
User-Level Remote Data Access in Overlay Metacomputers

Jeff Siegel and Paul Lu

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada, T6G 2E8�
siegel|paullu � @cs.ualberta.ca

Abstract

A practical problem faced by users of metacomputers
and computational grids is: If my computation can move
from one system to another, how can I ensure that my data
will still be available to my computation? Depending on
the level of software, technical, and administrative support
available, a data grid or a distributed file system would be
reasonable solutions. However, it is not always possible (or
practical) to have a diverse group of systems administrators
agree to adopt a common infrastructure to support remote
data access. Yet, having transparent access to any remote
data is an important, practical capability.

We have developed the Trellis File System (Trellis FS)
to allow programs to access data files on any file system
and on any host on a network that can be named by a Se-
cure Copy Locator (SCL) or a Uniform Resource Locator
(URL). Without requiring any new protocols or infrastruc-
ture, Trellis can be used on practically any POSIX-based
system on the Internet. Read access, write access, sparse
access, local caching of data, prefetching, and authentica-
tion are supported. Trellis is implemented as a user-level
C library, which mimics the standard stream I/O functions,
and is highly portable. Trellis is not a replacement for tra-
ditional file systems or data grids; it provides new capabil-
ities by overlaying on top of other file systems, including
grid-based file systems. And, by building upon an already-
existing infrastructure (i.e., Secure Shell and Secure Copy),
Trellis can be used in situations where a suitable data grid
or distributed file system does not yet exist.

Keywords: remote data access, wide area file systems,
user-level file system, metacomputing, overlay metacomput-
ers, grid computing, prefetching, caching

1 Introduction

High-speed wide-area networks (WAN) make it more at-
tractive to take advantage of computational resources at dif-
ferent computing centers. But, in practice, users tend to
access only the computers at their local center because that
is where their data is located. For metacomputing and grid
computing to flourish, applications must be able to run on
any computer at any site and still have transparent access to
their data files.

Traditional distributed file systems allow remote vol-
umes to be accessed locally. A disk volume appears to be
local, but it is actually accessed in client-server fashion from
the remote file server. For example, the Network File Sys-
tem (NFS) [11] and the Andrew File System (AFS) [7] are
distributed file systems that have been used productively for
many years. Both NFS and AFS (and similar systems) can
be viewed as formal file systems in the sense that they re-
quire a superuser to install the appropriate drivers or mod-
ules into the operating system (OS), require a superuser to
configure mount points, and provide all users with a trans-
parent view of a whole file system, regardless of whether
a volume is local or remote. In general, an unprivileged
user cannot create, mount, or reconfigure any aspect of the
formal file system. Nonetheless, traditional distributed file
systems are powerful and useful systems.

But, currently, many researchers have access to a variety
of different computer systems that do not share a data grid
or distributed file system (Figure 1). The researcher merely
has an account on the systems. For example, Researcher A
has access to their group’s system, a departmental system,
and a system at a high-performance computing center. Re-
searcher B has access to their group’s server and (perhaps) a
couple of different high-performance computing centers, in-
cluding one center in common with Researcher A. It would
be ideal if all of the systems could be part of one metacom-

1

Group HPC

Dept. HPC

HPC Center 1

HPC Center 2

Server

Overlay Metacomputer A
Overlay Metacomputer B

Figure 1. Overlay Metacomputers

puter or computational grid. But, practically, the different
systems may be controlled by different groups who may not
run the same grid software. Yet, Researchers A and B would
still like to be able to exploit the large aggregate power of
their systems.

One solution is to create an overlay metacomputer,
which is a user-level aggregate of individual computing sys-
tems (Figure 1). A practical and usable overlay metacom-
puter can be created by building upon existing networking
and software infrastructure, such as Secure Shell, Secure
Copy, and World Wide Web (WWW) protocols. Since the
infrastructure is entirely at the user-level, or part of a well-
supported, existing infrastructure, Researcher A can create
a personal Overlay Metacomputer A. Similarly, Researcher
B can create a personal Overlay Metacomputer B, which
can overlap with Researcher A’s metacomputer (or not).
Our strategy for automatically handling computational tasks
in an overlay metacomputer is described elsewhere [9].

We have developed the Trellis File System (Trellis FS) to
help address the remote data access problem. Since Trellis
is designed to work on overlay metacomputers, we can de-
scribe Trellis as an overlay file system. An important design
decision in Trellis is to, as much as possible, implement
all the basic functionality at the user-level. Consequently,
Trellis provides a rich set of features, including read access,
write access, sparse access, local caching of data, prefetch-
ing, and a flexible approach to authentication and security.

2 Trellis File System

File systems provide a convenient abstraction to access
data files organized in a namespace. Traditional local file
systems abstract the details of how disk blocks are allo-
cated and mapped to a (typically) hierarchical namespace.
Distributed file systems abstract the details of client-server
access of remote data stored in various local file systems. A
superuser is required to configure most local and distributed
file systems. One can layer other systems for linking and
accessing data across a network on top of existing file sys-
tems. For example, the WWW can be viewed as a (largely)
read-only file system where a Uniform Resource Locator
(URL) is the basic element of the namespace. Notably, it
is possible for users to set up personal Web servers without

remote agent
(e.g., scp, dd)

remote agent
(e.g., scp, dd)

Application ssh proxy

Local FS API

ssh connection

ssh connection

Local FS API

Local FS API

Local FS API

Socket

Host 3: Server (Home Node)

Host 1: Client

Home

Home

(optional)

Host 2: Server (Home Node)

Trellis

Trellis API

cache

Figure 2. Trellis Architecture

being a superuser.
Trellis is an application programmer’s interface (API)

and system for transparently accessing local and remote
data. Any data file that can be named and accessed via a
URL can also be accessed via the Trellis File System (Trel-
lis FS). In addition, Trellis can access data files that are
reachable via Secure Shell (ssh) and Secure Copy (scp).
The naming convention for scp is similar to a URL, with
a few syntactic differences. We refer to the Secure Copy
naming syntax of username@hostname:pathname as
a Secure Copy Locator (SCL). An important advantage
of scp is the built-in infrastructure for user authentica-
tion via public key encryption instead of passwords. Most
Web servers provide simple forms of authentication (e.g.,
Apache’s htaccess) based on passwords. By using pub-
lic key encryption, access to data files can be given and
revoked without revealing any private information. In ad-
dition, ssh allows more fine-grained approaches to access
control via the forced command feature [3]. Given the wide
deployment of Secure Shell and Copy, we have layered
Trellis on top of that existing infrastructure.

To the application programmer, the Trellis FS can be
viewed as a library of wrapper functions to well-known
C language stream I/O functions (Table 1). For exam-
ple, instead of open(), the programmer calls trel-
lis open() with the same parameter types. Both func-
tions return a file descriptor.

Trellis transparently replicates a remote file onto a lo-
cal file system and then allows the data to be accessed
using trellis read() or trellis write(). Once
cached on the local file system, usually in a directory called
TrellisCache, Trellis delegates to the local file system
the actual movement of data from the file cache to the user’s

2

Function Name Description

trellis open() Opens a local file, remote file via URL, or remote file via Secure Copy. Same parameters as open(). Currently,
flags O RDONLY, O WRONLY, O RDWR, O CREAT, O TRUNC, and O APPEND are supported.

trellis close() Closes any file opened by trellis open(). Flushes updates to remote host. Same parameters as close().
trellis read() Reads from a file opened by trellis open(). Data comes from a copy of the remote file cached on the local

file system. Same parameters as read().
trellis write() Writes to a file opened by trellis open(). Updated values are buffered on a local file system until file is

closed. Same parameters as write().
trellis lseek() Moves current file location in a file opened by trellis open(). Supports sparse files. Same parameters as

lseek().

Table 1. Main Functions in Trellis File System API

buffers. Therefore, Trellis is not responsible for disk block
allocation or other low-level data management details. In
the common use cases, Trellis introduces only a small func-
tion call overhead to each I/O operation. To improve perfor-
mance, data can be prefetched into the Trellis cache. And,
the cache is persistent so the remote data transfer can be
eliminated for future accesses to the same data file.

Accessing files via an SCL is the most general-purpose
mechanism since scp/ssh can both read and write files.
When trellis close() is called, any updates to the
file are written back to the original host (called the home
node) if scp/ssh was the original protocol.

We converted the well-known Unix cat program to
Trellis by making only a few lexical changes to the source
code to use the trellis functions. The new trel-
lis cat accepts the same command-line arguments and
options as cat, but it also accepts the URL and SCL
filenames. Consequently, trellis cat can be used in
scripts as a drop-in replacement for cat.

2.1 Overlay File Systems

We have described Trellis as an overlay file system. The
term “overlay” is borrowed from the notion of overlay net-
works [2]. We define the three main characteristics of an
overlay file system as:

1. Does not require special kernel support. Although
an overlay file system may benefit from special ker-
nel support, an overlay file system cannot require such
support because that could severely limit portability.

2. Does not require superuser permissions to set up or
use. The current Trellis prototype does not require
mount points and all configuration is controlled via
shell environment variables.

3. Does not require all users to see the same data file
namespace; users can share the same namespace if
they wish. Different users have access to different hosts
and computational nodes. Compare Researcher A with

B (Figure 1). Therefore, there is unlikely to be a single
directory structure that will satisfy all users.

3 Implementation of Trellis FS

The Trellis FS architecture is shown in Figure 2. The
client application is linked to the Trellis FS user-level C li-
brary, which implements the API. For our prototype imple-
mentation of the Trellis FS, we made a deliberate decision
to re-use as much existing technology as possible. For ex-
ample, instead of designing a new scheme for user authen-
tication and data encryption, we adopted the Secure Shell
infrastructure. Also, libcURL [8] was already a robust
library that supported a wide variety of URL-related data
transfer protocols. Consequently, except for scp-accessed
files, we call the appropriatelibcURL functions to transfer
the remote file. On top of libcURL and Secure Shell, Trel-
lis adds data management functionality, the Trellis cache,
simple prefetching, and sparse file support.

As discussed earlier, we tested the abstraction benefits
of the Trellis FS API by converting the cat program into
trellis cat. Since the Trellis functions are designed to
be drop-in replacements for the standard stream I/O func-
tions, porting cat to use the Trellis FS required only a
handful of lexical changes to the source code.

Microbenchmarks (not discussed here) on Linux 2.2 and
Irix 6.5 systems show that Trellis has a small performance
penalty of 5% to 10% over explicit file copying and us-
ing the original binary file API. The Trellis overheads in-
clude data management of the Trellis cache and (most im-
portantly) the function call redirection overheads of us-
ing the trellis functions. However, when prefetch-
ing and caching are allowed and exploited in Trellis, there
can be substantial performance gains. For computationally-
intensive applications, both prefetching and caching can re-
duce execution times. For simple computations, caching is
the most effective technique. Lastly, for applications with
sparse data access patterns, Trellis’s ability to transfer files
on demand in blocks can result in large performance im-
provements.

3

Further implementation and performance evaluation de-
tails can be attained by contacting the authors.

4 Related Work

We have already discussed the relationship between
overlay file systems and traditional, distributed file systems,
such as NFS [11] and AFS [7].

Of course, the basic idea of using wrapper functions
(e.g., trellis open() instead of open()) is not new.
Orthogonally, we are making progress towards more trans-
parent interfaces than wrapper functions, in order to support
unmodified binary applications.

Trellis also draws heavily on the concept of a URL
from the WWW and on WWW-related systems, such as
libcURL [8] and Ufo [1].

The influential work of the Globus project on GASS and
the Data Grid is related to Trellis [6, 4, 10]. Also, there are
other grid-related remote data access systems [12, 5]. The
systems strive to make it easier to access remote data in a
convenient manner and with good performance.

5 Concluding Remarks

The Trellis File System provides an abstraction to allow
for the transparent access of remote data files through URL-
based and SCL-based filenames. In the rapidly emerging
areas of metacomputing and grid computing, having trans-
parent access to any remote data is an important capability.

Trellis is unique in its design philosophy (i.e., overlay
file systems) and its use of Secure Shell and Copy as a
fundamental building block. Read access, write access,
sparse access, local caching of data, prefetching, and strong
user authentication are supported. Microbenchmark experi-
ments show the relatively low overheads introduced by Trel-
lis and the potential performance advantages of prefetching
and caching in Trellis. Few remote data access systems for
metacompting provide all of these features in a system that
is ready to deploy with the existing network infrastructure.

Finally, as an overlay file system, Trellis can be installed,
configured and re-configured without requiring superuser
access. Trellis is not a replacement for traditional file sys-
tems or data grids; it provides new capabilities by building
upon other file systems and by layering on top of widely-
deployed network infrastructure. In the future, Trellis appli-
cations can happily co-exist on a variety of grid infrastruc-
tures and, as the project progresses, Trellis can provide ad-
ditional functionality for users of metacomputers and grids.

Acknowledgments

Thank you to C3.ca, the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the Canada
Foundation for Innovation (CFI), and the University of Al-
berta for their research support.

References

[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. Ufo:
A Personal Global File System Based on User-Level Exten-
sions to the Operating System. ACM Transactions on Com-
puter Systems, 16(3):207–233, 1998.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. In G. Ganger, editor,
Proc. 18th ACM Symposium on Operating Systems Princi-
ples (SOSP-01), volume 35, 5 of ACM SIGOPS Operating
Systems Review, pages 131–145, New York, Oct. 21–24
2001. ACM Press.

[3] D. J. Barrett and R. E. Silverman. SSH, the Secure Shell:
The Definitive Guide. O’Reilly and Associates, Sebastopol,
CA, 2001.

[4] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A Data Movement and Access Service for Wide
Area Computing Systems. In Proc. 6th Workshop on I/O
in Parallel and Distributed Systems, 1999.

[5] R. Figueiredo, N. Kapadia, and J. Fortes. The PUNCH vir-
tual file system: Seamless access to decentralized storage
services in a computational grid. In Proc. 10th Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC-10), August 2001.

[6] Globus. http://www.globus.org/.
[7] J. H. Howard. On overview of the Andrew File System.

In USENIX Association, editor, USENIX Conference Pro-
ceedings (Dallas, TX, USA), pages 213–216, Berkeley, CA,
USA, Winter 1988. USENIX.

[8] libcURL. http://curl.haxx.se/libcurl/.
[9] C. Pinchak, P. Lu, and M. Goldenberg. Practical hetero-

geneous placeholder scheduling in overlay metacomputers:
Early experiences. In Proc. 8th Workshop on Job Schedul-
ing Strategies for Parallel Processing, Edinburgh, Scotland,
UK, July 2002.

[10] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman,
and B. Tierney. File and Object Replication in Data Grids. In
Proc. 10th International Symposium on High Performance
Distributed Computing (HPDC-10), August 2001.

[11] D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss. Overview
of the Sun network file system. In USENIX Association, ed-
itor, Proceedings: USENIX Association Winter Conference,
January 23–25, 1985, Dallas, Texas, USA, pages 117–124.
USENIX, Winter 1985.

[12] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw.
LegionFS: A secure and scalable file system supporting
cross-domain high-performance applications. In ACM, edi-
tor, Supercomputing 2001. ACM Press and IEEE Computer
Society Press, 2001.

4

