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Nonrigid Registration Using Free-Form
Deformations: Application to Breast MR Images

D. Rueckert,* L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes

Abstract—In this paper we present a new approach for the
nonrigid registration of contrast-enhanced breast MRI. A hierar-
chical transformation model of the motion of the breast has been
developed. The global motion of the breast is modeled by an
affine transformation while the local breast motion is described
by a free-form deformation (FFD) based on B-splines. Normalized
mutual information is used as a voxel-based similarity measure
which is insensitive to intensity changes as a result of the contrast
enhancement. Registration is achieved by minimizing a cost
function, which represents a combination of the cost associated
with the smoothness of the transformation and the cost associated
with the image similarity. The algorithm has been applied to
the fully automated registration of three-dimensional (3-D) breast
MRI in volunteers and patients. In particular, we have compared
the results of the proposed nonrigid registration algorithm to
those obtained using rigid and affine registration techniques. The
results clearly indicate that the nonrigid registration algorithm is
much better able to recover the motion and deformation of the
breast than rigid or affine registration algorithms.

I. INTRODUCTION

CARCINOMA of the breast is the most common ma-
lignant disease in women in the western world. 9.5%

of women will develop the disease in the United Kingdom
[1]. The major goals of breast cancer diagnosis are early
detection of malignancy and its differentiation from other
breast disease. Currently, the detection and diagnosis of breast
cancer primarily relies on X-ray mammography. For further
differentiation of mammographic or clinical abnormalities,
ultrasonography, transcutaneous biopsy, and MRI are used.
Although X-ray mammography has the advantage of high
sensitivity, almost approaching 100%, in fatty breast tissue,
high resolution up to 50 m, and low cost, it has a number
of disadvantages, such as low sensitivity in dense glandular
breast tissue, low specificity, and poor signal-to-noise ratio.
Furthermore, the projective nature of the images and the
exposure to radiation limit its applicability, especially for
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young premenopausal women with a genetic predisposition
to develop breast cancer.

This has led to the investigation of alternative imaging
modalities, such as MRI, for the detection and diagnosis
of breast cancer [2]. Even though MRI mammography has
disadvantages, such as a low spatial resolution of around
1 mm and the need for contrast agents, it has a number of
advantages, including the tomographic, and therefore three-
dimensional (3-D) nature, of the images. This allows the
application of MRI mammography to breasts with dense tissue,
postoperative scarring, and silicon implants. Furthermore, the
lack of radiation makes it applicable to young premenopausal
women. Typically, the detection of breast cancer in MRI
requires the injection of a contrast agent such as Gadolinium
DTPA. It is known that the contrast agent uptake curves of
malignant disease differ from benign disease and this property
can be used to identify cancerous lesions [3]. To quantify the
rate of uptake, a 3-D MRI scan is acquired prior to the injection
of contrast media, followed by a dynamic sequence of 3-D
MRI scans. The rate of uptake can be estimated from the
difference between pre- and postcontrast images. Any motion
of the patient between scans, or even normal respiratory and
cardiac motion, complicates the estimation of the rate of uptake
of contrast agent by the breast tissue.

To facilitate the analysis of pre- and postcontrast enhanced
MRI, Zuo et al. [4] proposed a registration algorithm which
minimizes the ratio of variance between images. However,
their algorithm is based on the assumption that the breast is
only undergoing rigid motion. Kumaret al. [5] proposed a
nonrigid registration technique which uses an optical-flow type
algorithm, but is based on the assumption that the intensities
in the pre- and postcontrast enhanced images remain constant.
A similar approach has been suggested by Fischeret al. [6].
To overcome the problems caused by nonuniform intensity
change, Haytonet al. [7] developed a pharmacokinetic model,
which is combined with an optical-flow registration algorithm.
This algorithm has been applied to the registration of two-
dimensional (2-D) breast MRI, but relies on the assumption
that the change of intensities can be sufficiently explained by
the pharmacokinetic model, which is not always the case.

Any registration algorithm for the motion correction of
contrast-enhanced breast MRI must take into account that
the breast tissue deforms in a nonrigid fashion and that
the image intensity and contrast will change, due to the
uptake of the contrast agent. In recent years, many voxel-
based similarity measures have shown promising results for
multimodality image registration (for a detailed overview see
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[8]). In particular, voxel-based similarity measures based on
joint entropy [9], mutual information [10]–[13], and normal-
ized mutual information [14], [15] have been shown to align
images acquired with different imaging modalities, robustly.
However, most of these approaches are limited either to
rigid or affine transformations. In contrast, many nonrigid
registration algorithms based on elastic deformations, such as
animal [16] or demons [17], rely on the assumption that the
intensity of tissues between images remains constant. This is
also true for nonrigid registration algorithms based on fluid
deformations [18], [19]. A notable exception is the registration
algorithm proposed by Meyeret. al [20], which is based on a
thin-plate spline deformation and uses mutual information as
a voxel-based similarity measure. However, due to prohibitive
computational complexity of the thin-plate spline warps, the
registration is restricted to a very limited number of degrees
of freedom. This is not sufficient for most applications, which
involve significant nonrigid deformations.

In this paper, we develop an algorithm for the nonrigid
registration of 3-D contrast-enhanced breast MRI, which com-
bines the advantages of voxel-based similarity measures, such
as mutual information, with a nonrigid transformation model
of the breast. The next section introduces a hierarchical
transformation model which captures the global and local
motion of the breast. The global motion of the breast is
modeled by an affine transformation, while the local breast
motion is described by a free-form deformation (FFD) based
on B-splines. Since the intensity and contrast between the pre-
and postcontrast enhanced images will change, we will use
voxel-based similarity measures based on normalized mutual
information. Section III shows results of the application of
the algorithm to volunteer as well as clinical patient data.
In addition, the results obtained by the nonrigid registra-
tion algorithm are compared with those of rigid and affine
registration algorithms. These results demonstrate that rigid
and affine transformation models often are not sufficient to
model the motion of the breast adequately. Finally, Section IV
summarizes the results and discusses current and future work
in this area.

II. I MAGE REGISTRATION

The goal of image registration in contrast-enhanced breast
MRI is to relate any point in the postcontrast enhanced
sequence to the precontrast enhanced reference image, i.e.,
to find the optimal transformation
which maps any point in the dynamic image sequence

at time into its corresponding point in the
reference image , taken at time . In general,
the motion of the breast is nonrigid so that rigid or affine
transformations alone are not sufficient for the motion
correction of breast MRI. Therefore, we develop a combined
transformation which consists of a global transformation
and a local transformation

(1)

A. Global Motion Model

The global motion model describes the overall motion of
the breast. The simplest choice is a rigid transformation which
is parameterized by 6 degrees of freedom, describing the
rotations and translations of the breast. A more general class
of transformations are affine transformations, which have six
additional degrees of freedom, describing scaling and shearing.
In 3-D, an affine transformation can be written as

(2)

where the coefficients parameterize the 12 degrees of
freedom of the transformation. In a similar fashion, the global
motion model can be extended to higher order global transfor-
mations, such as trilinear or quadratic transformations [21].

B. Local Motion Model

The affine transformation captures only the global motion
of the breast. An additional transformation is required, which
models the local deformation of the breast. The nature of the
local deformation of the breast can vary significantly across
patients and with age. Therefore, it is difficult to describe the
local deformation via parameterized transformations. Instead,
we have chosen an FFD model, based on B-splines [22], [23],
which is a powerful tool for modeling 3-D deformable objects
and has been previously applied to the tracking and motion
analysis in cardiac images [24]. The basic idea of FFD’s is
to deform an object by manipulating an underlying mesh of
control points. The resulting deformation controls the shape
of the 3-D object and produces a smooth andcontinuous
transformation.

To define a spline-based FFD, we denote the domain of the
image volume as , ,

. Let denote a mesh of control
points with uniform spacing . Then, the FFD can be
written as the 3-D tensor product of the familiar 1-D cubic
B-splines

(3)

where , , ,
, ,

and where represents theth basis function of the B-spline
[22], [23]

In contrast to thin-plate splines [25] or elastic-body splines
[26], B-splines are locally controlled, which makes them
computationally efficient even for a large number of control
points. In particular, the basis functions of cubic B-splines
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have a limited support, i.e., changing control point
affects the transformation only in the local neighborhood of
that control point.

The control points act as parameters of the B-spline
FFD and the degree of nonrigid deformation which can be
modeled depends essentially on the resolution of the mesh of
control points . A large spacing of control points allows
modeling of global nonrigid deformations, while a small
spacing of control points allows modeling of highly local
nonrigid deformations. At the same time, the resolution of
the control point mesh defines the number of degrees of
freedom and, consequently, the computational complexity.
For example, a B-spline FFD defined by a 1010 10
mesh of control points yields a transformation with 3000
degrees of freedom. The tradeoff between model flexibility and
computational complexity is mainly an empirical choice which
is determined by the accuracy required to model the deforma-
bility of the breast tissue versus the increase in computing
time. In order to achieve the best compromise between the
degree of nonrigid deformation required to model the motion
of the breast and the associated computational cost, we have
implemented a hierarchical multiresolution approach [23] in
which the resolution of the control mesh is increased, along
with the image resolution, in a coarse to fine fashion.

Let denote a hierarchy of control point meshes
at different resolutions. For simplicity, we will assume that
the spacing between control points decreases fromto
control mesh , i.e., the resolution of the control mesh
is increasing. Each control mesh and the associated spline-
based FFD defines a local transformation at each level
of resolution and their sum defines the local transformation

(4)

In this case, the local transformation is represented as a
combination of B-spline FFD’s at increasing resolutions of
the control point mesh. To avoid the overhead of calculating
several B-spline FFD’s separately, we represent the local
transformation by a single B-spline FFD whose control point
mesh is progressively refined. In this case, the control point
mesh at level is refined by inserting new control points to
create the control point mesh at level . We will assume
that the control point spacing is halved in every step. In this
case, the position of control point coincides with
that of control point and the values of the new control
points can be calculated directly from those of, using
a B-spline subdivision algorithm [27].

In general, the local deformation of the breast tissues should
be characterized by a smooth transformation. To constrain
the spline-based FFD transformation to be smooth, one can
introduce a penalty term which regularizes the transformation.
The general form of such a penalty term has been described by
Wahba [28]. In 3-D, the penalty term takes the following form:

(5)

where denotes the volume of the image domain. This
quantity is the 3-D counterpart of the 2-D bending energy
of a thin-plate of metal and defines a cost function which is
associated with the smoothness of the transformation. Note that
the regularization term is zero for any affine transformations
and, therefore, penalizes only nonaffine transformations [28].

C. Normalized Mutual Information

To relate a postcontrast enhanced image to the precontrast
enhanced reference image, we must define a similarity criterion
which measures the degree of alignment between both images.
Given that the image intensity might change after the injection
of the contrast agent, one cannot use a direct comparison of
image intensities, i.e., sum of squared differences or corre-
lation, as a similarity measure. An alternative voxel-based
similarity measure is mutual information (MI), which has been
independently proposed by Collignon [10] and Viola [11],
and which has been shown to align images from different
modalities accurately and robustly [29]. Mutual information
is based on the concept of information theory and expresses
the amount of information that one image contains about
a second image

(6)

where denote the marginal entropies of
and denotes their joint entropy, which is calculated
from the joint histogram of and . If both images are
aligned, the mutual information is maximized. It has been
shown by Studholme [14] that mutual information itself is
not independent of the overlap between two images. To avoid
any dependency on the amount of image overlap, Studholme
suggested the use of normalized mutual information (NMI) as
a measure of image alignment

(7)

Similar forms of normalized mutual information have been
proposed by Maeset al. [15].

D. Optimization

To find the optimal transformation, we minimize a cost
function associated with the global transformation parameters

, as well as the local transformation parameters. The cost
function comprises two competing goals. The first term repre-
sents the cost associated with the image similarity in
(7), while the second term corresponds to the cost associated
with the smoothness of the transformation in (5)

(8)

Here, is the weighting parameter which defines the tradeoff
between the alignment of the two image volumes and the
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Fig. 1. The nonrigid registration algorithm.

smoothness of the transformation. For the purpose of this
paper, we have determined the value ofexperimentally and
found that a value of provides a good compromise
between the two competing terms of the cost function. We
have also observed that the intrinsic smoothness properties of
B-splines mean that the choice of is not critical for low
resolutions of the control point mesh. The regularization term
is more important for high resolutions of the control point
mesh. The reason for this is the fact that the ability of the FFD
to model localized deformations increases with decreasing
control point spacing. This raises the need for regularization,
especially for dense control point meshes.

For computational efficiency, the optimization proceeds in
several stages. During the first stage, the affine transformation
parameters are optimized, using an iterative multiresolution
search strategy [13]. Since the smoothness term of the cost
function in (5) is zero for any affine transformation, this step
is equivalent to maximizing the image similarity measure
defined in (7). During the subsequent stage, the nonrigid
transformation parametersare optimized as a function of the
cost function in (8). In each stage, we employ a simple iterative
gradient descent technique which steps in the direction of the
gradient vector with a certain step size. The algorithm stops
if a local optimum of the cost function has been found. In
practice, it is sufficient to assume a local optimum if
for some small positive value. The nonrigid registration
algorithm can be summarized in Fig. 1.

III. RESULTS

We have applied the registration algorithm to volunteer data
without contrast enhancement, as well as to clinical patient
data with contrast enhancement. To assess the quality of the
registration in volunteer data, we have calculated the mean and
variance of the squared sum of intensity differences (SSD)

SSD (9)

as well as the correlation coefficient (CC)

CC (10)

Here denote the average intensities of the images
before and after motion and the summation includes all voxels
within the overlap of both images. In these images, the SSD
and the CC provide an indirect measure of the registration
quality as the position of the breast tissue changes, but the
tissue composition, and hence image intensity, does not. Since
the motion of each breast is normally uncorrelated, we have
manually defined a rectangular region of interest (ROI) around
each breast and then registered both ROI’s independently.

A. Volunteer Data

To test the ability of the algorithm to correct the nonrigid
motion of the breast, two separate 3-D MR scans of eight
volunteers were acquired (aged between 28–47 yr). After
the first scan each volunteer was asked to move inside the
scanner. For the volunteer studies, a 3-D FLASH sequence
was used with TR ms, TE ms, flip angle
35 , FOV mm, and coronal slice orientation. The MR
images were acquired on a 1.5 Tesla Siemens Vision MR
system without contrast enhancement. The images have a size
of 256 256 64 voxels and spatial resolution of 1.33

1.33 2.5 mm. An example of these images before and
after motion is shown in Fig. 2(a) and (b). The corresponding
difference image is shown in Fig. 2(c). Ideally, we would
expect that the difference image only shows the underlying
noise of the image acquisition. However, the effect of the
misregistration due to the motion of the breast is clearly visible
in the difference image. We have compared three different
types of transformations: Pure rigid and affine transforma-
tions as well as the proposed nonrigid transformation model.
The registration results based on the different transformation
models and the corresponding difference images are shown
in Fig. 3(a)–(f). After rigid and affine registration there is
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(a) (b) (c)

Fig. 2. Example of misregistration caused by motion of a volunteer. (a) Before motion. (b) After motion. (c) After subtracting (b) from (a) without registration.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of different transformations on the registration for the volunteer study in Fig. 2: after (a) rigid, (b) affine, and (c) nonrigid registration.
The corresponding difference images are shown in (d)–(f).

still a considerable amount of misregistration visible in the
difference image. However, after nonrigid registration the
amount of misregistration visible in the difference image has
been reduced significantly.

Table I summarizes the results of the registration quality of
the volunteer datasets in terms of squared sum of intensity
differences (SSD) and correlation coefficient (CC) for the
different transformation models. The results clearly show that
the registrations which are based on rigid or affine transforma-
tions improve the correlation between the images before and
after motion. However, both transformation models perform
significantly worse than the proposed nonrigid transformation
model. The results also show that the nonrigid registration
performs better as the resolution of the control point mesh of
the spline-based FFD increases. While a control point spacing
of 20 mm yields already improved correlation compared to

affine transformations, a control point spacing of 15 or 10 mm
yields even higher correlation. The main reason for this is the
increased flexibility of the spline-based FFD to describe local
deformations of the breast as the number of control points
increases.

In addition we performed a second experiment in which
we wanted to assess the ability of the algorithm to correct
for different degrees of motion. The imaging protocol consists
of six consecutive 3-D MR scans of two volunteers, using
the same image acquisition parameters as described earlier.
Between each scan the volunteers were asked to move by a
different amount. The amount of motion the volunteers were
asked to simulate was: 1) no movement, 2) cough, 3) move
head, 4) move arm, and 5) lift out of coil and back. As before,
we compared rigid, affine, and nonrigid registration with no
registration. The results are summarized in Figs. 4 and 5.
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Fig. 4. Comparison of the registration error in terms of SSD for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough.
(c) Move head. (d) Move arm. (e) Lift out of coil and back.

Fig. 5. Comparison of the registration error in terms of CC for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough. (c) Move
head. (d) Move arm. (e) Lift out of coil and back.

Fig. 4 compares the registration error in terms of SSD for
the different degrees motion: In the case of no movement, all
registration techniques provide a very similar improvement,
compared to no registration. However, in all other cases
the nonrigid registration performs better than rigid or affine
registration. Furthermore, the nonrigid registration performs
better at a control point spacing of 10 mm than at 20 or

15 mm. A similar observation can be made by comparing the
correlation coefficient (CC) in Fig. 5 between the images with
and without registration.

B. Patient Data

We have also applied the algorithm to contrast-enhanced
MR images from a group of eight different patients. For the
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(a) (b) (c)

Fig. 6. Example of misregistration in a contrast-enhanced patient study. (a) Before injection of the contrast medium. (b) After injection of the contrast
medium. (c) After subtraction of (a) and (b) without registration.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Example of different transformations on the registration for the patient study in Fig. 6. (a) After rigid. (b) After affine. (c) After nonrigid registration.
The corresponding difference images are shown in (d)–(f).

patient studies, a sequence of six 3-D scans was used with
TR ms, TE ms, flip angle 35 , FOV mm,
and axial slice orientation. The MR images were acquired on a
1.5-T Siemens Vision MR system with Gd-DTPA (Magnevist,
Schering) contrast enhancement. The images have a size of
256 256 voxels and a spatial resolution of 1.37 1.37

4.2 mm. A typical dataset contains approximately 30–40
slices, depending on the size of the breast. The time interval
between the individual 3-D scans of the postcontrast sequence
is approximately one minute. However, since most of the
motion occurs immediately after the injection of the contrast
agent, we have used only the first image of the postcontrast
sequence.

To assess the registration quality in the patient datasets, we
asked two clinical radiologists to assess the images visually

and to rank them according to their quality (where the lowest
rank corresponds to the best quality). We compared no regis-
tration as well as the following three registration techniques:
1) rigid, 2) affine, and 3) the proposed nonrigid registration
technique. For the nonrigid registration technique we used
a control point spacing of 10 mm, since this has provided
the best results in the volunteer experiments. The radiologists
were presented with the pre-contrast images, the postcontrast
images, and the corresponding difference images in a blinded
fashion. The results of the ranking and significance tests for
all pairwise multiple comparison procedures are summarized
in Table II. In 94% of the cases, both radiologists ranked
the nonrigid registration technique as the best technique.
In the remaining 6% of the cases, there was very little
motion between the pre- and postcontrast images so that all
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(a) (b)

(a) (b)

Fig. 8. A MIP of the difference images of the patient study in Fig. 6. (a) Without registration. (b) With rigid. (c) With affine. (d) With nonrigid registration.
The tumor can be recognized after registration with all three techniques, but is most clearly visible in (d).

TABLE I
COMPARISON OF THEAVERAGE REGISTRATION ERROR OF THEVOLUNTEER

STUDIES IN TERMS OF SQUARED SUM OF INTENSITY DIFFERENCES

(SSD) AND CORRELATION COEFFICIENT (CC) FOR DIFFERENT

TYPES OFTRANSFORMATION. THE SPLINE-BASED FFD HAS BEEN

EVALUATED AT A CONTROL POINT SPACING OF 20, 15,AND 10 mm

registration techniques ranked equally well. The table also
shows that there is little difference in the ranking between
the rigid and affine registration techniques.

An example of a pre- and postcontrast enhanced image of a
patient data set without registration is shown in Fig. 6. The dif-
ference image shows a substantial amount of motion artifacts,
due to considerable patient movement after the injection of the
contrast agent. Fig. 7 shows the postcontrast enhanced image

TABLE II
VISUAL ASSESSMENT ANDRANKING OF THE REGISTRATION

QUALITY IN THE PATIENT DATASETS BY TWO RADIOLOGISTS

(WHERE THE LOWEST RANK CORRESPONDS TO THEBEST QUALITY )

and the corresponding difference images after rigid, affine,
and nonrigid registration. The results demonstrate that all
three registrations techniques lead to a significantly improved
localization of the uptake of contrast agent, compared to the
difference image in Fig. 6(c). The tumor is clearly visible in
all three difference images, but is best defined in the difference
image with nonrigid registration. This can be verified by
inspecting a 3-D reconstruction of the difference image in
the form of a maximum intensity projection (MIP). Fig. 8(a)



720 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 8, AUGUST 1999

shows a MIP reconstruction, viewed from the positive
direction, without registration. The misregistration artifacts
make a interpretation of the reconstruction very difficult. In
the MIP reconstruction after rigid and affine registration in
Fig. 8(b) and (c), the tumor conspicuity is improved but there
is still a significant amount of misregistration artifacts visible,
due to motion of the chest wall and skin. Finally, the MIP
reconstruction after nonrigid registration in Fig. 8(d) shows
a much improved definition of the tumor and a significant
reduction of the misregistration artifacts. This confirms that
the proposed nonrigid registration algorithm can eliminate
misregistration artifacts while preserving enhancing regions.

IV. DISCUSSION

We have developed a fully automated algorithm for the
nonrigid registration of 3-D breast MRI based on normalized
mutual information. The algorithm uses a nonrigid transforma-
tion model to describe the motion of the breast in dynamic MR
images. The proposed combination of affine transformations
and spline-based FFD’s provides a high degree of flexibility
to model the motion of the breast. In contrast to physics-based
deformation models [30], the algorithm makes no assumptions
about the elastic properties of the breast tissue. Even though
physics-based deformation models might seem an attractive
alternative, for example to model additional constraints such
as incompressibility, they are usually difficult to evaluate and
verify. Moreover, the elastic properties of the breast tissues can
vary significantly across patients and with age, which renders
the application of such models difficult.

The experimental results have shown that the nonrigid regis-
tration of 3-D breast MRI can reduce motion artifacts between
images significantly. The results have also demonstrated that
in many cases rigid or affine registration techniques are not
sufficient to correct motion in 3-D breast MRI. In some of
the difference images a small amount of structure is visible,
even after nonrigid registration. This may be caused by partial
volume effects, which are more pronounced for acquisitions
with poor resolution in the slice direction. In future screening
studies a significant improvement of the image resolution is
envisaged which will reduce partial volume effects further.

The registration of these images currently takes between
15–30 min of CPU time on a Sun Ultra 10 workstation, which
makes routine application in a clinical environment possible.
We have also demonstrated the applicability of the algorithm
to the motion correction in contrast-enhanced MRI. However,
further work is needed to assess and evaluate the impact
of the algorithm for the detection and diagnosis of breast
cancer, which is the topic of a forthcoming paper [31]. Future
work will involve the application of the proposed registration
algorithm to data from the MRC-supported U.K. study of MRI
as a method of screening women at genetic risk of breast
cancer.
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