
July–September 2000 1092-3063/00/$10.00 © 2000 IEEE 63

Implementing Scoped
Behavior for Flexible
Distributed Data Sharing

performance, but they suffer from high
communication overheads. Sharing data
between distributed memories is more
expensive than sharing data using hard-
ware-based shared memory. Because an
application’s data-sharing policies deter-
mine how often, when, and what mecha-
nisms are used for communications, they
dramatically affect performance and must
be optimized. (See the “Approaches to dis-
tributed data sharing” sidebar for a dis-
cussion of current approaches.)

The flexibility to tune a distributed-
memory application varies depending on
the kind of parallel programming system
used. System architects can develop paral-
lel applications using parallel languages
(such as High Performance Fortran),
libraries (Lapack, for example), runtime
systems (such as Message Passing Inter-
face), or a combination of these techniques.
Each type of system has different strengths
and weaknesses, but, generally speaking,
high-level languages and shared-data sys-
tems are strong in ease of use, while mes-
sage-passing systems are strong in perfor-
mance. By design, high-level abstractions

hide low-level details, such as when and
what data is communicated. Conversely,
message passing explicitly shows when data
is sent and received. With sufficient (and
often substantial) programming effort, a
message-passing program can be highly
tuned. Ideally, we would like to have both
a high level of abstraction and the flexibil-
ity to tune a parallel application.

We have developed a novel technique,
called scoped behavior, that provides a high
degree of flexibility in applying an opti-
mization within a high-level parallel pro-
gramming system.2 This article shows how
application programmers use and imple-
ment scoped behavior and how three opti-
mized applications perform on a network
of workstations.

Flexibility using scoped
behavior

In Aurora, the basic shared-data model is
that of a distributed vector object or a dis-
tributed scalar object. Each object is an
independent unit of sharing. The data
encapsulated in the object can be accessed

In the Aurora

distributed shared data

system, the programmer

instantiates shared-data

objects and uses scoped

behavior to incrementally

tune applications on a

per-object and per-

context basis. A class

library implements

shared-data objects as

abstract data types and

scoped behavior

implements the

optimizations within

standard C++. Using a

network of work-

stations connected by an

ATM switch, the author

demonstrates that

Aurora performs

comparably to message

passing.

Distributed Data Sharing

P
arallel and distributed computing is a diverse area of research

and practice.1 Many hardware architectures have been pro-

posed, but networks of workstations and clusters have recently

garnered considerable attention. These distributed-memory

platforms are attractive because of their ubiquitousness and good price

Paul Lu
University of Alberta

64 IEEE Concurrency

from any processor node. In keeping with
an abstract data type approach, shared-
data objects are created, accessed, and
destroyed using a programmer’s interface.
By exploiting various abstraction and
object-oriented mechanisms in C++, it is
possible to automate and hide the low-
level details of the programmer’s interface.

Specifically, C++ constructors and
destructors hide resource allocation and
deallocation details, such as memory for
data buffers and caches. Also, the objects
have internal data structures to keep
track of the location and status of the
shared data. Overloaded operators let
the shared data be accessed using normal
C++ syntax by translating a read or write
access into an appropriate communica-
tion operation.

In concert with the basic shared-data

objects, Aurora uses scoped behavior to
provide the following:

• Per-object flexibility—the ability to
apply an optimization to a specific
shared-data object without affecting
the behavior of other objects. Within
a context, different objects can be
optimized in different ways (hetero-
geneous optimizations).

• Per-context flexibility—the ability to
apply an optimization to a specific
portion of the source code. Different
portions of the source code (such as
different loops and phases) can be
optimized in different ways.

I’ll discuss the implementation details
later, but first let’s look at Aurora’s
higher-level programming abstractions.

A SIMPLE LOOP
Figure 1a demonstrates how to

instantiate and access a distributed-
vector object. GVector is a C++ class
template provided by Aurora. Any built-
in data type or user-defined concrete
type3 can serve as the template argu-
ment. The vector’s size is a parameter to
the constructor and, currently, the vec-
tor elements are block distributed across
the processor nodes. Therefore, vec-
tor1 is a vector object with 1,024 integer
elements that are block distributed.

The programmer can assign values to
the elements of vector1 using the same
syntax as with any C++ array. The over-
loaded subscript operator (operator[])
is an access function that determines
whether the update to vector1 at index
i is to local or to remote data. If the data

Performance and usability are com-
mon but sometimes-conflicting design
goals for parallel programming systems.
On the one hand, low-level control of
communication operations can give
message passing a flexibility and per-
formance advantage. The key mecha-
nisms of message-passing systems are
explicit message sends and receives for
remote data. Local data is accessed
using familiar reads and writes, as in
sequential programs. Practically every-
thing else about a message-passing pro-
gram depends on how the programmer
chooses to implement the application.
The relative lack of constraints on mes-
sage passing is the source of both its
expressive power and programming
complexity.

On the other hand, systems based on
shared-memory and shared-data mod-
els are becoming increasingly popular
for distributed applications. These sys-

tems provide an abstraction that allows
local and remote data to be accessed
using the same programming interface,
such as loads and stores, or reads and
writes. With a uniform interface, there
is no need to mix local accesses with
explicit message passing, making its use
more convenient and less error-prone.
Consequently, a variety of software-
based logically shared systems for
distributed-memory platforms have
emerged. The systems emphasize usabil-
ity, but they improve performance
through a variety of optimizations.
Broadly speaking, there are distributed
shared memory1,2 and distributed
shared data3,4 systems. Table A com-
pares the characteristics of “typical”
DSM and DSD systems.

TWO SIDES

At one end of the shared-data spec-
trum, DSM systems use software to

emulate hardware-based shared mem-
ory. Typically, DSM systems rely on
fixed-sized units of sharing, often a
page, because they use the same mech-
anisms as for demand-paged virtual
memory. The virtual-memory space is
partitioned into pages that hold private
data and pages that hold shared data.
Different processor nodes can cache
copies of the shared data. As with hard-
ware-based shared memory, a C-style
pointer (such as int *) can refer to and
name either local or remote data.

By manipulating the memory protec-
tion bits associated with a page, the DSM
software can force a page fault into its
own handler and selectively intervene
when a page of shared data is accessed.
The intervention is transparent to the
programmer in the same way that vir-
tual memory faults in the operating sys-
tem are also transparent. But, instead of
using a traditional backing store, the
DSM runtime system communicates with
other processor nodes to update, inval-

Approaches to distributed data sharing

Table A. Distributed shared memory versus distributed shared data.

FACTORS DSM DSD

Key mechanisms Page faults for virtual memory Abstract Data Type and programmer’s
interface

Naming Pointer Object pointer or data descriptor
Unit of management Fixed: page Variable: object or region
Unit of sharing policy All shared pages; sometimes Object or region

per-page
Can suffer from false sharing? Yes No
Can alter sharing policy per context? Possible, but still problematic Yes

July–September 2000 65

is local, a write is simply a store to local
memory. If the data is remote, a write
results in a network message. Similarly,
a read access is either a load from local
memory or a network message to get
remote data. By default, the system reads
from and writes to shared data synchro-
nously, even if the data is on a remote
node, because that data access behavior
has the least error-prone semantics.

Now, for example, if a shared vector is
updated in a loop and if the updates do not
need to be performed immediately, we
can optimize the loop by using release
consistency.4 Basically, all writes are
buffered and updates to the vector will
execute later, instead of synchronously.
Three new elements are required to use
scoped behavior to specify the optimiza-
tion (see Figure 1b): opening and closing

braces for the language scope and a sys-
tem-provided macro. Of course, the new
language scope is nested within the orig-
inal scope and the new scope provides a
convenient way to specify the context of
the optimization.

The NewBehavior macro specifies

that the release consistency optimization
should be applied to vector1. Upon
recompilation, and without any changes
to the loop code itself, the behavior of
the updates to vector1 changes within
the language scope. The new behavior
uses buffers to batch the writes and auto-

idate, and otherwise manage the data
in a shared page. Often, a single data-
sharing policy serves for all shared pages,
although some DSM systems support
per-page policies.

At the other end of the spectrum,
DSD systems treat shared data as an
abstract data type. Instead of depend-
ing on page faults, a programmer’s
interface is used to detect and control
access to the shared data. The access
functions implement the data-sharing
policy. If an object-oriented language
is used, the ADT can be a shared-data
object. Alternatively, the ADT can be
implemented by a data descriptor and
associated library functions. For exam-
ple, the data descriptor can point to a
contiguous region of memory that is
designated for shared data.

A programmer’s interface might not
be as transparent as the virtual-memory
approach, but there are some flexibility
advantages to ADTs. For example, DSD
systems can have a variable granularity
of sharing because ADTs do not depend
on the hardware’s page size. Also, dif-
ferent data-sharing policies can be
implemented as different ADTs. As the
usage of the data structure changes, so
will the data-access pattern of reads and
writes, so the programmer can select the
ADT with the most optimized policy for
a given pattern. Consequently, the pro-
grammer can select the unit of sharing
and the sharing policy to match the
form and function of the particular
data.

VALUE OF FLEXIBILITY

Flexibility in a shared-data system is
important when dealing with the prob-
lem of false sharing and when optimiz-
ing data-access patterns in different
computational phases.

False sharing occurs in page-based
DSM systems when there is unnecessary
communication between processes that
do not actually share their data. Con-
sider two processes that write to dif-
ferent portions of the same shared
page. If the processes never read each
other’s updated values, there is no need
for the processes to communicate. But,
because data is managed and commu-
nicated on a per-page basis, the writes
cause the entire page to be either
updated or invalidated unnecessarily.
Placing independent data on different
pages can reduce false sharing, but this
can lead to memory fragmentation.
Furthermore, a shared page can exhibit
false sharing in one computational
phase and no false sharing in another
phase. An inflexible unit of data man-
agement makes it difficult to eliminate
false sharing under all circumstances.

DSD systems avoid false sharing by
managing independent data as sepa-
rate objects. And, different ADTs can
implement different data-sharing poli-
cies. If one data structure is read-only
and another is write-intensive, they can
be optimized by different ADTs. Also, as
part of the ADT approach, it is natural
to consider different interfaces for the
same shared data if the access pattern

changes. If the output of one function
serves as the input of another function,
the same shared data might change
from write-intensive to read-only. In a
DSD system, changing a data-sharing
policy can be as simple as changing the
interface’s access functions, without
changing the encapsulated data.

To address the flexibility issue, the
Aurora DSD system uses scoped behav-
ior. As the programmer’s interface for
specifying a data-sharing optimization,
scoped behavior allows each shared-data
object and each portion of the source
code (context) to be optimized indepen-
dently of other objects and contexts.

References
1. J.K. Bennett, J.B. Carter, and W.

Zwaenepoel, “Munin: Distributed
Shared Memory Based on Type-Specific
Memory Coherence,” Proc. Conf. Prin-
ciples and Practice of Parallel Program-
ming, ACM Press, New York, 1990, pp.
168–176.

2. C. Amza et al., “TreadMarks: Shared
Memory Computing on Networks of
Workstations,” Computer, Vol. 29, No.
2, Feb. 1996, pp. 18–28.

3. H.E. Bal, M.F. Kaashoek, and A.S. Tanen-
baum, “Orca: A Language for Parallel
Programming of Distributed Systems,”
IEEE Trans. Software Eng., Vol. 18, No.
3, Mar. 1992, pp. 190–205.

4. H.S. Sandhu, B. Gamsa, and S. Zhou,
“The Shared Regions Approach to Soft-
ware Cache Coherence,” Proc. Symp.
Principles and Practices of Parallel Pro-
gramming, ACM Press, New York, 1993,
pp. 229–238.

GVector<int> vector1(1024);

for(int i = 0; i < 1024; i++)
 vector1[i] = someFunc(i);

(a)

GVector<int> vector1(1024);

{// Begin new language scope
 NewBehavior(vector1,GVReleaseC, int);

 for(int i = 0; i < 1024; i++)
 vector1[i] = someFunc(i);

}// End scope

(b)

Figure 1. Applying a data-sharing optimization using scoped behavior: (a)
original loop; (b) optimized loop using scoped behavior.

66 IEEE Concurrency

matically flushes the buffers when the
scope is exited.

MATRIX MULTIPLICATION
Let’s now examine a more complex

example of using scoped behavior. Consider
the problem of nonblocked, dense matrix
multiplication, as shown in Figure 2.

The basic data-parallel process model
is that of teams of threads operating on
shared data in single-program, multiple-
data (SPMD) fashion. The preamble is
common to both the sequential and par-
allel codes (Figure 2a). The basic algo-
rithm consists of three nested loops,
where the innermost loop computes a
dot product and can be factored into a
separate C-style function.

Conceptually, we can view an opti-
mization as a change in the type of
shared object for the lifetime of the
scope. As an example of per-object flex-
ibility, we apply three different data-
sharing optimizations (Table 1) to the
sequential code in Figure 2b to create the
parallel code in Figure 2c. The first
scoped behavior requires some modest
change to the source code, but the last
two behaviors require no changes:

1. NewBehavior(mA,GVOwnerCom-

putes,int): To partition the paral-

lel work, the owner-computes tech-
nique is applied to distributed vector
mA. Within the scope, mA is an object
of type GVOwnerComputes and has
special methods doParallel(),
begin(), end(), and step(). Only
the threads (each represented by a
local myTeam pointer) that are colo-
cated with a portion of mA’s block-
distributed data actually enter the
while-loop and iterate over their
local data. dotProd() expects point-
ers for parameters. Therefore,
GVOwnerComputes provides a C-
style pointer to the local data so that
dotProd() executes with maximum
performance. Although some
changes to the source code are
required to apply owner-computes,
they are relatively straightforward.

2. NewBehavior(mB, GVReadCache,

int): To automatically create a
local copy of distributed vector mB
at the start of the scope, because it
is read-only and reused many
times, its type changes to GVRead-
Cache. The scoped behavior of a read
cache also allows dotProd() to be
called with C-style pointers that point
to the cache. No lexical changes to the
loop’s source code are required for this
optimization.

3. NewBehavior(mC, GVReleaseC,

int): To reduce the number of
update messages to elements of dis-
tributed vector mC during the com-
putation, its type changes to GVRe-
leaseC. As with the simple loop
example, the overloaded operators
batch the updates into buffers, and
messages only send when a buffer is
full or when the scope is exited. Also,
this optimization allows multiple
writes to the same distributed vector
and requires no lexical changes to the
source code.

This heterogeneous set of optimiza-
tions lets the nested loops execute with far
fewer remote data accesses than before.
All read accesses are from a cache or local
memory; all write accesses are buffered.

We can also exploit the high-level
semantics of scoped behaviors to reduce
communication overheads. For example,
typical DSM systems send an individual
request message for each page of remote
data. Without any knowledge on the spe-
cific data-access pattern, the DSM system
must use the most general-purpose pol-
icy, such as demand paging. However,
scoped behaviors do contain extra seman-
tic information. In particular, the read-
cache scoped behavior specifies that all of
vector mB in matrix multiplication is
cached; therefore, there is no need to
transfer each unit of data separately. We
can eliminate the multiple request mes-
sages if the data is streamed into each read
cache via bulk data transfer. Of course,
bulk data transfer is not unique to Aurora,
but scoped behavior’s high-level seman-

(a)

(b) (c)

// mA, mB, mC are 512 x 512 GVectors

{// Begin new language scope
 NewBehavior(mA, GVOwnerComputes, int);
 NewBehavior(mB, GVReadCache, int);
 NewBehavior(mC, GVReleaseC, int);

while(mA.doParallel(myTeam))
for(i = mA.begin();i < mA.end();i += mA.step())

 for(j = 0; j < 512; j++)
 mC[i][j] =
 dotProd(&mA[i][0], mB, j, 512);
}// End scope

// mA, mB, mC are 512 x 512 matrices

for(i = 0; i < 512; i++)
 for(j = 0; j < 512; j++)
 mC[i][j] =
 dotProd(&mA[i][0], mB, j, 512);

int i, j;
// Prototype of C-style function with innermost loop
int dotProd(int * a, int * b, int j, int n);

Figure 2. Matrix multiplication in Aurora: (a) common preamble, (b) sequential code, and (c) optimized parallel code.

Table 1. Some scoped behaviors.

SCOPED BEHAVIOR DESCRIPTION

Owner-computes Threads access only colocated data
Caching for reads Create local copy of data
Release consistency Buffer write accesses

July–September 2000 67

tics and flexibility provide a natural con-
ceptual and implementation framework.

PROGRAMMING IN AURORA
Aurora does not automatically paral-

lelize an application. The typical
methodology for developing and port-
ing applications to Aurora “by hand”
consists of three main steps:

• Shared arrays and shared scalars con-
vert to GVectors and GScalars.
Although the default synchronous
access policy can be slow, we can
optimize its performance after the
program has been fully debugged.

• The parallel work is partitioned
among the processors and threads.
Owner-computes and SPMD-style
parallelism are common and effective
strategies, but the application pro-
grammer is free to implement other
work-partitioning schemes as well.

• Various data-sharing optimizations
can be tried on different bottlenecks
in the program and on different
shared-data objects. Often, the only
required changes are a new language
scope and a NewBehavior macro.
Sometimes, straightforward changes
to the looping parameters are needed,
such as for owner-computes.

By limiting the number of required
changes to the user’s source code, scoped
behavior makes it easier to experiment
with different optimization strategies. For
example, in the matrix multiplication pro-
gram, we can apply owner-computes to
vector mC instead, with read caches used
for both vector mA and vector mB. The
dotProd() function and the data-access
source code remain unchanged. Revert-
ing to the original strategy is also relatively
easy. For the application programmer, the
ability to experiment with different opti-
mizations, with limited error-prone code
changes, can be valuable.

Scoped behavior

Scoped behavior is a change in an
ADT’s interface for the lifetime of a lan-
guage scope. For application program-
mers, scoped behavior is how they apply
an optimization to a shared-data object.

For system and class designers, scoped
behavior is a collaboration between
classes that changes the implementation
of selected methods.

HANDLE-BODY COMPOSITE
OBJECTS

Developers have explored some of the
ideas behind scoped behavior as part of
the handle-body and envelope-letter
idioms in object-oriented program-
ming,3 the strategy design pattern,5 and
parametric shared regions in ABC++.6
Scoped behavior builds upon these ideas.

Composite objects, such as handle-body
objects, are multiple objects that behave
as if they were a single entity.3 In Aurora,
the handle object defines the program-
mer’s interface to the shared data and the
body object (or objects) contain the actual
data. Having multiple handles for the
same body objects is a convenient way to
support different ADT interfaces to the
same encapsulated data. Depending on
which handle is in use (in scope), the
methods and behaviors will be different.
I’ll discuss the interaction between han-
dle and body later, but first I’ll focus on
how different handles interact.

LANGUAGE SCOPES AND SCOPED
HANDLES

Language scopes are used to define
the context of scoped behavior to exploit
the compile-time property of name hid-
ing and the runtime properties of object
creation. Many block-structured lan-
guages can reuse an identifier within a
nested language scope, thus hiding the
identifier outside of the scope. A handle
within a language scope that hides a han-
dle outside of the scope is a scoped handle.

Figure 3 shows the relationship be-
tween the various collaborating objects

inside the language scope of the matrix
multiplication example. The solid boxes
show the original GVector handle-body
objects for mA, mB, and mC. In the exam-
ple, each of the GVectors has a different
number of body objects.

The dashed boxes (highlighted in gray)
show the scoped handles used to implement
the owner-computes, caching for reads, and
release consistency behaviors. Inside the
scope, the GVectorhandles are hidden and
unused, but the scoped handles can access
the data in the body objects via a reference
(for example, a pointer) to the original han-
dles. Dynamic actions can be associated with
the construction and destruction of the
scoped handles, such as creating, flushing,
and destroying cache and buffer objects.

HANDLE REFERENCES AND
ALTERNATE INTERFACES

As Figure 4a shows, Aurora provides
the scoped behavior macro NewBehav-
ior to help establish the reference from
one handle to another. Figure 4b shows
the original programmer’s source code
and Figure 4c shows the code after the
standard preprocessor of the C++ com-
piler has expanded the macro.

The NewBehavior macro is parame-
terized by the name of the original
shared-data object (ORIG), the scoped
behavior or type of the new scoped han-
dle (SB), and the type of the vector ele-
ments (TYPE). (This is a multiline macro
and the ## symbol is the standard pre-
processor operator for lexical concate-
nation. Also, the prefix AU_ is arbitrary
and can be redefined, if necessary.
Unfortunately, the more concise syntax
of GVReleaseC<int> vector1(vec-
tor1) conflicts with the C++ standard’s
semantics. According to the standard,
the new vector1 is passed a reference to

Body MBody 0 Body N

Handle

Body 0

Handle

Body 0

Handle

GVector GVector GVector

GVOwnerComputes GVReadCache GVReleaseC

Scoped handles

Cache Buffers

Handle Handle Handle

mA mB mC

Figure 3. Composite objects in matrix multiplication.

68 IEEE Concurrency

itself, instead of to the original object,
thus requiring an intermediary GPortal
object. Fortunately, the macro hides the
existence of the intermediary object.)

The macro actually instantiates two
objects. The first object, AU_vector1, is
of type GPortal. Its sole function is to
save a pointer to the original vector1
object. The second object, the new
scoped handle vector1 of type GVRe-
leaseC<int>, hides the original object
but can access its internal state using the

pointer passed by AU_vector1. Thus, the
scoped handle can delegate, mimic, or
change the original shared-data object’s
functionality, and the user’s source code
does not change. In other words, the pro-
grammer’s ADT interface changes with-
out the encapsulated data or the user’s
source code changing.

Because the scoped handle has the
same name as the original vector1, the
compiler will generate the loop body code
according to class GVReleaseC instead of

the original object’s class. The class tem-
plate GVReleaseC behaves exactly like
GVector, except that the overloaded
operators now buffer the updates and the
destructor flushes the buffers at the end
of the scope. Again, we can conceptualize
scoped behavior as using the NewBehav-
iormacro to temporarily change the type
of the original object.

The source code outside of the con-
text of the optimization continues to
refer to the original GVector. Therefore,
synchronous updates remain the default
behavior outside of the scope, illustrating
per-context flexibility.

Shared-data class library

Let’s now take a detailed look at the
design and implementation of the C++
classes for the shared-data objects and
data-sharing optimizations. By design,
these classes collaborate to support
scoped behavior.

SHARED-DATA COMPOSITE OBJECTS
As discussed, the class library uses the

handle-body idiom to create composite
objects for shared data (Figure 5). In
addition to simplifying the implementa-
tion of scoped behavior, the extra level
of indirection between handle and body
allows for

1. Data distribution. A distributed vec-

(a)

(b) (c)

#define NewBehavior(ORIG, SB, TYPE) \

 GPortal< GVector<TYPE> > AU_ ## ORIG(ORIG); \

 SB< TYPE > ORIG(AU_ ## ORIG);

template <class C_OrigHandle>

class GPortal

{

 private:

 C_OrigHandle * save;

 public:

 GPortal(C_OrigHandle & h) { save = &h;}

 operator C_OrigHandle &() { return *save;}

};// GPortal

 // Macro provided by aurora.H

// Class template provided by aurora.H

 // Saved handle

 // In: Constructor
 // Out: Type conversion operator

GVector<int> vector1(1024);

{// Begin new language scope
 NewBehavior(vector1, GVReleaseC, int);

 for(int i = 0; i < 1024; i++)

 vector1[i] = someFunc(i);

}// End scope
vector1[0] = 1; // Synchronous update

GVector<int> vector1(1024);

{// Begin new language scope
 GPortal<GVector<int> > AU_vector1(vector1);

 GVReleaseC<int> vector1(AU_vector1);

 for(int i = 0; i < 1024; i++)

 vector1[i] = someFunc(i);

}// End scope
vector1[0] = 1; // Synchronous update (still)

Figure 4. Aurora’s scoped behavior macro: (a) the macro, (b) source code, and (c) code after standard preprocessor pass.

Directory object

Special methods
(incl. constructors
 and destructors)

Overloaded operators

Partition object Synchronization and
permissions

Synchronization and
permissions

Node / address space 0

Node / address space 1

Handle Body 0

Body 1

Local data 0

Local data 1

Shared-memory
RMI

Message-based RMI

Programmer’s
interface

Passive
object

Active
object

Composite
object
boundary

Figure 5. Shared-data composite objects.

July–September 2000 69

tor is a set of body objects, and each
body object can reside in a different
address space or on a different pro-
cessor node. The handle includes a
partition object to abstract the distrib-
ution strategy and a directory object to
keep track of the location of the bod-
ies. A distributed scalar has a single
body object. Figure 5 shows a dis-
tributed vector object with a handle
and two body objects, where one of
the body objects is on a different
node than the handle.

2. Location-transparent data accesses.
Through overloaded operators in
the handle, programmers can access
the distributed data through a uni-
form interface, regardless of the
location of the actual data. Thus, for
a given vector index, the partition
object determines which body holds
the data and the directory object
provides a pointer to the body object.

3. Cheaper parameter passing of shared
data. Only handles pass across func-
tion calls; the data in the bodies is
not copied. Handles can also pass
between address spaces, if desired,
because the partition and directory
objects are sufficient to locate any
body object from any address space.

For performance-sensitive functions,
such as dotProd() in Figure 2, the han-
dle-body indirection’s overheads can be
avoided in controlled ways through type
conversion operators that return C-style
pointers. (Actually, the proper name is

simply conversion operator. We are more
verbose to be more descriptive.) In C++,
a type conversion operator is a method
that converts an object of one type to an
object of a different, but “compatible,”
data type. Type conversion operators are
a more powerful and flexible form of
type casting. Both class GVOwnerCom-
putes and class GVReadCache define a
type conversion operator that, because
dotProd() is expecting pointers as para-
meters, converts between a handle object
and a pointer to the same data.

Aurora’s current implementation cre-
ates handles as regular C++ objects. How-
ever, it implements each individual body
as an active object, an object with its own
thread of control, which is useful for imple-
menting any necessary synchronization
behavior. The body classes support get()
and put()data-access methods, including
batch update and block-read variations.
Handle and body interact using the remote
method invocation (RMI) mechanism pro-
vided by ABC++.6 The runtime system
automatically selects between shared-
memory and message-based communica-
tion (that is, MPI) mechanisms for trans-
mitting RMIs.

CLASS HIERARCHY FOR HANDLES
Because most of the data-sharing

functionality is implemented in the han-
dles, this discussion will focus on the
handle classes. Figure 6 is a diagram of
the main classes in the hierarchy of
shared-data handles. (The notation is
based on that of Grady Booch but with

some simplifications and changes to bet-
ter suit this presentation.) In general, the
application programmer need only use
the classes at the leaves of the hierarchy
(labeled “user” and highlighted in gray).
These classes hide the more complex
templating and class hierarchy consider-
ations with which the “system” must
deal.

The is-a relationship in Figure 6 is the
usual notion of inheritance. Class Y is a
subclass of X so “Y is a X.” For example,
GVHandle (V is for vector, of course) is a
subclass of GHandle, so an object of class
GVHandle is also of class GHandle (see
also Figure 7). In fact, class GHandle is the
base class for all handles. Common access
methods are factored into the base class.

The has-a relationship exists when an
object contains a reference or pointer to
an instance of another class. If “Y has a X,”
an object of class Y contains a reference or
pointer to an object of class X. With the
right access control permissions, Y can

GHandle

GVHandle

GVScopedHandle

GSHandle

GVRWBehaviour

GPointerSC

GPointerRC

Us
er

Sy

st
em

No template
arguments

2 template arguments:

1. Element type
2. Body class

1 template argument:
1. Element type

is-a relationship (Y is a X) has-a relationship (Y has a X) creates-a relationship (X creates a Y)
X X XYY Y

GScalar GVector GVOwnerComputes GVReleaseCGVReadCache

Figure 6. Class hierarchy for handles.

GHandle

GVHandle

GVector

GPointerSC

Figure 7. Class hierarchy for GVector.

70 IEEE Concurrency

access the internal state of X. Class Y can
also call any method in class X to delegate
functionality and behavior. In general, the
has-a relationship includes the case where
Y contains an instance of X. However, in
these classes from Aurora, the has-a rela-
tionship is implemented using a pointer
and not an instance.

The creates-a relationship exists when at
least one of a class’s methods returns an
object of another class. If “X creates a Y,”
then an object of class X creates and returns
an object of class Y in one of its methods.
For example, an overloaded subscript
operator (that is, operator[]) can return
a temporary object that encodes informa-
tion about a specific vector element.

The C++ object model provides a
convenient create-use-destroy frame-
work within which to implement com-
posite objects (Table 2). For the basic
shared-data vector, the relevant classes
in the hierarchy are GHandle, GVHandle,
and GVector (Figure 7). When the
application programmer instantiates a
GVector, the class constructor transpar-
ently creates the body objects. Later on,
the destructor automatically frees the

body objects. During the object’s life-
time (that is, within scope), class GVHan-
dle contains the partition and directory
objects needed to locate and communi-
cate with the body objects. To read and
write data, the overloaded subscript
operator of GVHandle returns an object
of type GPointerSC, which is a pointer
object. When evaluating C++ expressions
involving objects and overloaded opera-
tors, temporary objects represent the
result of subexpressions.3 Reading from
or writing to the vector element invokes
the appropriate method (type conversion
operator) and the overloaded assignment
operator of GPointerSC, resulting in a
synchronous remote memory access.
Further details and sample C++ code are
available elsewhere.2

DATA-SHARING OPTIMIZATIONS:
SCOPED HANDLES

We combined the create-use-destroy
object model with handle references to
implement the scoped handles (Table 2).
For the data-sharing optimizations, the
parent class GVScopedHandle extracts
and maintains a reference to a GVHan-

dle, as per the has-a relationship (Fig-
ures 6 and 8). The partition and direc-
tory objects of the GVHandle are not
copied, thus minimizing the construc-
tion costs of a scoped handle.

Class GVOwnerComputes, in its con-
structor, uses the handle reference to
determine the address of the local (co-
located) body object’s data. Therefore,
GVOwnerComputes can return a C-style
pointer from the appropriate type con-
version operator and from the over-
loaded subscript operator. Then, the
local data is accessed using the pointer.
As I’ve discussed, GVOwnerComputes
also defines special functions to support
easy iterating over the local data.

We have implemented most of the
read-write functionality of the caching for
reads and release consistency behaviors
within a cache and buffer manager class.
Class GVRWBehavior can optionally cre-
ate a read cache for shared data and cre-
ate update buffers to shared data (Figure
9). Classes that derive from GVRWBehav-
ior explicitly configure the caching and
buffering options. The overloaded sub-
script operator in GVRWBehavior returns
an object of class GPointerRC, which is
similar in concept to class GPointerSC,
but with two important differences. First,
if the read cache exists and is loaded,
GPointerRC is configured to access data
from the cache instead of from the remote
body. Second, if the update buffers are
enabled, GPointerRC is configured to
store updates in the buffer rather than ini-
tiate a remote memory access. The buf-
fers are created on demand. Depending
on the configuration of the cache and
buffers, GPointerRC will access the
shared data appropriately.

Therefore, the constructor of class
GVReadCache calls the appropriate
GVRWBehavior methods to create and

Table 2. Object model for handles.

DATA-SHARING OPTIMIZATIONS

OBJECT GVECTOR GVOWNERCOMPUTES GVREADCACHE GVRELEASEC

Internal State Partition and directory Handle reference, Handle reference, Handle reference,
objects pointer to local data cache object buffer objects

Enter scope Create body objects Save reference, find Save reference, create Save reference, allow
(Constructor) local data and load cache buffer creation on

demand
Within scope Synchronous reads Access local data Read from cache, Synchronous reads,

and writes using using pointer synchronous updates buffer updates
GPointerSC using GPointerRC using GPointerRC

Exit scope Free body objects No action needed Free cache Flush and free
(Destructor) buffers

// Template argument C_Data is the element type; C_LV is the body class.
template <class C_Data, class C_LV>

class GGVVSSccooppeeddHHaannddllee : public GHandle //is-a GHandle
{

protected:

// I am a “friend” of GVHandle.
GVHandle<C_Data, C_LV> * origHandle; // To access internal state of original object (has-a)
//...other data members...

public:

GVScopedHandle(GVHandle<C_Data, C_LV> & gv) // Construct with original handle
{ origHandle = &gv;} // Cache the handle

~GVScopedHandle();

//...other methods...
}; // GVScopedHandle (System)

Figure 8. Handle references: GVScopedHandle.

July–September 2000 71

load the read cache. Similarly, the con-
structor of class GVReleaseC calls the
appropriate GVRWBehavior method to
enable the use of update buffers. The
destructor for class GVRWBehavior

makes sure all buffers are flushed.

Performance evaluation

Let’s now examine the performance
and data-sharing overheads of applications
implemented using both Aurora and a
MPI-based message-passing system. We
found that Aurora performed comparably
to message passing for the three applica-
tions considered.

The hardware platform used for these
experiments is a cluster of PowerPC 604
workstations with 133-MHz CPUs, 96
Mbytes of main memory, and a 155
Mbps ATM network with a single switch.
The software includes IBM’s AIX 4.1
operating system, Posix threads, the
ABC++ class library, and the MPICH
(version 1.1.10) implementation of MPI.
MPICH serves as part of the runtime sys-
tem for ABC++ (and thus Aurora, too)
and as the baseline message-passing sys-

tem. For our platform, MPICH uses
sockets and TCP/IP. Of course, there are
multiple implementations of the MPI
standard, each with their performance
strengths and weaknesses. Therefore, for
precision, I will refer to our message-
passing programs as MPICH programs
for the rest of this discussion.

The applications are a matrix multipli-
cation program (using 704 × 704 matri-
ces), a 2D diffusion simulation (a 1536 ×
1536 grid is simulated for 32 timesteps),
and a parallel sort (using 8 million ran-
dom integer keys) via the Parallel Sorting
by Regular Sampling (PSRS) algorithm.7
The Aurora and MPICH implementa-
tions share much of the source code’s
sequential portions. Figure 10 shows the
respective speedups for up to eight
processors. Speedups are computed
against C implementations of the same
algorithm (or against quicksort in the case
of the parallel sort). Overall, the Aurora
and MPICH programs have very similar
speedups, which is encouraging for
Aurora because message-passing pro-
grams are generally acknowledged to set
a high standard of performance.

The matrix multiplication program
consists of two phases separated by a bar-
rier. The same matrix multiplication
function, with scoped behaviors, serves
for both phases, but the function is called
with different shared-data objects as
parameters. Phase 1 computes P → Q ×
R. Phase 2 computes R ← Q × P. In con-
trast to Figure 2, the owner-computes
scoped behavior is applied to both mA and
mC and the read cache scoped behavior is
applied to mB. This makes it easier to
evaluate the read cache’s overheads
because the owner-computes optimiza-
tion does not involve any communica-
tion overhead. Although the specific
matrix computation is synthetic, we
designed it to demonstrate how differ-
ent scoped behaviors can be applied to a
shared-data object in different compu-
tational phases.

For matrix multiplication, Aurora
achieves higher speedups than MPICH,
especially for eight processors, due to the
optimizations provided by the read cache
scoped behavior. We isolated and mea-
sured the data-sharing overheads (Fig-
ure 11). As previously discussed, we can

// Template argument C_Data is the element type; C_LV is the body class.
// Classes Cache, BatchWrite, and GPointerRC are provided by Aurora.
template <class C_Data, class C_LV>

class GGVVRRWWBBeehhaavviioorr : public GVScopedHandle<C_Data, C_LV> //is-a GVScopedHandle
{

protected:

Cache<C_Data, C_LV> * readCache; //Configurable read cache
BatchWrite<C_Data, C_LV> * updateBuf[MAX_LOCALS]; //Configurable buffers for release consistency

//...other data members...
public:

GVRWBehavior(GVHandle<C_Data, C_LV> & gv) : //Construct with original handle
GVScopedHandle<C_Data, C_LV>(gv) {}

~GVRWBehavior(); //Destructor flushes update buffers if necessary
createCache(); //Method to create read cache
allowUpdateBuf(); //Method to allow update buffers
GPointerRC<C_LV, C_Data> operator[] (int index); //Pointer object to cache/buffer (creates-a)
//...other methods...

};//GVRWBehavior (System)

// Template argument C_Data is the element type.
// LVector (provided by Aurora) is the body class.
template <class C_Data>

class GGVVRReelleeaasseeCC : public GVRWBehavior<C_Data, LVector<C_Data> > // is-a GVRWBehavior
{

public:

GVReleaseC(GVector<C_Data> & gv) : //Original handle via GPortal/NewBehavior macro
GVRWBehavior<C_Data, LVector<C_Data> >(gv)

{ allowUpdateBuf();} //Construct to allow update buffers
~GVReleaseC();

//...inherits operator[] and other methods...
}; // GVReleaseC (User)

Figure 9. Interface for release consistency scoped behavior: GVReleaseC.

72 IEEE Concurrency

exploit the high-level semantics of using
read caches by using bulk data-transfer
protocols to fill the caches. Aurora’s real-
time overheads are between 16% and
56% less than MPICH for this particu-
lar data-sharing pattern. Aurora outper-
forms MPICH in large part because
Aurora uses UDP/IP for bulk data to
avoid some of the protocol overheads
associated with TCP/IP.

By using UDP, Aurora bypasses
TCP’s congestion avoidance algorithms
and flow-control mechanisms. In an all-
to-all data-sharing pattern, there will be
congestion and contention. But, whereas
TCP will conservatively back off before
retransmitting to avoid flooding a shared
network, a UDP-based approach can
retransmit immediately under the
assumption that the network is dedicated
to the task at hand. If a network is not
shared, waiting too long before retrans-
mission wastes network bandwidth. The
performance advantage of Aurora versus
MPICH increases with the number of
processors. As the number of processors
increases, the opportunities for conges-
tion (n processors sending to one proces-
sor, for example) also increases, which
indicates a scalability issue with TCP (or
our system’s implementation of TCP) for
this communication pattern. TCP’s ro-
bust and conservative approach is well
suited for shared wide-area networks, but
it is not optimal for dedicated local-area
networks and this type of data sharing.

Strictly speaking, MPICH could be
modified (in the future) to use UDP and
support a bulk data transfer protocol. In
that case, the read cache scoped behavior
would simply use the new functionality.
Scoped behavior is meant to be a high-
level abstraction and framework to
exploit optimization mechanisms in the

lower layers of the software, whether it is
UDP or MPICH.

The 2D diffusion application simu-
lates the diffusion of matter over time by
computing a nine-point stencil function
at all points on a grid. Most of the com-
putation involves only accesses to local
data, but there is data sharing between
processes at the borders of the block-
distributed vector that represents the
grid. The MPICH version of 2D diffu-
sion achieves somewhat higher speedups
than the Aurora version because, with a
message-passing approach, there is no
need to explicitly synchronize at the end
of a time step because the exchange of
data can be an implicit synchronization.
A shared-data approach typically re-
quires an explicit and separate barrier,
with associated overheads, to prevent the
premature transfer of data.

PSRS is a multiphase parallel sorting
algorithm that includes a communica-
tion-intensive data exchange phase for
keys,8 which limits the speedups. The
MPICH version of PSRS achieves
higher speedups than the Aurora version
for the two- and four-processor cases. In
the PSRS algorithm’s data-exchange
phase, the amount of data to be commu-
nicated can vary depending on the spe-
cific input data.7 This is in contrast to the
“always exchange all the data” semantics
of a read cache in matrix multiplication.
So, PSRS cannot use the previous scoped
behavior and does not yet implement a
new data-sharing optimization.

Interestingly, in the eight-processor
case, Aurora outperforms MPICH. Al-
though there is no specific scoped behav-
ior to optimize this data exchange, the
flow-control strategy used in Aurora is
more efficient than in MPICH, espe-
cially as the number of processors in-

creases. Again, in fairness to MPI and
MPICH, these overheads might be
lower (or just different) with other
implementations of MPI or on other
hardware platforms. These comparisons
are mainly intended to show that Aurora
programs can approach the high overall
performance of message passing. We’re
currently conducting a more detailed
performance evaluation.

Discussion and related
work

One disadvantage of the scoped
behavior approach is that each different
behavior requires additional implemen-
tation effort. Of course, it is the system
designer who must implement the new
scoped behaviors, not the application
programmer. Fortunately, data-sharing
patterns do reappear in different con-
texts8 and we’ve found that scoped behav-
iors are highly reusable. If the experience
with group operations in MPI is any
guide, a small set of optimizations (with
simple variations) can cover many of the
interesting sharing patterns in real appli-
cations. Furthermore, although the cur-
rent set of scoped behaviors is small,
designers can combine the behaviors on
a per-context and per-object basis to sup-
port a variety of optimization strategies.
And, it is the per-context flexibility of
scoped behavior that distinguishes Au-
rora from other systems.

There is already a large body of work
in the area of DSM and DSD systems
(see the “Approaches to distributed data
sharing” sidebar). Related work in High
Performance Fortran and parallel array
classes has also addressed the basic prob-
lem of transparently sharing data.

We can optimize different access pat-

2

8

6

4

2

0
84 2 84 2 84

Matrix multiplication 2D diffusion PSRS

Sp
ee

du
p

1.99 1.96

3.9 3.89

7.58
7.08

1.94

Aurora

MPICH

1.97

3.67 3.85

6.94
7.33

1.35 1.63
2.53 2.76

4.54 4.30

(a) (b) (c)

Figure 10. Speedups for Aurora and MPICH Applications: two, four, and eight processors, 155 Mbps ATM: (a) matrix
multiplication, (b) 2D diffusion, and (c) PSRS.

July–September 2000 73

terns on shared data through type-spe-
cific protocols and runtime annotations.
For example, Blizzard9 and Munin10 pro-
vide protocols customized to specific
data-sharing behaviors. Runtime librar-
ies, such as shared regions, associate
coherence actions with access annota-
tions (function calls). Unlike Munin,
Aurora does not require special compiler
support and different optimizations can
be used in different contexts. Unlike
Blizzard, Aurora integrates the opti-
mizations into the programming lan-
guage to generate custom code for dif-
ferent coherence actions, for added
implementation and performance flexi-
bility. Unlike function libraries, the
automatic construction and destruction
of scoped handles make it impossible for
the programmer to omit an annotation
and miss a coherence action.

Aurora’s handle-body object archi-
tecture and the association of data move-
ment with constructors and destructors
are inspired by ABC++’s parametric
shared region mechanism.6 However,
there are two significant differences.
First, Aurora lets distributed vectors be
partitioned between different address
spaces to improve scalability and support
owner-computes using multiple nodes.
A parametric shared region in ABC++
has a single home node, so shared data
cannot be partitioned. Second, Aurora
supports multiple writers to the same
distributed vector object, which can be
important for performance,11 while para-
metric shared regions only allow a sin-
gle writer.

Notably, both ABC++ and scoped
behavior share an important safety ben-
efit with respect to exception handling. If
a C++ exception is thrown within the
scope, the class destructor of the scoped
object has a opportunity to free re-
sources, cleanup state information, and
otherwise recover from the exception.
Even in a sequential language, exception
handling is a complicated issue. Parallel
programming systems based on simple
function libraries, language extensions,
or custom compilers might not be able
to provide the exception-handling func-
tionality of C++ without substantial engi-
neering effort. Fortunately, by staying

within standard C++ and by exploiting
language scopes, Aurora (and ABC++)
gains all the existing exception handling
infrastructure with no extra effort.

WHEN DEVELOPING APPLICATIONS
for distributed-memory platforms, such
as a network of workstations, ease of use
often makes shared-data systems prefer-
able. Therefore, researchers have exper-
imented with a number of DSM and
DSD systems. However, page-based
data management and inflexible sharing
policies can result in unnecessary com-
munication overheads and can make it
more difficult to optimize some data-
sharing patterns. A system that provides
the benefits of a shared-data model and
that can achieve performance compara-
ble with a message-passing model is
desirable.

The Aurora DSD system takes an
abstract data type approach to a shared-
data model. Given our current system’s
encouraging performance, we are
exploring new scoped behaviors and
developing more applications using
Aurora.

ACKNOWLEDGMENTS
I wish to thank Ben Gamsa, Eric Parsons,
Karen Reid, Jonathan Schaeffer, Ken Sevcik,
Michael Stumm, Duane Szafron, Greg Wil-
son, Songnian Zhou, and the anonymous ref-
erees for their comments and support during
this work. This work was part of my PhD at
the University of Toronto. Thank you to
Toronto’s Department of Computer Science
and NSERC for financial support. Thanks
also to ITRC and IBM for their support of
the POW Project.

References
1. G.V. Wilson, Practical Parallel Program-

ming, MIT Press, Cambridge, Mass., 1995.

2. P. Lu, “Implementing Optimized Distributed
Data Sharing Using Scoped Behavior and a
Class Library,” Proc. Third Conf. Object-
Oriented Technologies and Systems
(COOTS), Usenix, Berkeley, Calif., 1997, pp.
145–158; www.cs.ualberta.ca/˜paullu.

3. J.O. Coplien, Advanced C++: Programming
Styles and Idioms, Addison-Wesley, Read-
ing, Mass., 1992.

4. S.V. Adve and K. Gharachorloo, “Shared
Memory Consistency Models: A Tutorial,”
Computer, Vol. 29, No. 12, Dec. 1996, pp.
66–76.

5. E. Gamma et al., Design Patterns: Elements
of Reusable Object-Oriented Software,
Addison-Wesley, Reading, Mass., 1995.

6. W.G. O’Farrell et al., Parallel Programming
Using C++, G.V. Wilson and P. Lu, eds., MIT
Press, Cambridge, Mass., 1996.

7. X. Li et al., “On the Versatility of Parallel
Sorting by Regular Sampling,” Parallel
Computing, Vol., 1993, pp. 1079–1103.

8. P. Lu, “Using Scoped Behavior to Optimize
Data Sharing Idioms,” High Performance
Cluster Computing: Programming and
Applications, Vol. 2, R. Buyya, ed., Pren-
tice Hall, New York, 1999.

9. B. Falsafi et al., “Application-Specific Pro-
tocols for User-Level Shared Memory,”
Proc. Supercomputing, IEEE Computer Soc.
Press, Los Alamitos, Calif., 1994, pp.
380–389.

10. J.K. Bennett, J.B. Carter, and W.
Zwaenepoel, “Munin: Distributed Shared
Memory Based on Type-Specific Memory
Coherence,” Proc. Conf. Principles and
Practice of Parallel Programming, ACM
Press, New York, 1990, pp. 168–176.

11. C. Amza et al., “TreadMarks: Shared Mem-
ory Computing on Networks of Work-
stations,” Computer, Vol. 29, No. 2, Feb.
1996, pp. 18–28.

Paul Lu is an assistant professor of comput-
ing science at the University of Alberta. His
research interests span many aspects of high-
performance computing and systems soft-
ware, including parallel and distributed sys-
tems, and operating systems. As an MSc
student at Alberta, he worked on the Chinook
checkers playing program. His PhD is from
the University of Toronto. He is a member
of the IEEE and ACM. Contact him at the
Dept. of Computing Science, Univ. of
Alberta, Edmonton, Alberta, T6G 2H1,
Canada; paullu@cs.ualberta.ca.

2

4

3

2

1

0
84

Processors

Ti
m

e
(s

ec
on

ds
)

.558 .664 .718
1.166

1.452

3.282Aurora

MPICH

Figure 11. Data-sharing overheads in
matrix multiplication: two, four, and
eight processors.

