
Robust Uncalibrated Visual Servoing for Autonomous On-Orbit-Servicing

Azad Shademan, Amir-massoud Farahmand, Martin Jägersand
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Abstract

Camera-type vision sensors are typically used in

highly calibrated settings in On-Orbit-Servicing (OOS)

missions. This is a limitation to autonomously service

targets without specific markers. In addition, the harsh

conditions of space demands a versatile algorithm that is

robust to different types of visual errors. In this paper, we

propose robust uncalibrated visual servoing scheme for

OOS. Uncalibrated visual servoing is essentially free of

both modeling and calibration, and works well in unstruc-

tured environment. The error is computed directly from

image and is defined entirely in the visual space. Our ap-

proach is based on using a robust M-estimator to estimate

the Jacobian matrix, which appears in the control law. We

propose this algorithm to be used in the mating (capture)

phase of a rendezvous mission. The proposed algorithm

is evaluated in computer simulations as well as laboratory

experiments. Our experimental setup includes a 7-DOF

WAM arm equipped with a high speed camera. The lab-

oratory experiment simulates capture of a grapple fixture

using feedback from camera image.

1 Introduction

Autonomous On-Orbit Servicing (OOS) using robotic

arms is a topic of great interest to the space commu-

nity [1–4]. The majority of the OOS missions still rely

on manual control. For example, the Space Shuttle’s

robotic manipulator [5] is operated manually to dock free-

flying objects [3]. Without autonomous OOS, manned

missions with more complicated mission planning pro-

cesses become necessary. Recent missions incorporate

some concepts of autonomy in OOS. For example, one

of the goals of DARPA’s Orbital Express Demonstration

System (OEDS) was the autonomous capture of the free-

flying target satellite by a robotic arm on a chaser satel-

lite [3].

Feedback from vision sensors can be used for au-

tonomous arm motions in OOS. One of the challenges

in vision-based autonomous OOS missions comes from

uncertainties in vision sensor output. Common vision

sensors are video cameras [6] and laser cameras such as

Neptec’s Laser Camera System (LCS) [7]. The uncertain-

ties in sensor output are generally due to either unexpected

situations, e.g., occlusions [4], or failure of visual track-

ing module due to mis-tracking, field-of-view constraint,

etc. [8].

We have recently developed a robust algorithm for

vision-based motion control of arms [8], which is typi-

cally studied as visual servoing in the robotics commu-

nity [9, 10]. Our uncalibrated visual servoing algorithm

is robust to uncertainties in sensor input and has been

already evaluated with a Barret WAM arm with an eye-

in-hand configuration successfully [8]. The results are

promising to further the applications of supervised ma-

chine learning in unstructured space robotics. In this pa-

per, we propose a vision-based autonomous capture tech-

nology for OOS built on uncalibrated visual servoing. Our

algorithm is statistically robust to various types of outliers,

such as lost features, mis-tracked features, occluded fea-

tures, etc.

The advantages of the proposed technology are three-

fold:

1. It does not require any calibration, neither calibra-

tion of robot kinematics, nor calibration of the vision

sensor;

2. It does not depend on a specific sensor and can be

used with either video cameras or laser cameras; in

addition, it is general to any target and any robotic

arm;

3. It automatically rejects sensor outliers and is robust

to many unavoidable sources of error, including vi-

sual occlusion, visual mis-tracking, etc.

The remainder of this paper is organized as follows.

In Section 2, we briefly mention the typical OOS proce-

dure to put our method into context. The overview and

problem formulation of the robust uncalibrated visual ser-

voing is presented next in Section 3. The OOS simula-

tion experiments and laboratory experiments with a Bar-

rett WAM arm is presented in Section 4. Finally, we dis-

cuss the technology and conclude with some future direc-

tions in Section 5.



2 On-Orbit Servicing (OOS) Background

In this section, we provide a very brief background on

a typical rendezvous mission. We hope that this section

brings the proposed study into context. Details of ren-

dezvous missions is beyond the scope of this paper. For a

detailed discussion of the concepts in this section, please

see [11].

A rendezvous mission is a very complex process, in

which a chaser vehicle connects to a target spacecraft. The

target can be either passive or active. There are many dif-

ferent phases in a typical rendezvous mission: launch and

orbit injection, transfer to near-target orbit, far-range ren-

dezvous, close-range rendezvous, and mating [11]. Most

of these involve trajectory generation for the chaser vehi-

cle, but not the robotic arm. The only phase that involves

the arm is the mating phase.

The mating phase might refer to either docking or

berthing. Docking is the process, where the chaser vehi-

cle is actively controlled to align its capture interface with

that of the target vehicle. In berthing, the robotic arm has

a nominal role. Berthing is the process, where the chaser

vehicle is controlled to a constant relative position (with

respect to the target vehicle), followed by the robotic arm

capture. The arm could be stationed on either the chaser

vehicle or the target vehicle. The grapple fixture could be

placed on the other vehicle. The robotic arm capture is an

important phase in a servicing (berthing) mission. “Cap-

ture” is not exactly the final step; it is followed by some

structural and utility connection tasks [11]. These tasks do

not involve motion control of the arm. For the purpose of

the current study, we assume that the chaser and target ve-

hicles are already in their reception ranges and mating by

capture is possible. Hence, we only consider the motion

control of an arm to a capture position1.

Sensors are used to provide feedback during motion

control of the arm to achieve higher performance and ro-

bustness to uncertainties. As already explained in the

Introduction, vision sensors are good candidates for au-

tonomous vision-based OOS. Namely, laser camera sys-

tems and CCD cameras are both viable options with their

own advantages and disadvantages. An essential advan-

tage of CCD cameras is their rich information content

(largely ignored in the space robotics community). While

we make no explicit assumption about the sensor type, and

our methods could be extended to any consistent sensor,

our presentation is primarily with a CCD camera and the

pinhole camera model.

A typical target pattern for a camera rendezvous sen-

sor includes five reflectors (markers) [11]: four copla-

nar reflectors (markers) evenly spaced on a circle, and a

1The methods proposed in Section 3 are not specific to robotic ma-

nipulators and could be, theoretically, extended to the nonlinear feedback

control of the chaser vehicle in docking.

fifth reflector directly above the circle center. The fo-

cal length and field-of-view (FOV) angle of the camera

is assumed known (calibrated camera). In these settings,

the relative orientation and position of the target from the

camera can be found from the image of the reflectors.

The size and position of the target pattern is calculated

to satisfy the FOV and occlusions constraints. The prob-

lem with this kind of patterns is that multiple concentric

patterns with different sizes are needed for visibility dur-

ing far-range to close-range transitions. Another problem

with reflector markers is that the light reflected from the

Sun or other light sources could saturate the image and

cause visual tracking errors. In addition, such features are

not available on many satellites that are already in orbit

and need servicing. Xu et al. [12] have proposed a con-

trol and planning algorithm for autonomous rendezvous

of such non-cooperative targets. They consider model-

based 3D reconstruction and pose calculation from stereo

cameras with the typical calibration assumptions (known

camera/robot and camera/vehicle transformation, known

3D geometric model of the target, etc.).

Our proposed algorithm entertains a very relaxed set

of assumptions. Namely, we do not require camera cali-

bration or calibration of camera pose with respect to the

vehicle body. In case of visual tracking errors, our statis-

tically robust algorithm rejects the outliers. Finally, we do

not make structural assumptions on the configuration of

reflectors or any other visible marker on the vehicle. The

only assumption is that there must be at least four copla-

nar markers, no three of which are collinear. In the next

section, we present our robust uncalibrated visual servo-

ing approach.

3 Robust Unclaibrated Visual Servoing

3.1 Overview

Visual servoing concerns closed-loop feedback of vi-

sual information to control a robot to a desired config-

uration, while minimizing an error norm in the image

space [9]. There are two main classes for visual servoing

control laws: image-based [13] and position-based [14].

For a complete survey of basic and advanced methods,

please see [9, 10].

In Image-Based Visual Servoing (IBVS), the control

law and the feedback are purely in the visual space. A

typical control law for IBVS uses the Jacobian matrix J.

The Jacobian matrix relates the rate of change in visual

features to either the velocity screw of the camera [13] or

directly to the joint velocities [15]. In the case of direct

mapping from joint velocities to visual feature velocities,

the Jacobian matrix is called the visual-motor Jacobian.

The control law is

q̇ = −λJ†(s − s∗), (1)



where q̇ is the vector of joint (motor) velocities, s and

s∗ are the vectors of the current and desired visual fea-

tures, respectively, and J is the so-called visual-motor Ja-

cobian, and J† is its Penrose-Moore pseudo-inverse: J† =

(J⊤J)−1J⊤. The block diagram for a typical IBVS system

is illustrated in Figure 1.

Figure 1. IBVS block diagram.

Existing IBVS methods are either calibrated in the

sense that they require some knowledge of the cam-

era/robot model (not suitable for unstructured environ-

ments) [9, 10], or are uncalibrated, but assume that no

portion of the visual-motor data is corrupted (susceptible

to outliers) [15, 16]. Unfortunately, these assumptions do

not generally hold in real unstructured environments of

space missions, where the analytic form of the Jacobian

in (1) is not available and must be replaced by its nu-

merical estimate, Ĵ. For example, the uncalibrated Jaco-

bian can be updated at each control iteration by Broyden’s

method [15]:

Ĵk+1 = Ĵk + α
(∆s − Ĵk∆q)∆q⊤

∆q⊤∆q
, (2)

where α is the update rate.

The uncalibrated Jacobian estimation becomes more

challenging when there exists outliers (which is often the

case in harsh unstructured settings). An erroneous Jaco-

bian estimate can make the system unstable or drive the

robot in the wrong direction. Therefore, an adaptive sys-

tem working in an unstructured scene, should use a Jaco-

bian estimator that is robust to outliers. This is in addition

to the requirement of being independent from geometric

structure, model, and calibration parameters.

3.2 Problem Formulation

We apply robust M-estimation [17] to estimate a ro-

bust Jacobian while rejecting the outliers. M-estimators

generalize the idea of maximum likelihood to robust mea-

sures of scale and location. Outliers are caused by var-

ious visual tracking errors, such as occlusion or mis-

tracking [8]. We directly use the visual-motor data to learn

the visual-motor Jacobian and deal with the outliers at the

same time.

The robust uncalibrated visual servoing problem is

formulated as estimating the uncalibrated visual servoing

Figure 2. The Jacobian of a two-link bar

with 2 features is a 2 × 2 matrix which

represents a hyperplane tangent to the

visual-motor data. The hyperplane is

represented by two planes for a query

point.

Jacobian. Formally, for a given memory of visual-motor

pairs and a new visual-motor query (sc, qc), the Jacobian

estimation problem can be formulated as the following

minimization problem [8]:

Ĵ(q)
∣∣∣
q=qc
= argmin

J

∑

k: qk∈N(qc)

ρ(∆sk − J∆qk), (3)

where N(qc) is a neighborhood of qc that contains joint-

space neighbors,∆qk are the neighboring joint differences:

∆qk = qc − qk, and ∆sk are the neighboring image feature

differences: ∆sk = sc − sk. This method robustly fits the

best hyperplane to the visual-motor data around qc.

We use a robust M-estimator, such as ρ(e;σ) = e2

e2+σ2 ,

to reject the outliers. Error e(.) is measured in image-

space and the measure of scale σ quantifies how the prob-

ability distribution is spread. For example, variance is a

measure of scale for the normal distribution, but it is not

robust to outliers. We need a robust measures of scale

in addition to a robust M-estimator. The Median Abso-

lute Deviation (MAD) is a computationally efficient ro-

bust measure of scale and appropriate for real-time appli-

cations. In essence, MAD estimates the variance of the

inlier samples. The minimization problem in (3) is solved

efficiently using the well-known Iteratively Reweighted

Least Squares (IRLS) algorithm. Details can be found

in [8] and is not repeated here.

3.3 Validation and Illustration of Robust
Jacobian Estimation

Figure 2 illustrates the visual-motor manifold and the

tangent Jacobian hyperplane at an arbitrary point for a pla-

nar robot with 2 degrees-of-freedom (q1 and q2) and 2 vi-

sual features (s1 and s2) without any outliers. Figure 3

(left) shows the same manifold in Figure 2, which is now



Figure 3. (Left) Visual-motor outliers due to numerous errors necessitate robust Jacobian estimation.

(Right) The learned Jacobian hyperplane from least-squares (red) and robust (blue) are overlayed on

the ground truth planes (green). For clarity, the outliers are not shown in the right image. The robust

Jacobian is very close to the ground truth. Figure best seen in color.

corrupted by outliers. Least squares-based Jacobian es-

timation methods [16] work well when there are no out-

liers. However, they are significantly influenced by out-

liers and result in a wrong Jacobian estimate. In Fig-

ure 3 (right), the Jacobian hyperplane by least-squares

regression is shown by red (light) planes and the pro-

posed robust method in (3) is represented by blue (dark)

planes. The robust Jacobian is very close to the ground

truth (green planes). To verify the performance of the ro-

bust algorithm, we analyzed the Jacobian estimation error

with both the least-squares based method (LLS) from [16]

and the robust IRLS algorithm [8]. In controlled simula-

tion experiments, we started with no outliers and grew the

outlier-to-inlier percentile to 50% and beyond to a maxi-

mum of 90% (i.e., only 10% of the visual-motor data were

not corrupted). The normalized average error is depicted

in Figure 4. When there are no outliers, both methods

are similar and produce a small estimation error. As the

outlier-to-inlier percentile grows, the LLS method is af-

fected linearly. However, the IRLS method is robust to

outliers and can handle outliers even when half (or more)

of the data are outliers. In simulation experiments, up to

60% outliers could be tolerated. In practice, around 40%

outliers could be tolerated. See [8] for more details.

4 Experimental Results

An uncalibrated eye-in-hand IBVS system with 4-

DOF WAM is considered for visual servoing. Simula-

tions are implemented in MATLAB using the Robotics

Toolbox [18] and the Epipolar Geometry Toolbox [19]. In

the MATLAB simulations, we use the coordinates of four

markers as 8 features,i.e., Ĵ ∈ R8×4.

For robot experiments, we use a 7-DOF WAM arm

that runs on RTAI-Linux and controlled with openman li-

brary [20]. The first 4 DOFs are controlled to position the
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Figure 4. Simulation results of Jacobian es-

timation error. The error is found with

respect to a reference Jacobian. Nor-

malized average estimation error is re-

ported for the least-squares based esti-

mation (LLS) from [16] and the robust

IRLS estimation from [8].

wrist in the desired capture configuration. The remaining

3 DOFs control the wrist and a Barrett Hand mounted on

the end-effector of the 7-DOF Barrett WAM arm. The vi-

sion system consists of a Point Grey Grasshopper camera

that captures 640 × 480 MONO8 images at 60 Hz. The

camera is mounted on link 5 of the WAM arm (after the

elbow) overlooking the Barrett Hand and the workspace.

For real-time visual tracking, we use the Visual Servo-

ing Platform (ViSP) [21]. In the robot experiments, we

use a mockup of a grapple fixture with the coordinates

of five arbitrary markers (total of 10 image features). If

visual tracker loses one of the markers, 4-DOF visual ser-

voing continues with the remaining 4 markers. Therefore,

Ĵ ∈ R10×4 if all markers are being tracked, or Ĵ ∈ R8×4



Figure 5. Experimental Setup. Top row

shows the initial state. Middle row

shows the capture-ready (desired) state.

The bottom row shows the initial and

desired images from left to right, re-

spectively.

if one of the markers is lost. The grasping capabilities

of the Barrett Hand is not used in this work, because the

main focus of this paper is on visual servoing to the de-

sired grasping point. We use a fixed configuration of the

Barrett Hand. Figure 5 shows the experimental setup.

4.1 OOS Simulation Experiments

The simulation experiments considers the kinematic

model of the arm with the model of an object during the

capture (mating) phase of an OOS mission. Our capture

procedure is divided into a preparatory phase and a cap-

ture phase. In simulations, we have used visual servoing

for the preparatory phase.

First, the arm is driven to a reliable tracking distance

from the target. This is performed by the first-stage visual

servo. The end-effector of the robotic arm approaches the

target by minimizing the error in the visual space. The

result of this experiment is depicted in Figure 6. Figure 6
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Figure 6. First-stage visual servo. The im-

age trajectories and joint errors during

IBVS. (Left) The trajectory is overlayed

on top of the initial and desired images

of the target. The target consists of 4

coplanar points. (Right) The joint error

values in [rad] are shown during visual

servoing.

(left) shows the desired image of the object (four points),

the initial image of the objects and the image trajectory

from the IBVS control (see Section 3). A Gaussian noise

with standard deviation of 1 pixel is considered. Figure 6

(right) shows the joint error for the 4 DOF WAM arm.

All joints converge to the desired value with a very small

error after 50 iterations. A robust Jacobian is used in this

experiment. As Figure 6 suggests, this approach works

well to drive the robot arm into a reliable-tracking region.

Active targets need more preparations prior to the fi-

nal capture. This includes target tracking and arm fol-

lowing. When the target is moving, the Jacobian is also

constantly changing. Instead of estimating it at every iter-

ation (this requires new visual motor memory at the new

state), we use the Broyden update rule in (2) to update

the estimate efficiently. The faster the object moves, the

higher the servo loop frequency should be. In this stage,

the visual servo works to regulate the relative distance of

the arm end-effector to the target. This update compen-

sates for variations in the Jacobian matrix elements due

to target motion. Figure 7 (left) shows the target trajec-

tory in bottom and the visually-servoed camera trajectory

on top. The relative distance between the two remains at

a constant value. This is shown by a 2D surface in Fig-

ure 7 (left). The numerical values are shown on a graph in

Figure 7 (right).

4.2 Laboratory Experiments

The aim of the laboratory experiments is to show the

method in practice. The top row in Figure 5 shows the

robot and the camera at their initial state. The middle row

shows the setup at the desired capture-ready state. The

bottom row shows the initial and final camera images.

The visual servoing is entirely based on errors from the
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Figure 7. Target trajectory and camera

trajectory during the tracking phase

(second-stage visual servoing). The rel-

ative distance between the target and the

camera remains constant at around 80

cm. The visual servo loop uses the un-

calibrated Jacobian in (1), which is up-

dated at each iteration by the Broyden

formula (2).

visual space. The markers have been chosen arbitrarily.

This is in contrast to the current practiced model-based

approaches. We follow the same steps in the simulations:

a preparatory phase followed by a capture. The visual

servoing snapshots from the initial state to the capture-

ready state is shown in Figure 8. Once the robot is in the

capture-ready mode, the capture command can be issued.

We have mainly focused on the visual servoing experi-

ment. The grasping capabilities of the Barrett Hand have

not been utilized in this work. The capture command is

a simple motion of the wrist 3 DOFs, which is recorded

at the capture-read state (teach-by-showing). Figure 9 de-

picts the robot pose and the camera image before and after

capture.

5 Concluding Remarks

We propose a robust vision-based technology for au-

tonomous On-Orbit-Servicing missions. Our proposed

technology is not specific to a platform, does not require

calibration, and is robust to outliers in the visual sen-

sor. Our experimental setup is related to the setup at

the Canadian Space Agency (CSA) [4], where one arm

tracks and captures a satellite mockup attached to a sec-

ond arm. They use adaptive Kalman Filter for motion

estimation and pose tracking of a satellite. When occlu-

sions occur, their system estimates the pose from the pre-

vious motions and the free-falling dynamics properties.

Our proposed technology does not explicitly calculate the

pose, but tracks object motion by regulating the visual er-

ror at zero. Additionally, our work compares to OEDS.

The robotic arm of OEDS is mounted on the chaser satel-

lite and model-based visual servoing is used to track and

capture the target satellite [3]. However, our approach is

Figure 8. Visual Servoing from the ini-

tial point the the capture-ready (desired

point).

purely image-based and completely model-free. In addi-

tion, the visual servoing in [3] is based on pose estimates

from the vision sensor, which is found from the complete

3D CAD model of the target satellite and perfect calibra-

tion of the vision sensor and the robot. Another related

project is the VIMANCO ESA project [6], where image-

based visual servoing is used to improve autonomy and

robustness for vision-based control of Eurobot. Although,

their method does not require to place markers on the tar-

gets, it does require the 3D CAD model of the observed

object. Our future work includes using other types of fea-

tures and experiments with vision-based grasping of the

Barrett Hand.
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Figure 9. Capture command can be issued

once visual servoing controls the arm

to the capture point. The top two rows

show the two views of the robot, before

and after capture command. Arrows

are overlayed for visualization purpose.

The view from the camera is shown in

the bottom row.
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