuristic com-
ponents.

In this section, a method for the surface approxima-
tion by means of optimized NURBS patches from com-
plex quadrilateral bases on triangulated surfaces of arbi-
trary topology is proposed. This process of quadrilateral-
ization produces regions composed exclusively of smooth
quadrilaterals. To decompose the triangulated surface into
quadrilateral patches, Morse theory and spectral mesh anal-
ysis are used. The quadrilateral border joining the critical
points are regularized by computing geodesic curves be-
tween each corner and then B-splines approximate those
geodesics. Following the geodesic curves approximation
a NURBS surface is then fitted by changing the NURBS’s
weight to represent the data inside the quadrilateral region.
Such NURBS surfaces fitting is non-linear and an evolutive
strategy optimization method is used to minimize the dis-
tance between the surface and the points inside the quadri-
lateral region. The optimization also take into account
the smooth joint at the boundary to guarantee C1 continu-
ity. The proposed algorithm for surface approximation by
means of optimized NURBS patches is proposed in Algo-
rithm 1.

Algorithm 1: Method for fitting the surface by means
of optimized NURBS patches.
Adjustment by means of optimized
NURBS patches();
begin

1. Quadrilateralization of the triangular mesh;
2. Regularization of triangular mesh;
3. Fitting of optimized NURBS patches using
evolutionary algorithm;

end

In the following section, each steps of the proposed al-
gorithm is described.

4.1. Quadrilateralization of Triangular Mesh

One of the first step of our algorithm consist of convert-
ing a triangular representation into a network of quadrilat-
eral that is a complete description of the object’s geome-
try. This is necessary as the representation by means of
NURBS patches requires building a regular base on which
the NURBS surfaces sits. Because of the complex and di-
verse forms of free-formed objects, obtaining a quadrilat-
eral description of the whole surface is not a trivial task. In
order to solve this problem, we propose the following algo-
rithm Algorithm 2.
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Algorithm 2: Quadrilateralization method of a trian-
gular mesh.
Quadrilateralization();
begin

1. Critical points computation;
2. Critical points interconnection;

end

4.1.1. Localizing Critical Points. Initially, the quadrilat-
eral’s vertices are obtained as a critical points-set of a Morse
function. Morse’s discrete theory guarantees that, with-
out caring about topological complexity of the surface rep-
resented by triangular mesh, a complete quadrilateral de-
scription is obtained. That is to say, it is possible to com-
pletely divide objects’ surfaces by means of rectangles. In
this procedure, an equation system for the Laplacian ma-
trix is solved by calculating a set of eigen-values and eigen-
vectors for each matrix (Equation 3) [19].

A Morse-Smale complex is obtained from the connec-
tion of a critical points-set which belongs to a field of the
Laplacian matrix. The definition of a field of the matrix is
obtained by selecting the set of vectors associated to a so-
lution value of the equation. As Morse function represents
a function in the mesh, each eigen-value describes the fre-
quency square of each function. Thus, selecting each eigen-
value directly indicates the quantity of critical points which
the function has. For higher frequency values, a higher
number of critical points will be obtained. This permits
representing each object with a variable number of surface
patches. The eigen value computations assigns function val-
ues to every vertex of the mesh, which permits determin-
ing whether a vertex of the mesh is at critical points of the
Morse function. In addition, according to a value set ob-
tained as the neighborhood of the first ring of every vertex, it
is possible to classify the critical points as maximum, mini-
mum or “saddle points.” Identification and classification of
every critical point permits building the Morse-Smale com-
plex.

This method to obtain critical points was tested with
smooth and irregular arbitrary topology of real objects, re-
spectively (See Figure 1(a)). For each object, the critical
points obtained for different harmonics configuration are
used.

4.1.2. Critical Points Interconnection. Once critical
points are obtained and classified, then they should be con-
nected to form the quadrilateral base of the mesh. The con-
nection of critical points is started by selecting a “saddle
point” and by building two inclined ascending lines and two
declined descending lines. Inclined lines are formed as a
vertex set ending at a maximum critical point. In addition, a
descending line is formed by a vertex path which ends at a
minimum critical point. One can then join two paths if both

are ascending or descending.
After calculating every paths, the triangulation of K

surface is divided into quadrilateral regions which forms
Morse-Smale complex cells [19]. Specifically, every
quadrilateral of a triangle falls into a “saddle point” without
ever crossing a path. The complete procedure is described
in Algorithm 3:

Algorithm 3: Bulding method of MS cells.
Critical points interconnection();
begin

Let T={F,E,V} M triangulation;
Initialize Morse-Smale complex, M=0;
Initialize the set of cells and paths, P=C=0;
S=SaddlePointFinding(T);
S=MultipleSaddlePointsDivission(T);
SortByInclination(S);
for every s ∈ S in ascending order do

CalculeteAscedingPath(P);
end
while exists intact f ∈ F do

GrowingRegion(f, p0, p1, p2, p3);
CreateMorseCells(C, p0, p1, p2, p3);

end
M = MorseCellsConnection(C);

end

In Figure 1(b), it is observed how resulting quadrilat-
eral patches are adequately formed, and they are directly
obtained from intrinsic surface properties, adjusting to the
objects’ geometry.

4.2. Regularization of the Quadrilateral Border
Curves

Because the surface needs to be fitted using NURBS
patches, it is necessary to regularize the quadrilateral curves
obtained from the mesh. The curves are regularized and fit-
ted by b-splines using the following Algorithm 4.

One of the quadrilateral border is selected from the mesh,
and later a border is selected from each quadrilateral border
and its opposite. The initially selected border is random.
The opposite order is searched as one which does not con-
tain the vertices of the first one. If the first selected border
has vertices A and B, it is required that the opposite border
does not contain vertices A and B, but the remaining, B and
C.

Later, B-splines are fitted on selected borders with a λ

density, to guarantee the same points for both borders are
chosen, regardless of the distance between them. In general,
a B-spline does not interpolate every control point; there-
fore, they approximate curves which permit a local manip-
ulation of the curve, and they require fewer calculations for
coefficient determination.

4



Automated Reverse Engineering of Free Formed Objects Using Morse Theory Submitted for review to 3DIM2007

Algorithm 4: Quadrilateral mesh regularization
method..
Regularization();
begin

1. Quadrilateral selection;
2. Selection of a border of the selected
quadrilateral and its opposite;
3. Regularization using B-splines with lambda
density;
4. Regularized points match by means of geodetics
FMM;

4.1 Smoothing of geodetic with B-splines;
5. Points generating for every B-spline line with
lambda density;

end

Having these points at selected borders, it is required
to match them. This is done with FMM (Fast Marching
Method). This algorithm is used to define a distance func-
tion from an origin point to the remainder or surface with a
computational complexity of O(n× log n). This method in-
tegrates a differential equation to obtain the geodetic short-
est path by traversing the triangle vertices.

At the end of the regularization process, B-splines are
fitted on geodetic curves and density λ points are generated
at every curve which unite the border points of quadrilateral
borders, to finally obtain the grid which is used to fit the
NURBS surface.

4.3. Fitting of Optimized NURBS Patches Using an
Evolutionary Algorithm

This section presents a method based on an evolutionary
strategy (ES), to determine the weights of control points of a
NURBS surface, without modifying the location of sampled
points of the original surface. The main goal is to reduce
the error between the NURBS surfaces and the data points
inside the quadrilateral regions. In addition, the algorithm
make sure that the C1 continuity condition is preserved for
all optimized NURBS patches. The proposed algorithm is
described in Algorithm 5.

4.3.1. Optimization of NURBS Parameters. A NURBS
surface is completely determined by its control points Pi,j .
The main difficulty in fitting NURBS surface locally is in
finding an adequate parametrization for the NURBS and the
ability to automatically choose the number of control points
and their positions. The NURBS’s weight function wi,j

determine the local influence degree of a point in surface
topology. Generally, weights of control points for a NURBS
surface are assigned in an homogeneous way and are set
equal to 1, reducing NURBS to simple B-spline surface.
The determination of NURBS control points and weights

Algorithm 5: Optimization and continuity method of
NURBS patches method.
Adjustment by optimized NURBS
patches();
begin

1. Optimization of the NURBS patches;
1.1. Multiple ES usage with deterministic

replacement by inclusion;
1.2. Application of ES to control weights of

NURBS;
2. Union of NURBS patches with continuity C1;

2.1. Check continuity between axis;
2.2. Check continuity at vertices;

end

for arbitrarily curved surfaces adjustment is a complex non-
linear problem.

The minimization problem can be expressed by:

δ =

np
∑

l=1













Zl −

n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)wi,jPi,j

n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)wi,j













2

(4)

where Ni,p(u) and Nj,q(v) are B-spline basis functions of p

degree and q in the parametrical directions u and v respec-
tively, wi,j are the weights, Pi,j the control points,and np

the number of control points. If the number of knots and
their positions are fixed, same as the weights set and only
the control points

(

{{Pi,j}
n
i=1}

m
j=1 ∈ R

)

, they are consid-
ered during minimization of Equation 4, then we have a
simpler linear mean square problem. If knots or the weights
are considered unknown it will be necessary to solve a non-
linear problem. In many applications, the optimal position
of knots is not necessary. Hence, the knots location problem
is solved by using a heuristic.

The optimization process is formally described as fol-
lows: Let Pt = {p1,p2, . . . ,pn} a points-set in R

3 sam-
pled from the surface of a physical object, our problem con-

sists of E(s) = 1
n

n
∑

i=1

d2(pi, Si) < δ, where d(pi, Si) rep-

resents the Euclidian distance between a point of the set Pt

of sampled points of the original surface S, and a point on
the approximated surface S′. To get the configuration of
surface S′, E is minimized to a tolerance lower than the
given δ. Minimization is performed using an evolution strat-
egy (µ + λ) defined as follows:

• Representation Criteria: Representation is per-
formed using of pairs of real vectors.

• Treatment criteria of outlier individuals: A filtering
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of individuals is performed making outlier individuals
ignored.

• Genetic Operators:

– Individual: The initial values wi, δi of ALELOS
of every individual are uniformly distributed in
interval [0.5, 1.5]. This range is chosen because
it is where the initial values of ALELOS of indi-
viduals are given, which correspond to weights of
control points and therefore should not initially
set to zero.

– Mutation: Individuals mutation will not be cor-
related with n σ′s (mutation steps) as established
in individual configuration, and it is performed as
indicated in the following equations:

σ
′

i = σie
(c0.N(0,1)+ci.Ni(0,1)) (5)

x
′

i = xi + σ
′

i.Ni(0, 1) (6)

where N(0, 1) is a normal distribution with ex-
pected value 0 and variance 1, c0, ci are con-
stants which control the size of the mutation step.
This refers to the change in mutation step σ.
Once the mutation step has been updated, the mu-
tation of ALELOS of individuals is generated wi.

• Selection Criteria: The best individuals in each gen-
eration are selected according to the result of the fitness
function.

• Replacement criteria: In ES, the replacement crite-
ria is always deterministic, which means that µ or λ

best members are chosen. In this case, the replacement
by inclusion was used, in which the µ descendants are
joined with the λ best members and are taken for the
new population.

• Recombination operator: Two types of recombina-
tion are applied whether object variables wi or strategy
parameters σi are being recombined. For object vari-
ables, an intermediate global recombination is used:

b
′

i =
1

ρ

ρ
∑

k=1

bk,i (7)

where b
′

i is the new value of ALELO i, and ρ is the
number of individuals within the population.

For strategy parameters, an intermediate local recom-
bination is used:

b
′

i = uibk1,i + (1 − ui)bk2,i (8)

where b
′

i is the new value of the ALELO i, and ui is a
real number which is distributed uniformly within the
interval [0, 1].

4.3.2. NURBS Patches Continuity. Continuity in regular
cases (4 patches joined at one of the vertex) is a solved prob-
lem [12]. However, in neighborhoods where the neighbors’
number is different from 4 (v > 3 → v 6= 4), continu-
ity must be adjusted to guarantee a soft transition of the
implicit surface function between patches of the partition.
Although diverse continuity schemes between parametric
functions exist, two of these approaches have been empha-
sized and they have become an industry standard. Continu-
ity C0 shows that a vertex continuity between two neighbor-
ing patches must exist. This kind of continuity only guaran-
tees that spaces or holes at the assembling limit between two
parametric surfaces does not exists. C1 shows that continu-
ity in normals between two neighboring patches must exist.
This kind of continuity guarantees a soft transition between
patches, offering a correct graphical representation.

In this paper, C1 continuity between NURBS patches
is guaranteed, using Peters continuity model [21] which
guarantees continuity of normals between bi-cubical spline
functions. Peters proposes a regular and general model
of bi-cubical NURBS functions with regular nodes vec-
tors and the same number of control points at both of the
parametric directions. In our algorithm, Peter’s model was
adapted by choosing generalizing NURBS functions, with
the same control points number at both of the parametric
directions, bi-cubic basis functions and regular expansions
in their node vectors.

Continuity Along the Quadrilateral Boundaries: To
guarantee C1 continuity between the boundaries of neigh-
boring patches, extreme control points which affect the con-
tinuity between patches must be found. Due to data order-
ing within the proposed parametrization schema, two adja-
cent patches will have the same number of control points
at the common axis, regardless of their disposition. To ad-
just continuity between axes, control points are calculated
on the analyzed boundary, to make it co-lineal with neigh-
boring control points on adjacent patches.

Equation 9 illustrates the new position for a control point
at given Peje axis, where P vec

A is the neighbor point to Peje

at patch B. The new control point Peje is the medium point
between the two adjacent control points P vec

A y P vec
B which

guarantees that control points on the axis and their adjacent
neighbors at each patch is co-linear.

Peje =
P vec

A + P vec
B

2
(9)

Continuity at Quadrilateral Vertices: Continuity at
vertices of quadrilateral regions is guaranteed by making
sure that every adjacent control points at each vertices is
co-planar.

6



Automated Reverse Engineering of Free Formed Objects Using Morse Theory Submitted for review to 3DIM2007

Under the continuity criteria proposed by Peters, conti-
nuity at quadrilateral vertices are generalized, that is to say,
the adjustment process is the same regardless of the num-
ber of patches which can be found at a given vertex. We
have πT P = 0, where π is a given plane and P is a point
on the plane. If the system of equations is over-determined
with more than four points, the equation which best adjusts
a given point-set can be found.

Equation 10 represent the over-determined system where
P = [P1, P2, . . . , Pn] T with n ≥ 4 are control points at
the vertices. The equation is solved using Singular Values
Decomposition SV D, with the last column of matrix P the
equation of the plane which is adjusted to points-set P in
the quadratic mean square error sense. [15].









P 1
x P 1

y P 1
z 1

P 2
x P 2

y P 2
z 1

... ... ... 1
Pn

x Pn
y Pn

z 1

















πx

πy

πz

πz









= 0 (10)

Continuity is adjusted by projecting control points P

onto the plane given by Equation 10:

π = n1(x − xo) + n2(y − yo) + n3(z − zo) (11)

where N = [n1, n2, n3] is the plane’s normal and P0 =
[x0, y0, z0] is a point on the plane. The projection PI =
[xI , yI , zI ] of a point P = [Px, Py, Pz] on the plane is given
by:

xI = Px + n1tI yI = Py + n2tI zI = Pz + n3tI (12)

where t is the parametric value of the straight line which
passes through point P in the direction of the plane’s normal
N.

Using Equation 12, it is possible to project control points
on the given plane, which guarantee the continuity of nor-
mals at vertices of the quadrilateral partition, ensuring that
every adjacent control points are co-planar.

5. Experimental Results

In this section, the results of the methodology of three-
dimensional reconstruction of free-form objects proposed
in this paper are shown. To validate the functionality of the
proposed algorithm for surface fitting by means of NURBS
patches, the results for a free-form object (see Figure 1) are
presented.

Tests were performed using a 3.0 GHz dual Opteron
processor computer, with 1.0 GB RAM, running Microsoft
Windows XP operating system. The methods were imple-
mented using C++ and MATLAB. The data used were ob-
tained with Kreon range scanners, available at the Advanced
Man-Machine Laboratory – Department of Computing Sci-
ence, University of Alberta, Canada.

The partial results obtained at each one of the interme-
diate stages of the proposed algorithms in this paper are
shown in Figure 1. This object called Mask is composed
of 18 range images, corresponding to 84068 points. The fi-
nal model is composed of 105 optimized NURBS surfaces
patches with an adjustment error of 1.02 × 10−3 (See Fig-
ure 1(f)). The reconstruction of the object took an average
time of 32 minutes.

6. Conclusion

The methodology proposed in this thesis for the automa-
tion of reverse engineering of free-form three-dimensional
objects has a wide application domain, allowing adjustment
of surfaces regardless of topological complexity of the orig-
inal objects.

A novel method for fitting triangular mesh using opti-
mized NURBS patches has been proposed. This method
is topologically robust and guarantees that the complex
base be always quadrilateral creating a network of surfaces
which is compatible with most commercial CAD systems.

In the proposed algorithm, the NURBS patches are op-
timized using multiple evolutionary strategies to estimate
the optimal NURBS parameters. The resulting NURBS are
then joined, guaranteing C1 continuity. The formulation of
C1 continuity presented in this paper can be generalized,
because it can be used to approximate regular and irregular
neighborhoods which present model processes regardless of
partitioning and parametrization.
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