
Enhanced Iterative-Deepening Search∗

Alexander Reinefeld

Paderborn Center for Parallel Computing

D-33095 Paderborn, Germany

<ar@Uni-Paderborn.DE>

T.A. Marsland

University of Alberta

Computing Science Dept.

Edmonton, Canada T6G 2H1

<tony@CS.UAlberta.CA>

October 20, 1993

Keywords

Heuristic search, A* algorithm, depth-first iterative-deepening, game trees, com-

puter chess methods, Fifteen Puzzle, Traveling Salesman Problem.

Abstract

Iterative-deepening searches mimic a breadth-first node expansion with a series of

depth-first searches that operate with successively extended search horizons. They

have been proposed as a simple way to reduce the space complexity of best-first

searches like A* from exponential to linear in the search depth.

But there is more to iterative-deepening than just a reduction of storage space.

As we show, the search efficiency can be greatly improved by exploiting previously

gained node information. The information management techniques considered

here owe much to their counterparts from the domain of two-player games, namely

the use of fast-execution memory functions to guide the search. Our methods

not only save node expansions, but are also faster and easier to implement than

previous proposals.

∗2nd revision for IEEE-PAMI. For review only, please do not cite or copy.

0

1 Introduction

Of the brute-force searches, depth-first iterative-deepening (DFID) is the most

practical, because it combines breadth-first optimality with the low space com-

plexity of depth-first search. Its basic idea is as simple as conducting a series of

independent depth-first (backtracking) searches, each with the look-ahead hori-

zon extended by an additional tree level. With the iterative approach, DFID is

guaranteed to find the shortest solution path, just as a breadth-first search would.

But in contrast to the latter, DFID needs negligible memory space. Its space

complexity grows only linearly with the search depth.

The origins of iterative-deepening search trace back to the late 1960s [24], when

programmers sought a reliable mechanism to control the time consumption of the

newly emerging tournament chess programs. Rather than blindly committing to

one direct depth-d search of unpredictable duration, the total search task was

subdivided into separate depth-first searches with successively deepened search

horizons 1, 2, . . . , n. This allows the search process to halt with a best available

answer as soon as some time limit is exceeded.

Even more important are the various memory functions that also build upon

the iterative-deepening approach. They use node information from previous iter-

ations to increase the cutoffs in the current iteration. Among the data that can

be reused, move ordering and node scoring information is of special importance.

Various memory functions have been invented to store this and other information:

refutation or killer tables [1], transposition tables [30, 26] and history tables [23].

Taken together, the memory functions not only pay for themselves by yielding

better frontier node evaluations, but also produce searches that are faster than a

direct depth-d search [13].

In the mid 1980s, iterative-deepening was refined for heuristic single-agent

searches like A* and AO*. Here, the successive iterations do not correspond to

increased search depth, but to increased cost bounds of the currently investigated

path. But again, iterative-deepening reduces the space complexity to linear while

preserving optimality. As a consequence, Korf’s Iterative-Deepening A* (IDA*)

[8] can be applied in domains where excessive space requirements cause A* to fail.

One such application is the 15-puzzle.

The better space efficiency is paid for by an increased number of node expan-

sions. Because IDA* does not retain path information from one iteration to the

next, the shallow tree parts are re-examined several times. Following the same

lines as in multi-agent search, IDA* (like any iterative search) should be improved

by using node information of previous iterations.

1

In this paper, we show how to adapt search enhancements, that have been

found effective in the domain of two-player games to single-agent heuristic search.

The techniques include node pre-sorting, the use of principal variations, transpo-

sition and refutation tables and other memory functions [13, 19]. With the best

combination of these techniques optimal solution paths for the 15-puzzle can be

found, while visiting less than half the nodes seen by pure IDA*. This is bet-

ter than can be achieved with a perfectly informed (and hence non-deterministic)

IDA* algorithm, one that performs an iterative depth-first search up to the penul-

timate iteration and finds a solution node right at the beginning of the last (goal)

iteration.

In practice, speed of computation is more important than the number of node

expansions. Since memory tables are accessed in unit time, the running time of the

proposed algorithms is almost proportional to the node count. Maximal speedups

are achieved in applications with time-consuming heuristic estimation functions.

One such example is the traveling salesman problem. Here a 73% node reduction

(as compared to IDA*) speeds up the total runtime by 72%, giving an almost

linear improvement. This is a remarkable result, considering that unsuccessful

table accesses must be compensated for by even greater savings elsewhere.

2 Applications

Heuristic single-agent search techniques can be found in applications where a deci-

sion tree/graph is built to determine the best of several alternatives by searching.

Typical applications include perception problems, theorem proving, robot con-

trol, pattern recognition, expert systems and some combinatorial optimization

problems of Operations Research. For our experiments we selected two problem

domains that build large search graphs and are easy to implement: the 15-puzzle

and the traveling salesman problem.

2.1 The Fifteen-Puzzle

The 15-puzzle is simple, but has combinatorially large problem space of 16!/2 ≈

1013 states. It consists of fifteen square tiles 1, 2, . . . , 15, located in a square tray

of size 4 × 4. One square, the blank square, is kept empty so that an orthogo-

nally adjacent tile can slide into its position – thus leaving a blank square at its

origin. The problem is to re-arrange some given initial configuration into a goal

configuration without lifting one tile over another.

Although it would seem easy to find any solution to this problem, it is much

2

harder to determine a mapping of the given initial configuration to the goal con-

figuration with the fewest moves. Using IDA*, it takes some hundred millions

of node generations to solve a random problem instance, when using the most

popular heuristic estimate function, the Manhattan or city-block distance. This

estimate is a sum of the minimum displacement of each tile from its goal posi-

tion. As can be proved by induction, the Manhattan distance is admissible: It

never overestimates the distance to the goal configuration. This is an important

requirement if a heuristic search algorithm is to find an optimal (=shortest) path

to a goal state.

2.2 The Traveling Salesman Problem

The traveling salesman problem (TSP) refers to the task of finding a shortest (or

least cost) tour that returns to the starting point after visiting all cities in the

n-city network only once. The TSP is known to be NP-hard, and exact solutions

can only be obtained for tours involving some hundred cities.

While the well-known branch-and-bound algorithms of Held and Karp [5] or

Little et al. [10] would be among the preferred solution techniques for the TSP

in practice1, we have chosen the method described in Pearl’s book [16, p. 10ff],

because it builds a graph rather than a tree. It does so by successively adding

unvisited cities to the end of a temporary partial contiguous tour for as long as

their cost estimates do not exceed the given bound. For our experiments, we ran-

domly generated the coordinates of n cities and computed a complete symmetric

euclidean cost matrix C with components cij denoting the (air-) distances between

cities i and j.

As is customary, we used the cost of the minimum spanning tree (MST) cover-

ing the cities not yet visited as a bounding function for the completion cost of the

current partial tour. More precisely, a 1-tree [4] is computed, which is connected

via two extra edges to the first and the last city of the partial tour. Using Prim’s

algorithm, a 1-tree of n cities is computed in O(n2) operations. Hence, the node

expansion time is substantial, making the TSP an ideal test suite supplement to

the 15-puzzle.

1As pointed out by Sen and Bagchi [25], the depth-first node expansion strategy of Little’s

method can also be adapted to best-first or depth-first iterative-deepening. But since the search

graph is small and the node expansion time is appreciable, there is no point in using IDA* or

any of its memory variants.

3

algorithm IterativeDeepening;
begin

bound := h(root); { initial bound is heuristic estimate }
repeat

bound := DepthFirstSearch (root, bound); { perform iterative-deepening DFS }
until solved;

end.

function DepthFirstSearch (n, bound): integer; { returns next cost bound }
begin

if h(n) = 0 then begin

solved := true; return (0); { found a solution: return cost }
end;
new bound := ∞;
for each successor ni of n do begin

if c(n, ni) + h(ni) ≤ bound then

b := c(n, ni) + DepthFirstSearch (ni, bound − c(n, ni)); { search deeper }
else

b := c(n, ni) + h(ni); { cutoff }
if solved then return (b);
new bound := min (new bound, b); { compute next iteration’s bound }

end;
return (new bound); { return next iteration’s bound }

end;

Figure 1: Iterative-Deepening A*

3 Iterative-Deepening A*

Iterative-Deepening A*, IDA* for short, performs a series of cost-bounded

depth-first searches with successively increased cost-thresholds. The total cost

f(n) of a node n is made up of g(n), the cost already spent in reaching that node,

plus h(n), the estimated cost of the path to the nearest goal. At each iteration,

IDA* does the search, cutting off all nodes that exceed a fixed cost bound. At

the beginning, the cost bound is set to the heuristic estimate of the initial state,

h(root). Then, for each iteration, the bound is increased to the minimum path

value that exceeds the previous bound.

Figure 1 gives a sketch of IDA*. The algorithm consists of a main Itera-

tiveDeepening routine, that sets up the cost bounds for the single iterations, and

a DepthFirstSearch function, that actually does the search. The maximum search

depth is controlled by the parameter bound. When the estimated solution cost

c(n, ni) + h(ni) of a path going from node n via successor ni to a (yet unknown)

goal node does not exceed the current bound, the search is deepened by recursively

4

calling DepthFirstSearch. Otherwise, subtree ni is cut off and the node expansion

continues with the next successor ni+1.

Of all path values that exceed the current bound, the smallest is used as a cost

bound for the next iteration. It is computed by recursively backing up the cost

values of all subtrees originating in the current node and storing the minimum

value in the variable new bound. Note, that these backed-up values are revised

cost bounds, which are usually higher – and thus more valuable – than a direct

heuristic estimate. In the simple IDA* algorithm shown in Figure 1, the revised

cost bounds are only used to determine the cost threshold for the next iteration.

In conjunction with a transposition table (see the Appendix), they can also serve

to increase the cut offs.

With an admissible heuristic estimate function (i.e. one that never overesti-

mates), IDA* is guaranteed to find the shortest solution path. Moreover, it has

been proved [8, 11], that IDA* obeys the same asymptotic branching factor as

A*, if the number of nodes grows exponentially with the solution depth. This

growth rate is called the heuristic branching factor bh (see Section 6.2). On the

average IDA* requires bh/(bh − 1) times as many operations as A* [27]. While

the search overhead diminishes with increasing bh (e.g., 11% overhead at bh = 10,

1% at bh = 100), IDA* benefits from the elimination of unnecessary node re-

examinations in the shallow tree parts (all iterations before the last).

4 Related Limited-Memory Algorithms

Two algorithms have been proposed to fill the gap between the memory-intensive

A* on one hand and the faster, but more node-intensive, IDA* on the other.

The recursive best-first search algorithm MREC of Sen and Bagchi [25] might

best be described as an amalgamation of IDA* and A*. Like IDA*, MREC exam-

ines all nodes by iterative-deepening until a goal is found. Like A*, MREC grows

an explicit search graph, that contains all nodes of the first few levels, until the

available memory is exhausted. Unfortunately, the memory usage is static. Once

occupied by an initial explicit sub-graph, the storage space cannot be re-used by

other, more valuable, nodes that might be found at a later time. Moreover, MREC

starts all iterations at the root node, irrespective of the explicit search graph that

has already been built [25, p. 298]. The repeated traversal of the explicit graph

is the price paid for the missing Open List2. Even so, one would expect a graph

2The repeated traversal of the explicit graph can be avoided by connecting the frontier nodes

in a linked list, similar to A*’s Open list. But even then the savings would be negligible, because

the list must be sorted before each new iteration. Only the backing up of the revised estimate

5

traversal to be much faster than generating new nodes and linking them to the

explicit search graph. Unfortunately, this is not the case for the 15-puzzle with its

cheap operator generation, and so Sen and Bagchi report poor CPU-time results

[25, p. 299]. They also achieved only negligible (1%) node reductions as compared

to IDA*, because their implementation builds a tree rather than a graph and does

not check for duplicate nodes. On the other hand, MREC-implementations that

eliminate transpositions were also found to be slow (again compared to IDA*),

because of the costly maintenance of the explicit search graph.

Chakrabarti et al. [2] proposed MA*, an iterative-deepening variant of Iba-

raki’s Depth-m Search [7]. Similar to MREC, MA* also grows an explicit search

graph until the available memory space is filled, but dynamically re-assigns mem-

ory space to other states according to some merit value. When the storage space

is exhausted, MA* is not confined to a pre-determined node expansion sequence,

but starts a best-first search on the tip nodes of the explicit graph. The node

selection is based on the backed-up cost values of the pruned nodes, which are

more reliable than the direct heuristic estimates. Although the favorable results

of Chakrabarti et al. were found to be erroneous (they “inadvertently compared

IDA*’s node generation figures with MA*(0)’s node expansion figures” [12, p. 2]),

other researchers built successfully on the basic ideas of MA*. Iterative Threshold

Search (ITS) by Mahanti et al. [12] employs a fast node generation scheme (like

IDA*) while making use of the available memory (like MA*). Another proposal,

SMA* by Russell [21], uses the “pathmax” node information of the backed up

f -values.

Still, these methods are much slower than the memory-functions proposed

here, while generating a comparable amount of nodes. This is because the others

all operate on an explicit search graph, whose construction, maintenance and

traversal is a time-consuming task. In each step, a tip node n with lowest f(n)-

value is selected for further expansion. Since the explicit graph must be large

to be effective, the node selection time dominates the runtime of the algorithm.

From experiments with Stockman’s best-first SSS*-algorithm [28] it is known that

a reduced node count seldomly pays for the increased memory management costs

[19]. Our hash transposition techniques, in contrast, are easier to implement and

operate in unit time while retaining a similar node-count performance.

Aside from these memory-bound variants, there has been a flurry of proposals,

that attempt to reduce the search overhead by allowing a more liberal increase

of the cost bound between iterations. Such methods include Stickel and Tyson’s

values in the explicit search graph can be saved.

6

evenly bounded depth-first search [27], Sarkar et al.’s iterative-deepening search

with controlled re-expansion IDA* CR [22], and the hybrid iterative-deepening

depth-first branch-and-bound variants DFS* [18] by Rao et al. and Wah’s MIDA*

[29]. All these schemes attempt to reduce the search overhead by increasing the

cost bound by more than the minimal value. As a consequence, node expan-

sion cannot be stopped at the first solution, but must continue (possibly with a

reduced cost bound) until all shorter paths have been checked for cheaper solu-

tions. However, these systems can be modified to return quickly with a (possibly

non-optimal) solution, one that is known to lie within an ε-range from optimality.

5 Improved Information Management

The enhancements that exploit node information gathered in the process of

iterative-deepening follow two different schemes: (1) node ordering and (2) avoid-

ance of re-expansions.

5.1 Strategies for Trees: Node Ordering Heuristics

Node ordering refers to the dynamic re-ordering of node successors. It speeds up

the last iteration (where the goal is found) by investigating the most plausible

successors first, but no savings are achieved in the shallower iterations. There are

three ordering schemes of interest:

Sort: The simplest type of node ordering works without node information

from previous iterations and has little space overhead of O(wd). It is based on re-

arranging the successors ni of interior nodes n in increasing order of their heuristic

estimates h(ni). Successors with low estimates are visited first, with the intention

of reducing the distance to the goal. Like the well-known hill climbing techniques,

Sort adds a local best-first component to the otherwise random heuristic search.

In the 15-puzzle, Sort works much like a human player, who initially tries to shift

tiles as near as possible to their destination positions.

Although this scheme helps humans in their search for non-optimal solutions,

the savings achieved in (optimal) IDA* search rarely compensate for the additional

overhead [17, p. 471]. This is because of the limited information horizon that the

successor pre-sorting is based on. More sophisticated variants of Sort work with

revised cost values of deeper tree levels (see the Trans+Move variant in Section

5.2), or re-arrange the nodes of a whole search frontier [17].

PV: When searching adversary game trees like chess or checkers, each iteration

yields w best paths starting at the root node. One of them, the principal variation,

7

is the move sequence actually chosen if the players follow the minimax principle.

The other w − 1 paths are called refutation lines [1, 13]; they serve to prove the

inferiority of their particular root move. Current principal variation and refutation

lines are re-expanded first during each new iteration.

In single-agent search problems, the refutation line idea is not directly ap-

plicable, because there are no opponent moves that could be refuted. Only the

principal variation line (PV) can be employed to investigate the most promising

path first. We extend the PV heuristic by saving a whole subtree of paths from

the root, instead of only the best available continuation. The leaf nodes of this

subtree all lie at the same maximum distance from the start configuration. Be-

cause the search is cost-bounded, these leaves lie closest to the goal, that is, they

have the largest g- and consequently lowest h-values.

History: The history heuristic [23] proved useful in the domain of two player

games. It achieves its performance by maintaining a “score” table, called the

history table, for every move seen in the search graph. Note, that History is

the only heuristic that is based on sorting moves (operators) rather than nodes

(states). All moves that are applicable in a given position are examined in order of

their previous success. Compared to Sort, the history heuristic is less sensitive to

the current context, yet it provides more reliable information on the success of the

operators. In addition, History does not depend on domain specific knowledge

(like heuristic estimate functions). It simply accumulates success scores from the

previously expanded subtrees.

For the 15-puzzle, one needs a three dimensional array that holds a measure of

the goodness of a move for each possible tile, each source position and each move

direction. This gives 16 (tiles) × 16 (positions) × 4 (max. move directions) =

1024 move scores. In the traveling salesman problem, a two dimensional history

table of size n × n is needed, where n is the number of cities on the tour. As a

measure for the goodness of a move, we counted the number of occurrences the

specific move led to the deepest subtree (i.e. the subtree that came closest to the

goal).

5.2 Advanced Techniques in Graphs: Avoiding Re-Expansions

Most applications spawn a decision graph (with multiple paths ending in the

same position) rather than a tree. In such cases, memory functions should be

employed to avoid unnecessary re-expansions of previously visited nodes. The

utilization of memory tables is twofold: First, they are used to eliminate cycles

and transpositions within single iterations, and second, they serve to cache node

8

1 2 3
4 5 6 7
8 9 1011
12131415

-

-

1
4 5

- 1 5
4

- 1 5
4

- 5
1 4

- 5
1 4

- 5 4
1

4 1
5

- 4 1
5

- 4
5 1

- 4
5 1

- 5 4
1

- 5 4
1

Figure 2: Shortest move transposition in the N -puzzle

information from one iteration to the next.

A move cycle is a sequence of operators, which, after going through some

intermediate states, finally returns to the starting state. In general, move cycles

can be eliminated with a stack of size g that holds all nodes on the path from the

root to the current node. In the 15-puzzle, however, cycle elimination does not pay

off, because closed move cycles occur only seldomly (less than 0.03% of the nodes

lie on cycles, after the trivial 2-move cycle is removed by the move generator).

As an example, the shortest cycle (see Figure 2, which can be viewed as a cycle

when when reversing one line of arrows) consists of 12 moves. Since cycles contain

inferior nodes with high goal distances h, the total expansion cost g + h usually

exceeds the cost threshold before completion. Note, that in the traveling salesman

problem all cycles are automatically eliminated by the move generator.

Trans: Move transpositions are more common. They arise when different

paths end in the same position, see Figure 2. In the 15-puzzle, transpositions

occur in search depths ≥ 6. They can be traced with a transposition table [30]

that (ideally) holds a representation of every visited position, plus the cost bound

to which the position has been searched. When the current position is found in

the table, its subtree can be pruned if the remaining cost bound is less or equal to

the corresponding bound retrieved from the table. Pseudo code in the Appendix

illustrates the use of a transposition table in iterative-deepening search. Note

that revised cost values (back-up values of deeper tree levels) are stored in the

transposition table, sometimes allowing cut offs, even when the remaining search

depth is deeper than that given in the table.

Because of its fast access time, a hashing technique is customarily used for

implementing large transposition tables. The initial hash access index is a function

of the board configuration with all redundant information removed. In the 15-

puzzle, it includes the positions of all tiles on the board, whereas in the traveling

salesman problem the index is a function of the subset of the remaining cities plus

the last visited city. Note, that this scheme allows pruning by dominance [6], that

9

Algorithm Nodes Time

mean σ

IDA* 100 100

Sort 99 42 105

PV 86 52 87

History 94 48 108

Trans 53 6 76

Trans+Move 46 28 63

Trans+Move+History 46 32 68

IDA*, iter. 1, . . . , n − 1 54 26 –

Table 1: Empirical results on the 15-puzzle, 100 problems by Korf [8]

is, other partial tours covering the same cities in a different order (but with the

same first and last city) are cut off.

Transposition tables should be allocated as much space as possible. (We used

256 K entries in both the 15-puzzle and TSP applications.) As the table gets filled,

collisions occur. But old information is only overwritten if the current position

has been searched more deeply.

Trans+Move: When the current position is found in the transposition table,

but has been searched to an insufficient depth, the formerly best move (the one

yielding the longest path) is retrieved from the table and tried first. Apart from

selecting promising moves first, this approach has the additional advantage that

information about the next position will probably also be held in the table. Thus,

complete sub-variations are descended with minimal effort.

In the traveling salesman problem, move pre-sorting is based on the successor

values stored in the table, because a table access is faster than the computation

of the minimum spanning tree (our heuristic estimate function).

6 Experimental Results

The performance of the algorithms has been empirically evaluated using the 15-

puzzle and the traveling salesman problem.

6.1 The Fifteen-Puzzle

For the 15-puzzle, we used Korf’s selection of one hundred randomly generated

problem instances as a test suite [8]. To ensure that the hard problems with high

10

e1 b1 b2
e2

b3
c1 c2 b4

b5
c3 c4 b6

e3 b7 b8
e4

6

?

� -
e1, . . . , e4: edge position

b1, . . . , b8: border position

c1, . . . , c4: center position

Figure 3: Tile positions in the 15-puzzle

node counts do not dominate the results, we computed the mean of the percentage

difference relative to Korf’s published solutions3.

In all, ten different combinations of enhancements were tried and the results

from six of them are presented. Table 1 gives the average number of node genera-

tions (with standard deviation σ) and the relative CPU time consumption of our

implementation. All data is normalized to that of pure IDA*.

As expected, the node ordering heuristics (Sort, PV and History) are of lim-

ited use, because they only reduce the search effort of the final iteration. Table 1

shows, that the pre-sorting of successor nodes according to increasing heuristic

estimates (Sort) does not pay off – neither in terms of node expansions, nor in

terms of CPU time. A quick calculation reveals that Sort favors board configura-

tions with the blank square being either in an edge or border position (Figure 3),

because these configurations enjoy (statistically) lower h-values:

Let the blank be located in the center position c1. For each adjacent field

b3, b1, c2, c3, we calculate the probability that Sort will first move the blank to

that field, because the resulting configuration enjoys a lower heuristic estimate.

Or, the other way around, we enumerate for each source field all tiles that reduce

the heuristic distance:

b3: When a tile moves from b3 to c1 the heuristic distance reduces by 1 in 12 out
of 15 cases (because the tile’s goal square is in the rightmost 3 × 4 block).

b1: When a tile moves from b1 to c1 the heuristic distance reduces by 1 in 12
out of 15 cases (because the tile’s goal square is in the lower 4 × 3 block).

3Our replication of Korf’s experiment identified three cases of differing node counts (presum-

ably due to typographical errors in the original presentation [8, p. 106]):

Nr. Korf Our Version Difference

22 750,746,755 750,745,755 -1,000

88 6,009,130,748 6,320,047,980 +310,917,232

89 166,571,097 166,571,021 -76

11

c2: When a tile moves from c2 to c1 the heuristic distance reduces by 1 in 7 out
of 15 cases (because the tile’s goal square is in the left 2 × 4 block).

c3: When a tile moves from c3 to c1 the heuristic distance reduces by 1 in 7 out
of 15 cases (because the tile’s goal square is in the upper 4 × 2 block).

In summary, there are 24 (=12+12) out of a total of 38 (=12+12+7+7) cases,

where the blank will be moved from c1 to a boarder position (b3 or b1) first. This

gives a total of 24/38 = 63%. The chances vary slightly for all four center positions

(because of the asymmetry caused by the destination square of the blank), but

they are all between 58% and 63%, which is well above average. Likewise, we

calculated chances between 44% and 55% for a blank to be first moved from a

boarder position bi into the adjacent edge ej , which is also significantly higher

than the expected random 33% chance.

On one hand, configurations with a blank tile in an outer position have lower

mobility and are thus less desirable. But on the other, fewer moves are possible

in such configurations, which reduces the size of the emanating subtree. It seems

that the positive and negative effects of Sort just compensate for each other,

leaving no net gain [17, p. 471]. This is no surprise when considering the limited

information horizon that node ordering is based on. We therefore implemented

an extended sorting scheme that works on a deeper (two level) lookahead. But

it gave only marginal additional improvements while requiring more CPU-time.

Better results are achieved when the pre-sorting is based on previously acquired

node values of deeper tree levels, see Trans+Move.

The PV heuristic is more effective than Sort: On the average, 14% of the node

expansions are saved by searching the longest paths first, which confirms recent

results on an exhaustive evaluation of the 8-puzzle [20]. However, the savings

exhibit high variability. In some instances, the principal variation subtrees lead

directly to the goal, whereas in other cases the PV-variant examines more nodes

than the original IDA*. Note, that the PV heuristic does not involve time-

consuming operations. It comes as a by-product of the search for an optimal

path. Thus, any savings in the number of node expansions directly speeds up the

execution time.

The History heuristic saves only a meager 6% of the node expansions, irre-

spective of the problem size. Considering its remarkable success in the domain of

chess [23], one would have expected a much better result. But the two domains

differ in several respects. First, in chess, only a small fraction of the total game

tree is searched, so that the examined positions obey similar properties. Hence, a

chess move that once caused a cutoff, will probably be effective whenever it can

12

be applied in the future. This is not the case in the 15-puzzle, where board con-

figurations are widely different, because the search depths (average of 53 moves)

are greater.

Second, the 15-puzzle lacks clear criteria for measuring the merit of a move,

thus taking the path lengths seems to be an obvious choice. But in our experi-

ments, it turned out that many paths end at the same length, and hence a finer

grained secondary measure – like a chess evaluation function – is needed. For

example, a function that retains some secondary good values, even though this

might reduce the effectiveness of IDA*.

With a transposition table (Trans), IDA* consistently examines fewer nodes

in every single problem instance, yielding an average node count reduction of 47%.

This is more than the 35% savings achieved in the 8-puzzle [20], because the pruned

subtrees are deeper. More interestingly, no signs of table overloading were spotted

in the hard 15-puzzle problems with large search trees. On the contrary: The

performance of the transposition table seems to increase with growing problem

size. This is because, on the one hand, there are more transpositions and cycles in

deeper search trees, and on the other, many more nodes are eliminated by every

single cutoff. In practice, the low standard deviation is another favorable aspect

of Trans, because one can expect an almost constant efficiency gain by nearly

one half for every problem.

Additional savings can be achieved by first expanding the best move stored

in the transposition table (Trans+Move). Generally, the best move is a good

choice. In six problem instances, however, the best move failed so miserably,

that slightly more nodes were searched than with the original IDA*. The erratic

behavior of these few cases results in a high standard deviation, and is a typical

property of tree pruning systems. Adding the history heuristic to Trans+Move

does not yield further benefit. In practice, one would avoid the history heuristic,

with its additional program complexity and minor storage overhead, but retain a

simple transposition table which holds the previously best move, and the value of

the position.

The last line of Table 1 gives the average number of node expansions in all

iterations excluding the last. This number corresponds to the best performance,

that could be achieved with a perfectly informed node ordering mechanism, one

that finds the goal node right at the beginning of the last iteration. Viewed in

this light, the combinations involving Trans look even more favorable since they

search fewer nodes than even this optimally informed IDA*.

These results are telling enough, but Figure 4 presents the data in a graphical

13

≤ 20% 21-40% 41-60% 61-80% ≥ 81%

Proportion of Nodes Searched in the Last Iteration

20

40

60

80

100

120

140

Nodes

Relative

to IDA*

..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..

Sort

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. PV

..
.....................

......................
.....................

.....................
.....................

.....................
...

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...
Trans

...
.......
........
.......
.......
........
.......
.......
........
.......
........
.......
.......
........
.......
.......
........
.......
........
.......
.......
.... Trans+Move

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.
History

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Trans+History

............. . IDA*

Figure 4: Relative performance of IDA* enhancements on the 15-puzzle

form and shows more clearly how the use of a transposition table is the one

mechanism that is consistently effective. Here, Korf’s hundred random problem

instances are grouped into five sets (of increasing order of difficulty), defined by

the proportion of the nodes searched in the goal iteration. The trees in the first

problem set (0-20%) are already relatively well ordered for the simple IDA* and it

seems hard to achieve further savings with any of the move ordering heuristics. On

the contrary: in their attempt to improve the expansion order, History, Sort

and PV often expand more nodes in the end. Only when the proportion of the

goal iteration nodes is above 40% do these techniques become effective.

Schemes involving a hash table are almost equally effective over the whole

range of problems. A simple transposition table (Trans) saves about half the node

expansions, while the successor ordering techniques Trans+Move and History

become even more effective when the tree is poorly ordered. In practice, based on

Figure 4, one would use the combined version Trans+Move.

14

6.2 The Traveling Salesman Problem

At first sight, the TSP seems to be better suited for iterative-deepening search,

because more successor-cities must be considered in the interior nodes of the TSP

search graph than there are move choices in the 15-puzzle. From this, one should

expect the node count to grow faster between iterations, which in turn should

reduce the overhead incurred by re-expanding the shallow tree parts. But, as it

turns out, the opposite is true.

In the following, we distinguish two types of branching factors. First, the

edge branching factor be is defined as the average number of operators (edges)

that are applicable to a state (node) of the search graph. It can be determined

by computing the ratio of the total move generations to the number of interior

(=non-terminal) nodes.

For the n-city TSP, we derive a lower bound of the edge branching factor by

counting the node successors of an arbitrary path in the search graph. At the

root node, there exist n − 1 successors, at the first level n − 2, at the second

n − 3, and so on, up to k successors at the last (cut off) level, where k is the

number of the still unvisited cities. For the longest path (the solution path) we

have [(n − 1) + (n − 2) + · · · + 3 + 2 + 1 + 1]/n ≈ n/2. Since all other paths in

the search graph are incomplete, n/2 gives a lower bound on the edge branching

factor of the n-city TSP.

For the 15-puzzle, the edge branching factor is be ≈ 2. This number is derived

directly from Figure 3 by summing over all possible tile positions the number of

move choices and dividing by 16 (that is, 48/16 = 3), and then adjusting for the

back move by subtracting 1. Hence, be ≈ 2. In practice, be is marginally higher,

because there is no back move in the initial position and because the blank is more

likely to be located in one of the four center positions.

The second important parameter, the heuristic branching factor bh, measures

how many new nodes are generated when searching with the next larger cost

bound. It is defined as the average node ratio of two consecutive iterations,

bh = nodesi/nodesi−1. We include in the computation only the shallow iterations

i1, . . . , in−1, because in the last iteration (where the goal is found) the node count

depends much on the expansion order and is therefore highly variable. Clearly, bh

depends on the quality of the heuristic estimate function and the efficiency of the

search method.

For the 15-puzzle, we determined bh = 6.68 (with σ = 1.77) by running IDA*

on Korf’s selection of one hundred random problem instances. This value is suf-

ficiently high to allow effective use of iterative-deepening techniques. Moreover,

15

the 15-puzzle is one of the rare applications with bh > be, which further increases

the effectiveness of IDA* as compared to other search methods. The heuristic

branching factor is this big, because an increase of the cost bound by 2 (which is

the only possible increase between iterations) allows all nodes at a search frontier

to be expanded by at least one extra level – and some of them much more.

In the TSP, in contrast, the increase in the cost bound between iterations

is not fixed to a predetermined value. Most often the cost bound is raised by

a small amount only, allowing extension of only few frontier nodes in the next

iteration. This results in a heuristic branching factor that is much lower than

the edge branching factor. The exact magnitude of bh depends on the domain

of the inter-city distances. In the extreme case, that is with inter-city distances

drawn from the real numbers, only one frontier node (the one that gave rise to

the temporary iteration’s cost bound) is expanded in every new iteration. Then,

the heuristic branching factor is close to 1 and iterative-deepening is not efficient

[18, 22]. The problem might be overcome by increasing the cost bound by more

than the minimum value that exceeded the previous bound. But this approach

could return sub-optimal solutions, unless special provision is taken.

The heuristic branching factor can be controlled in the range 1 ≤ bh ≤ be by

choosing suitable domains, from which the inter-city distances are drawn. This

makes the TSP an ideal vehicle for studying the effectiveness of the proposed IDA*

enhancements under various bh. In our experiments, we used city coordinates

that have been randomly drawn from the integer intervals [1, 25], [1, 50], [1, 75]

and [1, 100]. This results in heuristic branching factors (of the simple IDA*) rang-

ing from 1.71, 1.29, 1.20 to 1.13, respectively. A total of fifty 20-city problems

were solved for each algorithm/interval combination. All interconnections are in-

cluded in the network, and the traveling salesman problem is complete, symmetric

and euclidean. As is customary, we used the minimum spanning tree [4] of the

remaining cities to estimate the completion cost of the partial tour.

Table 2 shows the experimental results with city coordinates drawn from the

intervals [1, 50] and [1, 100]. The performance is given relative to IDA* in terms

of node expansions and CPU time consumption. As can be seen, neither of the

node ordering heuristics (PV+Sort or History) yields substantial performance

improvements. This is not surprising, since only 8% of the total nodes are visited

in the last iteration, yielding an upper bound on the maximal improvement that

can be achieved by any kind of node ordering (see the last line in Table 2). The

History results are based on a 2-dimensional history table that holds for every

city pair the frequency it contributed to the longest tour. Experiments with chains

16

Algorithm Domain [1,50] Domain [1,100]

Nodes Time Nodes Time

IDA* 100 100 100 100

PV+Sort 95 95 98 99

History 95 95 99 99

Trans 36 38 27 28

Trans+Move 36 37 27 28

Trans+ReHash 28 30 19 20

IDA*, i1 . . . in−1 92 – 97 –

Table 2: Relative performance on the 20-city-TSP, 50 problems

of three cities gave only marginal additional improvements, while occupying more

resources (a 3-dimensional array).

Much better results of up to 73% node savings are achieved with a transposition

table. While Trans uses the table entries only for pruning duplicated states,

Trans+Move sorts the successors of interior nodes according to the retrieved

estimate values. Although this did not yield any further savings in terms of node

expansions, we found Trans+Move to be much faster, because the computation

of the minimum spanning tree takes more CPU time than a simple table retrieval.

In the best case, Trans examines only 27% of the nodes that are visited by

IDA*. The savings are better than can be achieved in the 15-puzzle. This is

especially interesting, since the table entries cannot be used as effectively as in the

15-puzzle, where further expansion is stopped as soon as an entry with a value

greater or equal to the remaining cost bound is retrieved. Such immediate cut offs

are not possible in the TSP, because care must be taken not to prune subtrees

containing a new cost bound for the next iteration. As is always the case in

applications where the cost bound increase is not known a priori, cut offs are only

feasible when the retrieved cost bound is higher than the temporary candidate for

the next cost bound.

Table 2 also shows how further savings are achieved with the more sophisticated

hashing techniques. The Trans+ReHash variant resolves storage collisions by

giving preference to states encountered in the shallow graph levels near the root.

In addition, it does limited re-hashing (up to a chain length of 3) by moving

the lower priority entries to the end of the re-hashing chain. As a result, the

mostly re-expanded nodes at the shallow tree levels enjoy early occupancy in the

transposition table and a fast retrieval time (due to the shorter chain lengths).

17

1.0 1.13 1.2 1.29 1.71

Heuristic Branching Factor bh

20

40

60

80

100

Nodes
[%]

..........
..........

...........
...........

...........
..........

...........
...........

...........
...........

...........
..........

...........
...........

...........
...........

..........
...........

...........
...........

...........
...........

..........
...........

...........
...........

...........
...........

.........
.........

.........
.........

.........
.........

..........
....
....
....
....
....
....
....
....
....
....
....
....
...

..

..

..
...
...
...
...
.

...
...
...
...
.

...
...
...
...
.

.............

.............

...

∗

∗∗
∗

∗

∗

∗

∗

∗

∗
∗

∗

∗∗

∗

∗

PV+Sort

Trans

Trans+ReHash

Trans without caching

Figure 5: Relative performance on the 20-city TSP

Since these are also the nodes for which the MST computation is most costly,

CPU time is saved even when the retrieved table value does not permit a cut off.

Figure 5 illustrates in a more general way the influence of the tree character-

istics on the relative search efficiency. The data shown is that from Table 2, but

expanded to include information from all four domain intervals considered. Instead

of plotting the performance relative to the domain of the city coordinates, we took

the heuristic branching factor achieved with the simple IDA* as a performance

measure. (In other words, the shown bh’s of 1.13, 1.20, 1.29, 1.71 correspond to

the city coordinate domains [1,100], [1,75], [1,50] and [1,25].)

The top graph in Figure 5 (PV+Sort) illustrates the growing importance of

successor ordering schemes with increasing bh. This is caused by the larger number

of nodes in the last iteration, which rectify any additional effort invested in sorting

the promising nodes to the beginning of the search. On the other hand, many of

the nodes that are expanded deeper in graphs with large bh are not contained

in the transposition table, which reduces the relative performance of Trans and

Trans+ReHash – see the two graphs at the bottom of Figure 5.

Interestingly, the additional transposition table savings in graphs with low

heuristic branching factors are almost exclusively due to node information gath-

ered in previous iterations. The amount of cycles and transpositions that are

detected in the same iteration remains constant over the whole range of branching

18

1.0 1.5 2.0 2.5 3.0

Heuristic Branching Factor bh

100

600

1100

1600

% Nodes to
optimal

IDA*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..

............... δ = 1
(IDA*)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............

.............

.............
.........
....

.......
......

......
......
.

.....
.....
...

.....
.....
...

....
....
....
.

....
....
....
.

....
....
....
.

....
....
....
.

....
....
....
.

....
....
....
.

...
...
...
...
.

...
...
...
...
.

...
...
...
...
.

...
. δ = 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............

.............
......
.......

...
...
...
...
.

...
...
...
...
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. δ = 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............

.....
....
....

...
..
..
..
..
..

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. δ = 4

Figure 6: Effect of more liberal cost-bound increases δ

factors. This is confirmed by the dashed line in the middle of Figure 5 (at about

60%), which depicts the savings incurred by information gathered in the same

iteration. For these data points, the transposition table has been cleared between

iterations. In total, roughly 40% of the node generations can be saved by avoiding

cycles and transpositions, while an additional 20 to 40% reduction can be achieved

by exploiting information gathered in previous iterations.

In applications with low heuristic branching factors (like the TSP) iterative-

deepening is clearly not the best solution method. To minimize repeated node

expansions, the cost bound should be increased by more than the minimal amount

[9, 15, 18, 22, 29]. But by how much should the cost bound be increased and up

to which branching factor is it beneficial to do so? Figure 6 presents a numerical

evaluation of iterative-deepening search with various cost bound increments δ. We

made the following simplifying assumptions:

• there is one goal node in the solution depth g = 37, 4

• we assume unity arc costs,

• the solution density does not increase with the search depth,

• the heuristic branching factor bh is constant over all iterations,

• the cost bound increments δ remain constant over the search (we did not
investigate decreasing or increasing δ).

4This solution depth occurred often in the TSP with domain [1,75].

19

The data points in Figure 6 are plotted relative to the node expansions of an

optimally informed IDA*, one that performs iterations i1, i2, . . . , i36 and detects

a solution in the first leaf node in the 37th iteration (the goal iteration). Clearly,

the total node count depends much on the fact whether the solution depth is a

multiple of the cost bound increment δ. If this is the case, an optimal solution will

be found in the last iteration, while saving some intermediate iterations. Figure 6

shows a worst case situation, where the solution depth g = 37 is a prime. As can

be seen, the larger cost-bound increases are only beneficial in trees with very small

branching factors (e.g., δ = 4 is advantageous in trees with bh ≤ 1.4).

In practice, one would use a method that dynamically adjusts the cost bound

increments to the heuristic branching factor, so that a sufficient number of new

nodes are expanded in successive iterations (e.g. IDA* CR, [22]). Other practical

alternatives include hybrid iterative-deepening and depth-first branch-and-bound

algorithms like DFS* [18] and MIDA* [29].

7 Conclusions

We adapted commonly used search techniques from the domain of adversary game-

tree searching to single-agent iterative-deepening search. We found that avoiding

transpositions and cycles is more lucrative than any kind of operator pre-sorting.

The best combination of the proposed techniques, namely a transposition table

with node successor ordering information, reduces the size of the search graph

by one half (in the 15-puzzle) or even by three quarters (in the TSP). This is

possible because the saved information can be used to detect duplicate states and

to guide the expansion process to the most promising direction in the search tree.

In both applications, our Trans+Move enhancement generates fewer nodes than

a perfectly informed (non-deterministic) IDA*, which runs through all iterations

i1, i2, . . . , in−1 and finds a goal node at the very first node expansion in the final

iteration in.

From a CPU-time performance standpoint, the 15-puzzle has proved to be an

especially difficult application to improve, because of cheap operator costs and

low branching factors. Although the simple successor ordering of Sort did not

pay off, the other heuristics, namely PV, Trans and Trans+Move, reduce the

search time by 13, 24 and 37%, respectively. These results compare favorably to

those of others [25, Table 2], [2, 12, 21, 22, 29].

In practice, one would first include the PV-heuristic, because of its negligible

space and time overheads. It simply uses standard information on the best subtree

20

that is needed to determine the solution path. If memory space is available, one

would then include a transposition table that holds all states seen during the

search. Since a table access needs only unit time, it does not affect the time

complexity of the program.

Transposition tables are most beneficial in applications with measurable op-

erator costs, like the traveling salesman problem. Depending on the range of

inter-city distance values, a transposition table of 256 K entries reduces the search

time by as much as 72%. The CPU time saving corresponds to a node reduction

of 73%, which justifies our assumption that unsuccessful table accesses are easily

compensated by the fast successful retrievals.

Another favorable aspect of the hashing technique is that it can be efficiently

applied in parallel environments. Although with tree structured data types, a

whole path must be sent to identify a single node, hashing techniques need only

transfer one hash key (that usually consists of one memory word only). Thus,

hashing techniques make it possible to profit from the computations of the other

processes.

Ease of implementation and maintenance is also a key issue. In our expe-

rience [19], hashing tables are much easier to implement and debug than the

tree-structured data types of A* [3] and other IDA* variants [2, 21, 25]. In some

way the transposition table plays a role similar to A*’s Open and Closed lists,

with greater flexibility and speed, but with some risk of omission. When space

restrictions are tight, table overloading might become a problem. It is then cus-

tomary to overwrite the older information from deeper tree levels. The rationale

is to give preference to the precious information on nodes near the root, where

more CPU-time has been spent to search the emanating subtree.

Acknowledgments

Foundations to this work were laid during the first author’s stay at the University

of Alberta as a Killam Postdoctoral Fellow. There he benefited from discussions

with Jonathan Schaeffer and his joint work on parallel IDA* implementations.

We are also indebted to Alan Sharpe for improvements to our hash-transposition

algorithm, and to the referees for their constructive comments.

Without the financial support of the Natural Sciences and Engineering Re-

search Council of Canada under Grants OPG36952 and OPG07902, this work

would not have been possible.

21

[1] S.G. Akl and M.M. Newborn, “The principal continuation and the killer
heuristic”, Procs. ACM Nat. Conf., Seattle, pp. 466–473, 1977.

[2] P.P. Chakrabarti, S. Ghose, A. Acharya and S.C. de Sarkar, “Heuristic search
in restricted memory”, Art. Intell., vol. 41, pp. 197–221, 1989/90.

[3] P.E. Hart, N.J. Nilsson and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths”, IEEE Trans. Sys. Sci. Cybern., vol.
SSC-4, no 2, pp. 100–107, 1968.

[4] M. Held and R.M. Karp, “The traveling salesman problem and minimal span-
ning trees”, Operations Research, vol. 18, pp. 1138–1162, 1970.

[5] M. Held, R.M. Karp. “The traveling salesman problem and minimal spanning
trees: Part II”, Mathematical Progr., vol. 1, 6–25, 1971.

[6] T. Ibaraki, “The power of dominance relations in branch-and-bound algo-
rithms”, J. Ass. Comput. Mach., vol. 24, no 2, pp. 264–279, 1977.

[7] T. Ibaraki, “Depth-m search in branch-and-bound algorithms”, Intl. J. of
Comp. and Inf. Sc., vol. 7, no 4, pp. 315–343, 1978.

[8] R.E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search”, Art. Intell., vol. 27, no 1, pp. 97–109, 1985.

[9] R.E. Korf, “Optimal path-finding algorithms”, in Search in Artificial Intelli-
gence, L. Kanal and V. Kumar, Eds., Springer-Verlag, New York, 1988.

[10] J.D.C. Little, K.G. Murty, D.W. Sweeney and G. Karel, “An algorithm for
the traveling salesman problem”, Operations Research, vol. 11, pp. 972–989,
1963.

[11] A. Mahanti, S. Ghosh, D.S. Nau, A.K. Pal and L. Kanal, “Performance of
IDA* on trees and graphs”, 10th Nat. Conf. on Art. Int., AAAI-92, San Jose,
CA, pp. 539–544, 1992.

[12] A. Mahanti, D.S. Nau, S. Ghosh, and L. Kanal, “An efficient iterative thresh-
old heuristic search algorithm”, Univ. of Maryland, College Park, Tech. Rep.
CS-TR-2853, 1992.

[13] T.A. Marsland, “Computer chess methods”, in Encyclopedia of Art. Intell.,
1st Edition, E. Shapiro, Ed., Wiley, pp. 159–171, 1987. See also, “Computer
chess and search”, 2nd Edition, pp. 224–241, 1992.

[14] T.A. Marsland, A. Reinefeld and J. Schaeffer, “Low overhead alternatives to
SSS*”, Art. Intell., vol. 31, pp. 185–199, 1987.

22

[15] B.G. Patrick, “Binary iterative-deepening A*: An admissible generalization
of IDA* search”, Procs. 9th Canadian Conf. on Art. Intell. AI’92, Vancouver,
BC, pp. 54–59, 1992.

[16] J. Pearl, Heuristics. Intelligent Search Strategies for Computer Problem Solv-
ing, Addison-Wesley, Reading MA, 1984.

[17] C. Powley and R.E. Korf, “Single-agent parallel window search”, IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-13, no 5, pp. 466–477, May 1991.

[18] V.N. Rao, V. Kumar and R.E. Korf, “Depth-first vs. best-first search”, Procs.
9th Nat. Conf. on Art. Intell. AAAI-91, Anaheim, CA, pp. 434–440, 1991.

[19] A. Reinefeld, J. Schaeffer and T.A. Marsland, “Information acquisition in
minimal window search”, Procs. 9th Intl. Joint Conf. on AI, pp. 1040–1043,
1985.

[20] A. Reinefeld. “Complete solution of the Eight-Puzzle and the benefit of node
ordering in IDA*”, Procs. 13th IJCAI-Conference, Chambéry, France, 1993.

[21] S. Russell, “Efficient memory-bounded search methods”, Procs. European AI
Conf., Vienna, pp. 1–5, 1992.

[22] U.K. Sarkar, P.P. Chakrabarti, S. Ghose and S.C. de Sarkar, “Reducing re-
expansions in iterative-deepening search by controlling cutoff bounds”, Art.
Intell., vol. 50, pp. 207–221, 1991.

[23] J. Schaeffer, “The history heuristic and alpha-beta search enhancements in
practice”, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-11, no 11,
pp. 1203–1212, 1989.

[24] J.J. Scott, “A chess-playing program”, in Machine Intelligence 4, B. Melzer
and D. Michie, Eds., Edinburgh Univ. Press, pp. 255–265, 1969.

[25] A.K. Sen and A. Bagchi, “Fast recursive formulation for best-first search
that allow controlled use of memory”, Procs. 11th Intl. Joint Conf. on AI,
pp. 297–302, 1989.

[26] D.J. Slate and L.R. Atkin, “Chess 4.5 — The Northwestern University chess
program”, in Chess Skill in Man and Machine, P.W. Frey, Ed., Springer-
Verlag, New York, pp. 82–118, 1977.

[27] M.E. Stickel and W.M. Tyson, “An analysis of consecutively bounded depth-
first search with applications in automated deduction”, Procs. 9th Intl. Joint
Conf. on AI, pp. 1073–75, 1985.

[28] G.C. Stockman, “A minimax algorithm better than alpha-beta?”, Art. Intell.,
vol. 12, no 2, pp. 179–196, 1979.

23

[29] B.W. Wah, “MIDA*: An IDA* search with dynamic control”, Univ. of Illi-
nois, Champaign, Tech. Rep. UILU-ENG-91-2216, CRHC-91-9, 1991.

[30] A.L. Zobrist, “A new hashing method with applications for game playing”,
Univ. of Wisconsin, Madison, Tech. Rep. 88, 1970. Reprinted in Intl. Comp.
Chess Assoc. J., vol. 13, no 2, pp. 69–73, 1990.

24

Appendix

function DepthFirstSearch (n, bound): integer; { returns next cost bound }
var

new bound, tt bound, i, t: integer;
next: node;
succ: array [1..max width] of node; { successor nodes }
b: array [1..max width] of integer; { successor’s cost bounds }

begin

if h(n) = 0 then begin

solved := true; return (0); { found a solution: return cost }
end;
new bound := ∞;

for each successor ni of n do begin

succ[i] := ni;
if retrieve tt (ni, tt bound) then { if ni is in transposition table }

b[i] := c(n, ni) + tt bound; { . . . then use revised cost value }
else

b[i] := c(n, ni) + h(ni); { . . . else use heuristic estimate }
end;

sort (succ[], b[]); { sort succ and b to increasing bound values n[] }

for i = 1 to last successors of n do begin { recurse }
next := succ[i];
if b[i] ≤ bound then { search deeper }

t := c(n, next) + DepthFirstSearch (next, bound − c(n, next));
else

t := b[i]; { cutoff }
if solved then return (t);
new bound := min (new bound, t); { compute next iteration’s bound }

end;
save tt (n, new bound); { save lowest bound of n in transposition table }
return (new bound); { return next iteration’s cost bound }

end;

Figure 7: Iterative-Deepening A* with transposition table and cost revision

DepthFirstSearch is called by IterativeDeepening, see Fig. 1. Note that this pseudo

code depicts the 15-puzzle case. In the TSP, fewer cut-offs exist, as explained in

Section 6.2.

25

