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Nonrigid Registration Using Free-Form
Deformations: Application to Breast MR Images

D. Rueckert,* L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes

Abstract—In this paper we present a new approach for the young premenopausal women with a genetic predisposition
nonrigid registration of contrast-enhanced breast MRI. A hierar-  to develop breast cancer.

chical transformation model of the motion of the breast has been ; ; P ; ; ;
developed. The global motion of the breast is modeled by an This has led to the investigation of alternative imaging

affine transformation while the local breast motion is described modalities, such as MRI, for the detection and diagnosis
by a free-form deformation (FFD) based on B-splines. Normalized Of breast cancer [2]. Even though MRI mammography has
mutual information is used as a voxel-based similarity measure disadvantages, such as a low spatial resolution of around
which is insensitive to intensity changes as a result of the contrast 1 mm and the need for contrast agents, it has a number of

enhancement. Registration is achieved by minimizing a Cost o4 antages; including the tomographic, and therefore three-
function, which represents a combination of the cost associated

with the smoothness of the transformation and the cost associated dimensional (3-D) nature, of the images. This allows the
with the image similarity. The algorithm has been applied to application of MRI mammography to breasts with dense tissue,
the fully automated registration of three-dimensional (3-D) breast postoperative scarring, and silicon implants. Furthermore, the
meR'rigS‘L’J?t';”;?et;]sea”?opgtsiggtsﬁggr?"’i‘gicr:'a‘igt;’;‘;ohnaVael Coor?hprﬁ"‘ig lack of radiation makes it applicable to young premenopausal
those obtained using rizid and affing regisgtration techgiques. The Wom.en. Typl.cglly,. the detection of breast cancer in MR'
results clearly indicate that the nonrigid registration algorithm is ~ fequires the injection of a contrast agent such as Gadolinium
much better able to recover the motion and deformation of the DTPA. It is known that the contrast agent uptake curves of
breast than rigid or affine registration algorithms. malignant disease differ from benign disease and this property
can be used to identify cancerous lesions [3]. To quantify the
rate of uptake, a 3-D MRI scan is acquired prior to the injection
of contrast media, followed by a dynamic sequence of 3-D
ARCINOMA of the breast is the most common mawmR| scans. The rate of uptake can be estimated from the
lignant disease in women in the western world. 9.5%jfference between pre- and postcontrast images. Any motion
of women will develop the disease in the United Kingdoraf the patient between scans, or even normal respiratory and
[1]. The major goals of breast cancer diagnosis are eagyrdiac motion, complicates the estimation of the rate of uptake
detection of malignancy and its differentiation from othegf contrast agent by the breast tissue.
breast disease. Currently, the detection and diagnosis of breasty facilitate the analysis of pre- and postcontrast enhanced
cancer primarily relies on X-ray mammography. For furtheyir|, zuo et al. [4] proposed a registration algorithm which
differentiation of mammographic or clinical abnormalitieSyinimizes the ratio of variance between images. However,
ultrasonography, transcutaneous biopsy, and MRI are usgghir algorithm is based on the assumption that the breast is
Although X-ray mammography has the advantage of higihly undergoing rigid motion. Kumaet al. [5] proposed a
sensitivity, almost approaching 100%, in fatty breast tissugenrigid registration technique which uses an optical-flow type
high resolution up to 5q:m, and low cost, it has a numbergigorithm, but is based on the assumption that the intensities
of disadvantages, such as low sensitivity in dense glandujgfine pre- and postcontrast enhanced images remain constant.
breast tissue, low specificity, and poor signal-to-noise ratig. similar approach has been suggested by Fiselel. [6].
Furthermore, the projective nature of the images and thg gyercome the problems caused by nonuniform intensity
exposure to radiation limit its applicability, especially forchange, Haytoet al. [7] developed a pharmacokinetic model,
" - ved N ber 4. 1998 revised Julv 6. 1998 th which is combined with an optical-flow registration algorithm.
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the review of this paper and recommending its publication was D. Metax. ; . . ) ’
Asterisk indicates corresponding author Any registration algorithm for the motion correction of

*D. Rueckert, L. |. Sonoda, D. L. G. Hill, and D. J. Hawkes are with thgontrast-enhanced breast MRI must take into account that
Division of Radiological Sciences and Medical Engineering, Guy’s, King’

and St. Thomas’ School of Medicine, King's College London, Guy’s Hospitasr,he _breaSt _tlssue_ deforms in a nor_1r|g|d fashion and that
London SE1 9RT, U.K. (e-mail: D.Rueckert@umds.ac.uk). the image intensity and contrast will change, due to the

C. Hayes and M. O. Leach are with the CRC Clinical Magnetic Resonan&?take of the contrast agent. In recent years, many voxel-
Research Group, Institute of Cancer Research, Royal Marsden Hospital, SuB n '

SM2 5PT. UK. ased similarity measures have shown promising results for
Publisher Item Identifier S 0278-0062(99)08508-0. multimodality image registration (for a detailed overview see

I. INTRODUCTION

0278-0062/99$10.001 1999 IEEE



RUECKERT et al: NONRIGID REGISTRATION USING FREE-FORM DEFORMATION 713

[8]). In particular, voxel-based similarity measures based @n Global Motion Model

joint entropy [9], mutual information [10]-{13], and normal-  the giobal motion model describes the overall motion of

ized mutual information [14], [15] have been shown t0 aligfhe preast. The simplest choice is a rigid transformation which
images acquired with different imaging moda_\llt!es, ro_bustl)(S parameterized by 6 degrees of freedom, describing the
However, most of these approaches are limited either IQaiions and translations of the breast. A more general class
rigid or affine transformations. In contrast, many nonrigigd¢ yansformations are affine transformations, which have six

registration algorithms based on elastic deformations, suchggjiiional degrees of freedom, describing scaling and shearing.
animal [16] or demons [17], rely on the assumption that thg 3-D. an affine transformation can be written as
intensity of tissues between images remains constant. This is

also true for nonrigid registration algorithms based on fluid 611 012 013 x 014
deformations [18], [19]. A notable exception is the registratiod gioba1(z, ¥, 2) = | 621 022 O3 | |y | + | 620 | (2)
algorithm proposed by Meyast. al [20], which is based on a 031 O3 033 ) \2 O34

thin-plate spline deformation and uses mutual information Bhere the coefficientsd parameterize the 12 degrees of

a voxel-based similarity measure. However, due to promb”“f?eedom of the transformation. In a similar fashion, the global

computational complexity of the thin-plate spline warps, thr%otion model can be extended to higher order global transfor-

registration s fes.”":ted to_a_ very limited ”“”?ber_ of degr.e%ﬁations, such as trilinear or quadratic transformations [21].
of freedom. This is not sufficient for most applications, whic
involve significant nonrigid deformations. .
In this g;]:Japer, we de?/elop an algorithm for the nonrigig' Local Motion Model
registration of 3-D contrast-enhanced breast MRI, which com-The affine transformation captures only the global motion
bines the advantages of voxel-based similarity measures, saéithe breast. An additional transformation is required, which
as mutual information, with a nonrigid transformation modehodels the local deformation of the breast. The nature of the
of the breast. The next section introduces a hierarchidatal deformation of the breast can vary significantly across
transformation model which captures the global and locaatients and with age. Therefore, it is difficult to describe the
motion of the breast. The global motion of the breast lgcal deformation via parameterized transformations. Instead,
modeled by an affine transformation, while the local breagte have chosen an FFD model, based on B-splines [22], [23],
motion is described by a free-form deformation (FFD) baseehich is a powerful tool for modeling 3-D deformable objects
on B-splines. Since the intensity and contrast between the pagd has been previously applied to the tracking and motion
and postcontrast enhanced images will change, we will ugealysis in cardiac images [24]. The basic idea of FFD'’s is
voxel-based similarity measures based on normalized mutt@ldeform an object by manipulating an underlying mesh of
information. Section Il shows results of the application ofontrol points. The resulting deformation controls the shape
the algorithm to volunteer as well as clinical patient dat&f the 3-D object and produces a smooth &t continuous
In addition, the results obtained by the nonrigid registrdransformation.
tion algorithm are compared with those of rigid and affine To define a spline-based FFD, we denote the domain of the
registration algorithms. These results demonstrate that rigigage volume a2 = {(z, y, 2) |0 <z < X, 0< y <Y,
and affine transformation models often are not sufficient tb< » < Z}. Let ¢ denote an, x ny x n. mesh of control
model the motion of the breast adequately. Finally, Section Roints ¢; ; » with uniform spacingé. Then, the FFD can be
summarizes the results and discusses current and future warikten as the 3-D tensor product of the familiar 1-D cubic
in this area. B-splines

Tlocal (]}, Y, Z)

3
Z B, (U)Bm (U) B, (w)¢i+1, jt+m, k+n (3)

m=0 n=0

nMw

3
II. IMAGE REGISTRATION = Z
=0

The goal of image registration in contrast-enhanced breast
MRI is to relate any point in the postcontrast enhancedherei = |z/n.] — 1,5 = [y/ny] — 1, k = [2/n.] — 1,
sequence to the precontrast enhanced reference image, #es,z/ne— [2/n:], v = y/n, —y/ny], w = 2/n. — | 2/n.]
to find the optimal transformatio®: (x, y, z) — (', 3/, 2’) and whereB; represents théth basis function of the B-spline
which maps any point in the dynamic image sequendd2], [23]
I{z, y, z, t) at time ¢ into its corresponding point in the

_ _ 3

reference imagd(z’, v/, 2/, to), taken at timety. In general, Bo(u) =(1 5 u) /62
the motion of the breast is nonrigid so that rigid or affine By (u) = (3u” — 6u” +4)/6
transformations alone are not sufficient for the motion By(u) =(=3u® 4+ 3u® + 3u+1)/6
correction of breast MRI. Therefore, we develop a combined —a3

: . . _ Bs(u) =u”/6.
transformationT which consists of a global transformation
and a local transformation In contrast to thin-plate splines [25] or elastic-body splines

[26], B-splines are locally controlled, which makes them
computationally efficient even for a large number of control
T(z, y, 2) = Tgobal(, ¥, 2) + Tiocar(x, ¥, z). (1) points. In particular, the basis functions of cubic B-splines
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have a limited support, i.e., changing control poif ;. 9T\ > 9T\ > ) PT\?
affects the transformation only in the local neighborhood of - 922 - dzy - x>
that control point. 2T\ 2

The control points® act as parameters of the B-spline + 2< ) dx dy dz (5)
FFD and the degree of nonrigid deformation which can be dyz

modeled d_epends essentially on the resolution O.f the meshw(ﬁere V' denotes the volume of the image domain. This
control points®. A large spacing of control points allows

modeling of global nonrigid deformations, while a smalgu"jmtlty 's the 3-D counterpart of the 2-D bending energy

spacing of control points allows modeling. of hiahl Iocan a thin-plate of metal and defines a cost function which is
P 9 P 9 ghly afssociated with the smoothness of the transformation. Note that

trlhoenrlc%l?]tr?ﬁfo:)Tnitl(r)r:]:s.hA:jégiessaEi t:]muren’btgre Orfezzlutmn % regularization term is zero for any affine transformations
P . grees o d, therefore, penalizes only nonaffine transformations [28].
freedom and, consequently, the computational complexity.
For example, a B-spline FFD defined by a ¥010 x 10
mesh of control points yields a transformation with 300
degrees of freedom. The tradeoff between model flexibility and To relate a postcontrast enhanced image to the precontrast
computational complexity is mainly an empirical choice whicenhanced reference image, we must define a similarity criterion
is determined by the accuracy required to model the deformhich measures the degree of alignment between both images.
bility of the breast tissue versus the increase in computifgven that the image intensity might change after the injection
time. In order to achieve the best compromise between tbkthe contrast agent, one cannot use a direct comparison of
degree of nonrigid deformation required to model the motidmage intensities, i.e., sum of squared differences or corre-
of the breast and the associated computational cost, we h&ton, as a similarity measure. An alternative voxel-based
implemented a hierarchical multiresolution approach [23] isimilarity measure is mutual information (MI), which has been
which the resolution of the control mesh is increased, alofgdependently proposed by Collignon [10] and Viola [11],
with the image resolution, in a coarse to fine fashion. and which has been shown to align images from different
Let ®*, ..., &L denote a hierarchy of control point meshegodalities accurately and robustly [29]. Mutual information
at different resolutions. For simplicity, we will assume thas based on the concept of information theory and expresses
the spacing between control points decreases f®mto the amount of information that one image contains about
control mesh®'*!, i.e., the resolution of the control mesha second image3
is increasing. Each control medH and the associated spline-
based FFD defines a local transformatiBfy,, at each level Comitaricy (4, B) = H(A) + H(B) - H(A, B)  (6)

of resolution and their sum defines the local transformatiQphere H(A), H(B) denote the marginal entropies of, B

8. Normalized Mutual Information

Tocal and H(A, B) denotes their joint entropy, which is calculated
L from the joint histogram ofA and B. If both images are

Tiocal(z, ¥, 2) = Z Tl (2, ¥, 2). (4) aligned, the mutual information is maximized. It has been

=1 shown by Studholme [14] that mutual information itself is

n%t independent of the overlap between two images. To avoid

ny dependency on the amount of image overlap, Studholme

@Jggested the use of normalized mutual information (NMI) as
measure of image alignment

H(A) + H(B)
H(A, B)

In this case, the local transformation is represented as
combination of B-spline FFD’s at increasing resolutions
the control point mesh. To avoid the overhead of calculati
several B-spline FFD’s separately, we represent the loéAl
transformation by a single B-spline FFD whose control point
mesh is progressively refined. In this case, the control point
mesh at level is refined by inserting new control points to ) ) )
create the control point mesh at level 1. We will assume Similar forms of normalized mutual information have been
that the control point spacing is halved in every step. In thifoposed by Maest al. [15].
case, the position of control poirt}, . ,, coincides with o
that of control pointp; ; , and the values of the new controlD- Optimization
points®!+! can be calculated directly from those ®f, using To find the optimal transformation, we minimize a cost
a B-spline subdivision algorithm [27]. function associated with the global transformation parameters
In general, the local deformation of the breast tissues shouid as well as the local transformation parametersThe cost
be characterized by a smooth transformation. To constrdimction comprises two competing goals. The first term repre-
the spline-based FFD transformation to be smooth, one cgents the cost associated with the image simil&ityaricy in
introduce a penalty term which regularizes the transformatia?,), while the second term corresponds to the cost associated
The general form of such a penalty term has been describedwith the smoothness of the transformatin,cotn in (5)

Wahba [28]. In 3-D, the penalty term takes the following form:
[ ] p y g 6(67 (I)) = _csimilarity(-[(to)v T(I(t)))+)\csx1loot}1(T)- (8)

1 X Y 7 rerT\? (PTN?
Comooth = v / / / <W) + <W) Here, A is the weighting parameter which defines the tradeoff
o J0J0 * Y between the alignment of the two image volumes and the

Csimilarity(Aa B) = (7)
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calculate the optimal affine transformation parameters © by maximising eq. (7)
initialize the control points ®.
repeat
calculate the gradient vector of the cost function in eq. (8) with respect to the non-rigid transformation parameters
d:
ve — ac(e, eh
09!
while ||VC|| > ¢ do
recalculate the control points ® = ¢ + “W%H
recalculate the gradient vector VC
increase the control point resolution by calculating new control points ®!** from &'
increase the image resolution.

until finest level of resolution is reached.

Fig. 1. The nonrigid registration algorithm.

smoothness of the transformation. For the purpose of this well as the correlation coefficient (CC)
paper, we have determined the valuexoéxperimentally and - -
found that a value of\ = 0.01 provides a good compromisec _ Z(I(to) — 1(t0))(TU(2)) = TU(1))) '
between the two competing terms of the cost function. We \/ _7 2 YT 2
have also observed that the intrinsic smoothness properties of Z(I(to) 1(t0)) Z(T(I(t)) TE)
B-splines mean that the choice afis not critical for low Heref(t0)7 T(t) denote the average intensities of the images
resolutions of the control point mesh. The regularization tergefore and after motion and the summation includes all voxels
is more important for high resolutions of the control poinfyithin the overlap of both images. In these images, the SSD
mesh. The reason for this is the fact that the ablllty of the FFQ‘]d the CC provide an indirect measure of the registration
to model localized deformations increases with decreasifgality as the position of the breast tissue changes, but the
control point spacing. This raises the need for regularizatioflssue composition, and hence image intensity, does not. Since
especially for dense control point meshes. the motion of each breast is normally uncorrelated, we have
For computational efficiency, the optimization proceeds ifanually defined a rectangular region of interest (ROI) around

several stages. During the first stage, the affine transformatiggch breast and then registered both ROI's independently.
parameter® are optimized, using an iterative multiresolution

search strategy [13]. Since the smoothness term of the c@st\junteer Data

function in (5) is zero for any affine transformation, this step To test the ability of the algorithm t t th iqid
is equivalent to maximizing the image similarity measure o test the ability of the algorithm to correct the nonrigi

defined in (7). During the subsequent stage, the nonrig{i/r&‘l)t'otn of the breast, twg sepa(rjatg z;/D MR285027ns of ;'?tht
transformation parametegsare optimized as a function of the olunteers were acquired (aged between 28-47 yr). er

cost function in (8). In each stage, we employ a simple iterati\%e first scan each volunteer was asked to move inside the

gradient descent technique which steps in the direction of tReanner. For the volunteer studies, a 3-D FLASH sequence

gradient vector with a certain step sizeThe algorithm stops w;)s :(s)s/d_vgik(l) TR= 1% ms, TI? :I X ms, tﬂltp an_glj_lhe :MR
if a local optimum of the cost function has been found. Iﬁ ' N mim, anc corona’ 1ice orientation. “ne

practice, it is sufficient to assume a local optimumfViC|| < e 'mages were acquired on a 1.5 Tesla Siemens Vision MR
for some small positive value. The nonrigid registration system without contrast enhancement. The images have a size

: : P of 256 x 256 x 64 voxels and spatial resolution of 1.33
algorithm can be summarized in Fig. 1. x 1.33 x 2.5 mm. An example of these images before and
after motion is shown in Fig. 2(a) and (b). The corresponding
difference image is shown in Fig. 2(c). Ideally, we would
expect that the difference image only shows the underlying

We have applied the registration algorithm to volunteer dagise of the image acquisition. However, the effect of the
without contrast enhancement, as well as to clinical patiefisregistration due to the motion of the breast is clearly visible
data with contrast enhancement. To assess the quality of fhethe difference image. We have compared three different
registration in volunteer data, we have calculated the mean agiges of transformations: Pure rigid and affine transforma-
variance of the squared sum of intensity differences (SSD)tions as well as the proposed nonrigid transformation model.

The registration results based on the different transformation
1 9 models and the corresponding difference images are shown
SSb= n \/Z (£(fo) = TUI(£))) © in Fig. 3(a)—(f). After rigid and affine registration there is

(10)

lll. RESULTS
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@) (b) ©

Fig. 2. Example of misregistration caused by motion of a volunteer. (a) Before motion. (b) After motion. (c) After subtracting (b) from (a) witbtoatioag
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(d) (e) ®

Fig. 3. Example of different transformations on the registration for the volunteer study in Fig. 2: after (a) rigid, (b) affine, and (c) nonrigidioagist
The corresponding difference images are shown in (d)—(f).

still a considerable amount of misregistration visible in thaffine transformations, a control point spacing of 15 or 10 mm
difference image. However, after nonrigid registration thgields even higher correlation. The main reason for this is the
amount of misregistration visible in the difference image hascreased flexibility of the spline-based FFD to describe local
been reduced significantly. deformations of the breast as the number of control points
Table | summarizes the results of the registration quality afcreases.
the volunteer datasets in terms of squared sum of intensityin addition we performed a second experiment in which
differences (SSD) and correlation coefficient (CC) for theve wanted to assess the ability of the algorithm to correct
different transformation models. The results clearly show ther different degrees of motion. The imaging protocol consists
the registrations which are based on rigid or affine transformaf six consecutive 3-D MR scans of two volunteers, using
tions improve the correlation between the images before atid same image acquisition parameters as described earlier.
after motion. However, both transformation models perforfaetween each scan the volunteers were asked to move by a
significantly worse than the proposed nonrigid transformatiatifferent amount. The amount of motion the volunteers were
model. The results also show that the nonrigid registrati@sked to simulate was: 1) no movement, 2) cough, 3) move
performs better as the resolution of the control point mesh béad, 4) move arm, and 5) lift out of coil and back. As before,
the spline-based FFD increases. While a control point spaciwg compared rigid, affine, and nonrigid registration with no
of 20 mm yields already improved correlation compared tegistration. The results are summarized in Figs. 4 and 5.
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Fig. 4. Comparison of the registration error in terms of SSD for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough.
(c) Move head. (d) Move arm. (e) Lift out of coil and back.
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Degree of Motion

Fig. 5. Comparison of the registration error in terms of CC for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough. (c) Move
head. (d) Move arm. (e) Lift out of coil and back.

Fig. 4 compares the registration error in terms of SSD fds mm. A similar observation can be made by comparing the
the different degrees motion: In the case of no movement, atirrelation coefficient (CC) in Fig. 5 between the images with
registration techniques provide a very similar improvemerand without registration.

compared to no registration. However, in all other cases )

the nonrigid registration performs better than rigid or affing- Patient Data

registration. Furthermore, the nonrigid registration performsWe have also applied the algorithm to contrast-enhanced
better at a control point spacing of 10 mm than at 20 &R images from a group of eight different patients. For the
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@) (b) ©

Fig. 6. Example of misregistration in a contrast-enhanced patient study. (a) Before injection of the contrast medium. (b) After injection afagie cont
medium. (c) After subtraction of (a) and (b) without registration.

(d) (e) ®

Fig. 7. Example of different transformations on the registration for the patient study in Fig. 6. (a) After rigid. (b) After affine. (c) After n@uisfiction.
The corresponding difference images are shown in (d)—(f).

patient studies, a sequence of six 3-D scans was used vdtid to rank them according to their quality (where the lowest
TR =12 ms, TE= 5 ms, flip angle= 35°, FOV = 350 mm, rank corresponds to the best quality). We compared no regis-
and axial slice orientation. The MR images were acquired ortration as well as the following three registration techniques:
1.5-T Siemens Vision MR system with Gd-DTPA (Magnevist]) rigid, 2) affine, and 3) the proposed nonrigid registration
Schering) contrast enhancement. The images have a sizéeshnique. For the nonrigid registration technique we used
256 x 256 voxels and a spatial resolution of 1.37 1.37 a control point spacing of 10 mm, since this has provided
x 4.2 mm. A typical dataset contains approximately 30—4fe best results in the volunteer experiments. The radiologists
slices, depending on the size of the breast. The time intervedre presented with the pre-contrast images, the postcontrast
between the individual 3-D scans of the postcontrast sequeimoages, and the corresponding difference images in a blinded
is approximately one minute. However, since most of thfashion. The results of the ranking and significance tests for
motion occurs immediately after the injection of the contrasil pairwise multiple comparison procedures are summarized
agent, we have used only the first image of the postcontrastTable Il. In 94% of the cases, both radiologists ranked
sequence. the nonrigid registration technique as the best technique.
To assess the registration quality in the patient datasets, lwethe remaining 6% of the cases, there was very little
asked two clinical radiologists to assess the images visuathotion between the pre- and postcontrast images so that all
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@ (b)

@ (b)

Fig. 8. A MIP of the difference images of the patient study in Fig. 6. (a) Without registration. (b) With rigid. (c) With affine. (d) With nonrigidategistr
The tumor can be recognized after registration with all three techniques, but is most clearly visible in (d).

TABLE | TABLE 1
COMPARISON OF THEAVERAGE REGISTRATION ERROR OF THEV OLUNTEER VISUAL ASSESSMENT ANDRANKING OF THE REGISTRATION
STUDIES IN TERMS OF SQUARED SUM OF INTENSITY DIFFERENCES QUALITY IN THE PATIENT DATASETS BY TwO RADIOLOGISTS
(SSD) AND CORRELATION COEFFICIENT (CC) FOR DIFFERENT (WHERE THE LOWEST RANK CORRESPONDS TO THEBEST QUALITY )
TYPES OF TRANSFORMATION. THE SPLINE-BASED FFD Has BEEN : . . )
EVALUATED AT A CONTROL POINT SPACING OF 20, 15,AND 10 mm Registration _ Ranking
. ] A B |A<B[A=B[A>B
Registration SSD (mean) [ SSD (variance) | CC Rigid No registration ®% | 2% | -
No registration 38.52 53.90 0.8978 Affine No registration | 84 % | 16 % | -
Rigid 23.63 33.38 0.9604 Affine + FFD | No registration | 94% | 6 % |
Affine 2138 | 20.84 0.9689 ~ Affine Rigid 13% | 8% | 9%
Affine + FFD (20mm) 14.35 23.43 0.9877 Affine + FFD Rigid [94% | 6% i
Affine + FFD (15mm) 13.28 2091 | 0.9895 Affine + FFD Affine [ 94% | 6%

Affine + FFD (10mm) | 12.53 19.25 0.9905

) ) _ and the corresponding difference images after rigid, affine,
registration techniques ranked equally well. The table alggq nonrigid registration. The results demonstrate that all
shows that there is little difference in the ranking betweeafyee registrations techniques lead to a significantly improved
the rigid and affine registration techniques. localization of the uptake of contrast agent, compared to the

An example of a pre- and postcontrast enhanced image dfiierence image in Fig. 6(c). The tumor is clearly visible in
patient data set without registration is shown in Fig. 6. The di&l three difference images, but is best defined in the difference
ference image shows a substantial amount of motion artifadisage with nonrigid registration. This can be verified by
due to considerable patient movement after the injection of tespecting a 3-D reconstruction of the difference image in
contrast agent. Fig. 7 shows the postcontrast enhanced imtdgeform of a maximum intensity projection (MIP). Fig. 8(a)
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due to motion of the chest wall and skin. Finally, the MIP
reconstruction after nonrigid registration in Fig. 8(d) shows REFERENCES
a much improved definition of the tumor and a significant ] 5 o ot e i b ]
H H H H H H f 1] “Incidence of and mortal ity rom cancers of the lung, s| in, breast an
reduction of the ml_sr_eglstra_\tlon .artlfaCtS' .ThIS Conflrms. tha{ cervix,” Office of Nat. Stat., London, U.K., Monitor MB1 96/2, 1996.
the proposed nonrigid registration algorithm can eliminatgz] J. c. weinreb and G. Newstead, “MR imaging of the brea@gtiiology,
misregistration artifacts while preserving enhancing regions. _ vol. 196, pp. 593-610, 1995.
[3] S. H. Heywang-Kobrunner and R. BeclContrast-Enhanced MRI of the
Breast. Berlin, Germany: Springer-Verlag, 1995.
IV. DISCUSSION [4] C. S. Zuo, A. P. Jiang, B. L. Buff, T. G. Mahon, and T. Z. Wong,
’ “Automatic motion correction for breast MR imagingRadiology,vol.
We have developed a fully automated algorithm for the 198, no. 3, pp. 903-906, 1996.

o : : _ : 5] R. Kumar, J. C. Asmuth, K. Hanna, J. Bergen, C. Hulka, D. B.
nonrigid registration of 3-D breast MRI based on normalized Kopans, R. Weisskoff, and R. Moore, “Application of 3D registration

mutual information. The algorithm uses a nonrigid transforma-  for detecting lesions in magnetic resonance breast scanBsoin SPIE

tion model to describe the motion of the breast in dynamic MR  Medical Imaging 1996: Image Processinjewport Beach, CA, Feb.

: L - : 1996, vol. 2710, pp. 646-656.
images. The proposed combination of affine transformations, 1”5 Yo W oty c. EnrittBraun, S. Peschl. and J. Henning, “Local

and spline-based FFD’s provides a high degree of flexibility = elastic motion correction in MR mammography,” Rroc. Int Soc.
to model the motion of the breast. In contrast to physics-based Magnetic Resonance Medicin#998, vol. 1, p. 725.

9
. . . _[7] P. Hayton, M. Brady, L. Tarassenko, and N. Moore, “Analysis of
deformation models [30]- the algor'thm makes no assumpuon[s dynamic MR breast images using a model of contrast enhancement,”

about the elastic properties of the breast tissue. Even though Med. Image Anal.yol. 1, no. 3, pp. 207224, 1997.

hvsics- formation m Is migh m an attractiV® J- B- A. Maintz and M. A. Viergever, “A survey of medical image
physics-based deformatio odels ght seem an att activé registration,”Med. Image Anal.yol. 2, no. 1, pp. 1-36, 1998.

alternative, for example to model additional constraints sucly; c.”studholme, D. L. G. Hill, and D. J. Hawkes, “Multiresolution
as incompressibility, they are usually difficult to evaluate and voxel similarity measures for MR-PET registration,” Information
verify. Moreover, the elastic properties of the breast tissues can Frecessing Medical Imaging: Proc. 14th Int. Conf. IPMI'95995, pp.

L . . . 287-298.
vary significantly across patients and with age, which rendgfi$) A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Seutens, and G.

the application of such models difficult. Mar.al, “Automated multimodality image registration using information

: o i« theory,” in Information Processing Medical Imaging: Proc. 14th Int.
The experimental results have shown that the nonrigid regis- ~- IPMI'95, 1995, pp. 263-274.

tration of 3-D breast MRI can reduce motion artifacts betwegi] P. Viola, “Alignment by maximization of mutual information,” Ph.D.
images significantly. The results have also demonstrated thaﬁ dissertation, Massachusetts Inst. Technol., Cambridge, MA, 1995.

. . . . . . n% C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Automated 3-D
in many cases rigid or affine registration techniques are registration of MR and CT images of the headfed. Image Anal.s,

sufficient to correct motion in 3-D breast MRI. In some of  vol. 1, no. 2, pp. 163-175, 1996.

the difference images a small amount of structure is visiblg2! C- Studholme, D. L. G. Hill, and D. J. Hawkes, "Automated 3D regis-
tration of MR and PET brain images by multi-resolution optimization of

even after nonrigid _regis'[ration- This may be caused bY_ Pe_lrtial voxel similarity measures Med. Phys.yol. 24, no. 1, pp. 25-35, 1997.
volume effects, which are more pronounced for acquisitiori&!] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant
with poor resolution in the slice direction. In future screening ~ &N"PY s of 30 medical image alignmePaftern Recognit
studies a significant improvement of the image resolution gs] F. Maes, A. Collignon, D. Vandermeulen, G. Marechal, and R. Suetens,
envisaged which will reduce partial volume effects further. “Multimodality image registration by maximization of mutual informa-

: : : tion,” IEEE Trans. Med. Imagyol. 16, pp. 187-198, Mar. 1997.
The registration of these Images Currently takes betweﬁl@] D. L. Collins, A. C. Evans, C.gHolmes, gﬂd T. M. Peters, “Automatic 3D

15-30 min of CPU time on a Sun Ultra 10 workstation, which ~ segmentation of neuro-anatomical structures from MRIfhiiormation
makes routine application in a clinical environment possible. ~Processing Medical Imaging: Proc. 14th Int. Conf. IPMI'95995, pp.

. - . 139-152.
We have also demonstrated the appllcablhty of the algomh 1 J. P. Thirion, “Image matching as a diffusion process: An analogy with

to the motion correction in contrast-enhanced MRI. However, Maxwell's demons,'Medical Image Analysisol. 2, no. 3, pp. 243-260,
further work is needed to assess and evaluate the imp & 1998.

. . . . G. E. Christensen, M. I. Miller, J. L. Mars, and M. W. Vannier,
of the algorithm for the detection and diagnosis of breast™ «aytomatic analysis of medical images using a deformable textbook,”

cancer, which is the topic of a forthcoming paper [31]. Future Computer Assisted RadiologyBerlin, Germany: Springer-Verlag, June

i P ; ; 1995, pp. 146-151.
work will involve the appllcatlon of the proposed registratio 19] M. Bro-Nielsen, “Fast fluid registration of medical images,” Rnoc.

algorithm to data from the MRC-supported U.K. study of MR 4th International Conference Visualization in Biomedical Computing
as a method of screening women at genetic risk of breast VBC'96, 1996, pp. 267-276.
cancer [20] C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P.
' V. Kison, K. Koral, K. A. Frey, and R. L. Wahl, “Demonstration of
accuracy and clinical versatility of mutual information for automatic
multimodality image fusion using affine and thin-plate spline warped
ACKNOWLEDGMENT geometric deformations,Medical Image Analysisyol. 1, no. 3, pp.

The authors wish to thank Dr. E. Denton, Consultant Raci%— 195-207, 1997.

. ., . R. Szeliski and S. Lavdk, “Matching 3-D anatomical surfaces with
OIOg'St at King’s Healthcare Trust, Dr. S. Rankin, Consulta nonrigid deformations using octree-splines,” IREE Workshop on

Radiologist at Guy’'s and St. Thomas NHS Trust Hospital, Biomedical Image Analysig994, pp. 144-153.



RUECKERT et al: NONRIGID REGISTRATION USING FREE-FORM DEFORMATION

721

[22] S. Lee, G. Wolberg, K.-Y. Chwa, and S. Y. Shin, “Image metamorphos[28] G. Wahba, “Spline models for observational datgt. Industr. Applied

with scattered feature constraint$EEE Trans. Visualization Comput.
Graph.,vol. 2, pp. 337-354, Oct. 1996.

[23] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with

multilevel B-splines,”|IEEE Trans. Visualization Comput. Graphol.
3, pp. 228-244, July 1997.

[24] E. Bardinet, L. D. Cohen, and N. Ayache, “Tracking and motion analysis

of the left ventricle with deformable superquadricsléd. Image Anal.,
vol. 1, no. 2, pp. 129-149, 1996.

[25] F. L. Bookstein, “Principal warps: Thin-plate splines and the decompo-

sition of deformations,|IEEE Trans. Pattern Anal. Machine Intelkpl.
11, pp. 567-585, June 1989.

[26] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms, “A physics-

based coordinate transformation for 3-D image matchiigE Trans.
Med. Imag.,vol. 16, no. 3, pp. 317-328, May 1997.

[27] D. R. Forsey and R. H. Bartels, “Hierarchical B-spline refinement,”

ACM Trans. Comput. Graphvol. 22, no. 4, pp. 205-212, 1988.

Math., 1990.

J. B. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer,
Jr., R. M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon,
F. Maes, P. Suetens, D. Vandermeulen, P. A. van den Elsen, S. Napel,
T. S. Sumanaweera, B. Harkness, P. F. Hemler, D. L. G. Hill, D. J.
Hawkes, C. Studholme, J. B. A. Maintz, M. A. Viergever, G. Malandain,
X. Pennec, M. E. Noz, G. Q. Maguire, Jr., M. Pollack, C. A. Pelizzari,
R. A. Robb, D. Hanson, and R. P. Woods, “Comparison and evaluation
of retrospective intermodality image registration techniquésComput.
Assisted Tomogryol. 21, pp. 554-566, 1997.

P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes, “A three-
component deformation model for image-guided surgelgd. Image
Anal., vol. 2, no. 4, pp. 355-367, 1998.

E. R. E. Denton, L. I. Sonoda, D. Rueckert, S. C. Rankin, C. Hayes, M.
Leach, D. L. G. Hill, and D. J. Hawkes, “Comparison and evaluation
of rigid and nonrigid registration of breast MR images,” Comput.
Assisted Tomogr1999, to be published.



