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Abstract

Mainstream object-oriented languages, such as C++
ard Javal, provide only a restrictedform of polymar-
phic methals, nanmely uni-recever dispatch. In com
mon progranmming situaions, developers must work
araund this limitation. We descibe how to exterd the
Java Virtual Machine to support multi-dispatchand ex-
amine the comgications tha Java impaoses on multi-
dispatchin practice. Our technique avoids chargesto
the Java programmirg languace itself, maintairs source
code and library compatibility, ard isolatesthe peffor-
mance peralty and senantic charges of multi-method
dispatchto the program sections which useit. We have
micro-berchmark and application-level peformarcere-
sults for a dynanic Most Specific Applicable (MSA)
dispatcher a framavork-based Single Recéver Projec-
tions (SRP)dispatder, and atuned SRP dispacher. Our
generml-purposetechnique providessmadler dispatchla-
tercy than programmer-written double-dspatch code
with equvalent fundiondlity.

1 Introduction

Object-oriented(OO) languages provide powerful tools

for expressing conputations. One key abstration is the

conceq of atype hierarchy which describestherelation

ships amag types. Objectsrepresentinstarcesof these
differenttypes. Most existing object-arientedlanguages
require ead objed vaiable to have a programme-

assgned static type. The compiler usesthis information

to recaynize sone coding errars. The principle of sub

stitutability mandatesthatin ary locationwhere type T

is expected ary subtype of T is accepable.But, substi-
tutakility allows tha object varialle to have a different

(but related)dyramic typeat runtime.

Anothe key facility found in OO languagesis method
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selectionbasedupon the types of the amguments. This
method selectim proces is known as dispach. It can
occur at conpile-time or at executim-time. In the for-
me case,wher only the static type information is
available, we have static dispatch (method ovedoad
ing). The latter cae is known as dynamic dispatch
(dynamic metha overriding or virtual functions) ard
object-aiented languages leverag it to provide poly-
morphism — the execution of type-specific program
code.

We candivide OO languagesinto two broad caegories
based upon how mary arguments are considered dur-
ing dispatch. Uni-dispatch languagesselecta method
based upon the type of one distinguished argument;
muti-dispach languages corsider more than one, ard
patertially all, of the amgumerts at dispatchtime. For
examge, Smalltalk [14] is a uni-dispath languace.
CLOS[23] ard Cecil [6] are multi-dispatd languages.
Othe terns, like multiple dispatch are usedin the liter-
ature. However, theterm multiple dispatchis confusing
sinceit canmeaneithe successte uni-dispatclesor a
singe multi-dispatch. In fad, in this paper, we compare
multi-dispatchto double dispatch which usestwo uni-
dispatches.

C++ [24] and Java [15] are dynamic uni-dispatch lan
guages However, for both languages, the compiler
consides the static types of all agumerts when com
piling methal invocaions. Therfore, we can regard
these languagesassupporting staticmulti-dispatch. Fig-
ure 1 depcts both dynamicuni-dispatchand staticmulti-
dispatchin Java.

Uni-dispdch limits the methal selectia procesgo con
sideronly a sinde agument, usually the receiver. This
is a substantiallimitation and stardard programming id-
ioms exist to overcome this restriction As a mativation
for multi-dispatch we describe one programmirg idiom
tha demmstrateshe needfor multi-dispatch, descrike



class Point {

int x, vy;

voi d draw(Canvas c) { // Point-specific code }
void translate(int t) {x+=t; y+=t;}
void translate(int tX int tY) {x+=tX vy+=tY;}
}

cl ass Col or Poi nt extends Point {
Col or c;
void draw(Canvas C { // Col orPoint code }

}

/] same static type, different dynam c types
Point Pp = new Point();
Poi nt Pc new Col or Poi nt () ;

/] static multi-dispatch
Pp.transl ate(5); // one int version
Pp.translate(1,2); // two int version

/1 dynami c uni-dispatch
Pp. draw( aCanvas); // Point::draw()
Pc. draw( aCanvas); // Col orPoint::draw()

Figure 1: DispatchTechrnquesin Java

how it can be redacedby multi-dispatch list the ad
vantagsof using multi-dispatchto replacetheidiomatic
code, and measure the cost of usingmulti-dispatchwith
one of our current multi-dispatchalgarithms.

1.1 Double Dispatch

Doubledispatch occuswhenamethad explicitly checks
an argument type and exeautes differert coce as a re-
sult of this check Double dispatchis illustratedin Fig-
ure2(a) (from Su’'s AWT classesyvherethepr ocess-
Event (AWIEvent ) mehod mustprocessevertsin dif-
ferentways, sinae event objectsareinstarcesof differ-
ert classesSinceall of theeventsareplaced in aquele
whose static elenent type is AWrEvent , the compiler
losesthemore specificdynamictype information When
anelemenis removedfromthequeLe for processing its
dynamic type mustbe explicitly checkedto pick theap-
propriate action This is anexanple of the well-known
contairer problem|[5].

Double dispatchsuffers from a numbe of disadan
tages First, double dispatch hasthe overhead of in-
voking a secand method. Secom, the double-dispatd
program is longer and more complex; this provides
more opportunity for coding errors. Third, the double-
dispatch program is more difficult to maintan since
adding a new event type requires not only the code to
hande the new event, but arother cascadd el se i f

statemen

The needfor double dispatchdevelops natually in ser-
erd conmon situations. Corsider binary operatiors [4],
suchastheconpar eTo( Qbj ect) mettoddeinedin in-
terface Conpar abl e. The programmer must ascetain

the type of the Qbj ect argumert before cortinuing to
perform a type-specific compaison Another common
usefor doubledispatchis in drag-and-drop applications,
wheretheresultof auseraction depends onboththe data
objectdraggedandonthetarget object. A gereric drag
ard-drop schema forces the progranmer to test data
typesard re-dspatchto amore speific method. A third
examge is in evert-driven programrming. As we sav
in Figure 2, apgications are written using baseclases
suchasConponent andEvent, but we neel to take ac-
tion basedupon the specific types of both Conponent
ard Event . Indeed, the needfor multi-dispatchis ubig-
uitous enaugh that two of the original desigq pattens,
Visitor and Strategy, arework-arounds to sugply multi-
dispatchfunctionality within uni-dispach languages.

Corsider how the AWT examge coud be re-written if

dynamic multi-dispatchwasavailalde in Jasa. An equiv-
alert program, partially usingmulti-dispatch would re-
semlbe Figure 2(b). For clarity, we have nat completely
converted the code to use multi-dispatch we maintain
the casestatemert and double dispatchto selectanong
MouseEvent cateyories A more complete factaing
of MouseEvent into MouseBut t onEvent ard Mouse-

Mot i onEvent would eliminate the remaining double
dispatch, resuting in a Full Multi-Dispatch version of
the code. The dynanic multi-dispatcter will selectthe
corred methad at runtime based upon the dispatchable
argumerts in addition to the receiverargumen (thein-
stanceof Conponent ). Individual componert typescan
still overiide the mettods thatacce specific eventtypes
(eg. KeyEvent, FocusEvent) ard will do sowithout
invoking thedouble-dispatchcode.

The multi-dispach version is shorter and cleaer.
However, it requires the Java Virtual Machire
(JVM) [20] to directly dispathh an Event to the
cored processEvent (AWIEvent) mettod.  Our
modified JVM provides this facility and correctly
execues the multi-dispatch code discussedabove.
Furthemore, Tale 1, a subsetof Table 4, shows that
multi-dispatch is substantially faster than interpreted
double dispatch ard even faster than JIT-ed double
dispatch. Note thatthe numbersin Tale 1 are based on
singe-threaded code.

Ou experience with the Swing GUI classed26] rein
forcesour belief that doulde dispatchin AWT is a sig-
nificant facta in Swingapgications. First, Swing does
not operate without AWT,; instead eachAWrEvent is
acceted by a Swing JConponent . Therefore, every
mouseclick andkey-press is double dispatchedthrough
AWT into Swing. Next, Swing type-cheds the event
ard double dispatclesagain. Interndly, Swing avoids
further double dispatchby coding the AWrEvent type



package java.aw ;
cl ass Conponent {

/1 doubl e dispatch events to subConponent

voi d processEvent (AWIEvent e) {

if (e instanceof FocusEvent) {
processFocusEvent (( FocusEvent)e);

} else if (e instanceof MuseEvent) {

switch (e.getiD()) {
case MouseEvent . MOUSE_PRESSED:

case MuseEvent . MOUSE_EXI TED:
processMuseEvent (( MouseEvent) e) ;
br eak;

case MouseEvent . MOUSE_-MOVED:

case MouseEvent . MOUSE_DRAGGED:
processMuseMt i onEvent (( MouseEvent)e);
br eak;

} else if (e instanceof KeyEvent) {
processKeyEvent ((KeyEvent)e);

} else if (e instanceof ConponentEvent) {

pr ocessConponent Event ( ( Conponent Event) e) ;

} else if (e instanceof |nputMethodEvent) {
processl| nput Met hodEvent ( (| nput Met hodEvent)e);

/'l other events ignored by Conponent

}

voi d processFocusEvent (FocusEvent e) {...}

voi d processMuseEvent (MuseEvent e) {...}

voi d processMuseMtionEvent (MuseEvent e) {...}

voi d processKeyEvent (KeyEvent e) {...}

voi d processConponent Event (Conponent Event e) {...}

voi d processl nput Met hodEvent (| nput Met hodEvent e) {...}

(a) Double Dispatch in Java

package java.aw ;
cl ass Component {
voi d processEvent (AWTEvent e) {...}

voi d processEvent (MouseEvent e) {

switch (e.getID()) {
case MyuseEvent . MOUSE_PRESSED:

case MuseEvent. MOUSE_EXI TED:
processMuseEvent (( MouseEvent)e);
break;

case MyuseEvent . MOUSE_MOVED:

case MyuseEvent. MOUSE_DRAGCED:
processMuseMt i onEvent (( MouseEvent)e);
br eak;

}

}

voi d processEvent (FocusEvent e) {...}

voi d processMuseEvent (MuseEvent e) {...}
voi d processMuseMtionEvent (MuseEvent e) {...}
voi d processEvent (KeyEvent e) {...}
voi d processEvent (Conponent Event e) {...}
voi d processEvent (I nput Met hodEvent e) {...}

(b) Equivalent Codein Multi- Dispatch Java

Figure2: Double vs. Multi-Dispatchin Java

into the selector(e.g firelnternal Event()). De-
spitethe limitations this imposeson the progranmae, it
is clearthat double dispatchis still the standrd tech
niquein Swing as well.

Also, a multi-dispatch JVM could benefit other lan-
guages For examge, Stardard ML, Schene,and Eiffel
have implemertations which genaate VM -compaible
binaryfiles. Extendng thesdanguagego include multi-
dispatch senantics becones straightforward  Unlike
tecmiquesbased on source code translation our multi-
dispatchJVM canbedirectly used by othe languages.

The reseach cortributions of this pgperare:

1. Thededgn andimplemertationof anextencedJava
Virtual Machine thatsupports arbitrary-arity multi-
dispatchwith the properties:

(a) TheJavasynaxis not modified.

(b) TheJava compileris not maodified.

(c) The programmer can select which clases
should use multi-dispatd.

(d) The performarce and semantics of uni-
dispatchmethods arenat affected.

(e) Theexisting classlibrariesare not affected
() Theexistingrefledion API is presered

2. The introduction of a dynamic version of Java’s
staticmulti-dispatchalgorithm.

3. Thefirst performance resultsfor table-basedmulti-
dispatchtechniquesin a mairstreamlanguace.

We begin by reviewing sone importantdetals about the
uni-dispatchJVM. Next, we sketch our VM modifi ca-
tions to enalle multi-dispatch Then, we presentexpeti-

mental results forimplemertations of our multi-dispatd
teciques. This is followed by a discussionof several
complex issues thata practicalmulti-dispatchJaza must
address and a de<cription of same of the details of our
implemertiation Finally, we closewith a desciption of
future work andareview of related approachesto multi-

dispatch.

2 Background

The Java Programming Language [15] is a static
multi-dispatch, dynamic uni-dispatch, dynamic loading



Dispatch Interpreer OpendIT

Type Timein us (o) | Normaized || Timeinpus (o) | Normalized
Double 0.91 (0.00) 1.00 048 (0.0)) 1.00
Multi- 0.34 (0.00) 0.37 032 (0.0) 0.67
Ful Multi- 0.32 (0.00) 0.35 032 (0.00) 0.67

Tabe 1: AWT EventDispatchComparison
(Cdl-site Dispach Time in microsecords, Subsebf Table 4)

object-aiented language. Our primary designgaoal is
to extend the dynamic methal selection to optionally
ard efficiently consider all aguments, without affecting
the syntax of the languageor ary othersematics. Our
secomlary goalsare to retain the dynamic and reflective
propertiesof Java.

In order to meetthesegoals, we chaose to modify the
JVM [20] implementatian, rather than modifying the
progranming languace itself. Java programsare cont
piled by j avac (or other conpiler) into seqierces of
bytecales — primitive operatiors of a simple stack
based computer Thesebyteades areinterpreted by a
JVM written for ead hardware platform. We began
with the classicVM (now known asthe Research Vir-
tual Machine?) written in C anddistributedby Sun Mi-
crosystems)nc. OtherJVM implementations exist ard
many include just-in-time (JIT) compiler technology to
erharcetheinterpretation speedat runtime by redacing
the bytecodes with equivalert native machne instruc-
tions. At present, our modified JVM is compatible with
the OperdIT 1.1.15 [21] compiler.

Before we look a how to implemert multi-dispatchin
the virtual mechine, we first need to understand the bi-
nay represertation that the virtual machine exeautes,
how method invocations are trarslated into the virtual
mechine code, and how the JVM actually dispatclesthe
call-sites.

2.1 JavaClasdile format

The JVM readsthe bytecales,alorng with some neces-
sarysymbali c informationfrom a binary represertation,

known asa. cl ass file. Each. cl ass file contairs a
synmbd table for one class,a desription of its supe-

classesanda sefes of methal descriptions cortaining

the actual byteadesto intempret. We leveragethe sym

bdlic information, called the constart pool, to imple-

ment multi-dispatch

Figure 3 shaws the layout of the constantpool for the
Col or Poi nt classshown in Figure 1.

2TheResard Virtual macinewasinitiall y releasel astheclassic
reference VM. Sun later reramedit the Exact VM. With the advent
of theHotSpd VM, the classicVM wasrenanedagan, becoming the
Reseach VM.

Corceptually, the constar podl consiss of anarray con
taining text strings ard tagged referercesto text strings.
In Figure 3, classPoi nt isrepresenedby atagerry at
location1 thatindicatesthatit is acLAss tagand thatwe
shauld look atconstart pod location 2 for the nametext.
Then,theconstar pod cortainsthe text string “Poi nt ”
at locdion 2. Therebre a classsynbd requres two
constantpoadl entries.Method referercesaresimilar, ex-
cep they require five corstant pod entiies.

1| CLASS #2 Point

2| TEXT "Point"

3 CLASS #4 ColorPoint

4 TEXT "ColorPoint

5 METHOD #1 #6 Point::<init>:()V

6] NAME&TYPE #7 #8 and for our initializer
7| TEXT "<init>"

8 TEXT "ov"

©

METHOD #1  #10
NAME&TYPE #11 #12

Point::draw:(LCanvas;)V
and for our method

=
o

11| TEXT "draw"

12| TEXT "(LCanvas;)V"

13| NAME&TYPE #14 #15 used for our field
14| TEXT "c"

15| TEXT "Color"

Figure 3: A Simpe Constart Pod

In our exanple, corstant poal location9 containsthe tag

declaring tha it contairs a METHOD. It referencesthe

CLASS tag at location 1, to defire the statictype of the

classcontaning the method to beinvoked. In this case,
the class happensto be Poi nt itself, but, more often,

this is not the case.The METHOD ertry alsoreferences
the NAME-AND-TYPE ertry atlocation 10. This NAME-

AND-TYPE ertry cortainspointersto text ertries at lo-

cations 11 ard 12. The first location 11, contains the

method name,“dr aw’. The second location 12, con

tainsan encadedsignatue “( LCanvas; ) V' descibing

thenumber of agumentsto the methal, theirtypes and

thereturn typefrom themethod. In our examge, we see
one classamgument with name “Canvas” and that the

return typeis voi d.

2.2 Static Multi -Dispatch in Javac

The Java compiler converts saurce code into a binary
represemiation When it encaunters a method invoca-
tion, j avac must emt a corstant pod ertry that de-
scribes the mettod to be invoked It must provide an



exactdescriptian, sothat, for instance,thetwo t r ans-
late(...) methalsin Poi nt canbe distinguisheal at
runtime. Therebre, it must examire the typesof the
arguments at a call-site ard selectbetweenthem This
selectionprocess, which corsidersthe statictypesof all
arguments, canbe viewed asa staticmulti-dispatch.

The Java Language Specification, 2nd Edition
(JLS) [15] provides an explicit algaithm for static
multi-dispatch called Most Specific Applicable (MSA).
At a call-site, the conmpiler begins with a list of all
methods implemented and inherited by the (static)
receiver type. Through a seies of culling operatims,
thecompiler reducesthe setof mettods down to asinde
most specific method.  The first operation removes
methods with the wrong nane, mettods that accept
an incomect number of arguments, and methals that
are not accessibldrom the call-site. This latter group
includes private mettods called from arother classard
proteded methals calledfrom outsideof the package.

Next, ary methods which are not compatible with the
static type of the arguments are also removed. This
testreli es upon testingwidering conversians, whereone
type T, Can be wideredto arother T, if ard only
if Tsyp is the sametype as Ty per OF asuotypeof Tysyper.
For exampe, aFocusEvent canbewideredto anAW -
Event becausethe latter is a suypertype of the for-
mer3. The opposite is not valid: an AWfEvent cannot
be widenedto a FocusEvent ; indeal a type-castfrom
AWIEvent to FocusEvent would needto be a type-
checked narrowing corversion

Finally,j avac attempsto locatethesingle mostspecifc
method among the remaining suksetof statically appli-
cable mettods. One method MT1 1, ..., T1,») iS con
sideled more spedfic thanMTs 1, ..., T»,,) if ard only
if eachargumert type T3 ; canbe widenedto T ; for
each(i = 1,...,n), ard for some j, T, ; camot be
widenedto T; ;. In effect, this mears that ary set of
amgumentsaccepableto M 1,4, ..., T5,,) is alsoaccep-
abetoMT1,1,...,T1,,), but not vice versa.

Given the subsetof apdicable methods, j avac selects
one M; asits tentatvely most specific. It thenchecks
eachother cardidate methal M, by teging whetter its
arguments can be widenedto the correspnding argu-
ment in M;. If this is suces$ul, then M, is at least
asspeific as M;; the compiler adopts M. asthe new
tentatively most specificmehod — the mettod M; is
culled from the canddatelist. If the first test,whether
M, be widenedto M;, is unsuccessful,then the com
piler checksthe other diredion: can M; bewideredto

3The JLS separdely reamgnizes identity conversions (a Focus-
Event can be corverted into a FocusEvent). Javac does not dis-
tingush them, sowe do the same for our expasition.

M.. If so, thenthe compiler drops M, from the cand-
datelist.

Unfortunately, both testscanfail. To illustratethis, con
siderthe first two methals in Figure 4. The first agu-
ment of the first method (Col or Poi nt ) canbe widened
to the type of the first agumert of the secand method
(Poi nt). But the oppasite is true for the secad ar-
gument of ead methal. If we invoke col or Box with
two Col or Poi nt argumerts, bothmethalsapply. If the
third method wasnot presentwe would have anamhbgu-
ous methal eror. Thethird method, taking two Col or -
Poi nt s, removes the amkguity becawse it is more spe-
cific thanboth of the othermethals. It allowsboth of the
othersto be culled, giving a single mostspeific method.

col or Box( Col or Poi nt pl, Point p2) {...}
col or Box( Poi nt pl, ColorPoint p2) {...}

/1 conflict nmethod renoves anbiguity
col or Box( Col or Poi nt pl, ColorPoint p2) {...}

Figure 4: Ambiguous andCorflict Methods

Primitive type$, whenusedasarguments,aretestedat
compilation time in the sameway asother types.Primi-
tive widening conversiors are defined which effectively
imposea standirdtype hierarchy on the primitive types.
The compiler inserts widening castsasneeded

2.3 Dynamic Uni-Dispatch in the JVM

Now we turn our attention to dispatching polymorphic
call-sitesat runtime. Methods are storedin the. cl ass
file assequencesof virtual machire instructions. Within
a stream of bytecodes, methal invocatians are repre-
sentedby i nvoke bytecalesthat ocaupy three bytes.
The first byte contains the opcade (0xb6 for i nvoke-

virtual ). The remairing two bytes form an index
into the corstant pod. The corstantpod must con
tain a METHOD ertry at the given index. This ently
contairs the static type of the receiver agumert (as
the cLAss linked ently), and the methad name and
sigmatute (through the NAME& TYPE entry). Figure 5
shaws the psewlo-bytecalé® for invoking the method
Conponent . processEvent (AWIEvent ) twice.

From the opcode, i nvokevi rtual , the JVM knows
that the next two bytes contain the constantpod index
of aMETHOD descrifior. From that descrigor, the JVM
can locatethe metha name ard signatue. The JVM
pasesthe signatue to discover that the methal to be
invoked requres a recever argument ard one other ar-
gument. Therebre the VM peeks into the operard

4Java provides non-objedt types byt e, char, short, int, | ong,
1 oat , anddoubl e. Thesearecalled primitive types.

5Thei nvokei nt er f ace bytecdes occupy 5 bytes.

SRaher thanshav consantpool indices,we show their values di-
rectly.




Conmponent aConponent = new SubConmponent (...);
AWFEvent anEvent = new FocusEvent(...);
FocusEvent aFocusEvent = new FocusEvent(...);

aConponent . processEvent (anEvent);
aConponent . processEvent (aFocusEvent);

(a) Polymorphic Call-sites in Source.

apush aComponent
apush anEvent
i nvokevi rtual Component::processEvent:(LAWTEvent;)V
apush aComponent
apush aFocusEvent
i nvokevi rtual Component::processEvent:(LAWTEvent;)V

(b) Polymorphic Call-sites in Bytecodes.

Figure 5: Polymorphic Call-sites— two views

stackard locatesthe recever agument. At this point,
the VM has the information it needs to begin searting
for the methal to invoke. The JVM hasthe nane, the
sigmature, and the recever of the messge.

The JVM Speification (sectim 5.4.3.3) providesa re-
cursive algorithm for resolvirg a metha refererce ard
locating the corect methad: Beginning with the meth
ods definedfor the predsereceiver argumert type, scan
for an exact matchfor the name and sigrature. If one
is not found, seach the superdass’ of therecever argu-
ment, continuing up the superclasschain until bj ect ,
the root of the type hierarchy, is seached If anexact
match is not found, throw anAbst r act Met hodEr r or .
This look-up proces apgdies to eachof the i nvoke
bytecales.

This look-up processis a time-intensve opemtion To
reduce the overhead of mettod look-up, the resolved
methodis cachedn the constant pool alongside theorig-
inal methal refererce. The next time this method refer-
erceis applied by andher i nvoke bytecale, the cachel
method is useddirectly.

Onceamettod is resdved a method-spedfic invoker is
execuedto begin theinterpretationof the new mettod.
This invoker performs mettod-specfic operations, sut
asacauiring alock in the case of synchr oni zed meth
ods, constructing aJVM activationrecad in the caseof
bytecale methds, or prepaing a madine-level activa-
tion record for nat i ve methods.

The Researkh JVM remgnizesaspecialcasen invoking
methods: ary private methals, final mettrods, or con
strudors can be handed in a non-virtual mode. Eachof
these situatiors do nat recuire dynanic dispatch. But,

7Java providesonly singleinheritance of programcock.

multi-dispatchwil | needto hardle thesespecialcases.

3 Design

We now have sufficient informationto descrite thegen

erd designfor exterding the JVM to support multi-

dispatch. In shat, we mark classeswhich areto use
multi-dispatch ard replace their method invokers with

one that selectsa more speific metrod basedn the ac-
tud argumerts. Herce, existing uni-dispatchmethod in-

vocatiors areunchargedin ary way.

Marking the . cl ass files without changng the lan
guage syrax is straighforward We createdan empy
interfface Mul ti Di spat chabl e and ary class which
will provide multi-dispatch methads must implement
tha interface. The . cl ass file retans that interface
nameard thevirtual machine caneasil check for thisat
classloadng time. Ourimplemertationdoesnat change
the syrtax of the Java programming language or the bi-
nay . cl ass file formatin ary way.

Our interfacebasedtechnique allows us to retaincon

paibility with existing programs, compilers, and li-

braries.Any classthatimplemerts our marker interface
has differentsemaitics for dispatch. But, the senantics
of existing uni-dispatchprogramsand libraries are not
changed sincethey do not implemert the interface. The
progranmer retainsconplete cortrol and responsibility

for desigrating multi-dispatctable classes This allows
the developer to consciasly tamget the multi-dispat
tecique to known programning situatims, such as
double dispatch

At dispatchtime, our multi-invoker executesinstead of
the original JVM invoker. Our invoker locatesa more-
precisemettod basedon the dynamictypesof theinvo-
cation argumentsand executesit in place of the original
method.

The non-virtual mode invocatiors needto be hardled
specidly. Corstructors are never multi-dispatched We
found that corstructar chaining within a class could
catse infinite loops. Privateand final multi-methods are
still multi-dispatcked

We implemented two different dispatch algaithms.
First, MSA implemenis a dynamic version of the
Java Most Specific Applicade agorithm used by the
j avac compiler. Secoml, Singe Recever Projections
(SRP)[17] is a high peformarcetable-basedtechrique
devel oped atthe University of Alberta. We examirebath
a framevork-basedSRPanda tuned SRPimplemerta-
tion. Sectim 6 provides implemeration details but we
first presenthe resultsof our experiments.



4 Experimental Results

So far, we have usedfour different micro-benchmarks
ard a newv implemenation of Swing/AWT to teg our
multi-dispatcher

The first micro-berchmark usesthe j avac compiler
to reconpile itself while running on the multi-dispatt
VM. Thej avac compil er hasnat beenmodfied, there-
fore the experimert demmstrateshe badkward compat-
ibility of the modified VM for uni-dispatchapplications.
The measuedoverhealsof uni-dispatchj avac running
on the multi-dispatd VM are minimal. The other three
micro-berchmarks demamstratemulti-dispatch correct-
ness, multi-dispatchpefformarce as compared to douw
ble dispatch and multi-dispatch performanceas arity
increases. All of the micro-berchmarks are singe-
threaded.

For our application-level tests,we modified Swing, the
secoml-gereraion GUI library bunded with Java 2, to
use multi-dispatch. As expected, Swing is a double-
dispatchintersive library. We aso converted AWT be-
cawse Swing depemts heavily on AWT to dispatch the
evertsinto top-level Swingcomponents.

All experiments were execued on a dedcated Intel-
architectue PC equipped with two 550MHz Celeron
processas, a 100MHz front-side bus, ard 256 MB of
memory. The opemting systemis Linux 2.2.16 with
gl i bc version 2.1. The SunLinux JDK 1.22 codewas
compiled using GNU C version 2.95.2, with optimiza-
tion flags as supplied by Suris makefile$. The tade-
basedmulti-dispatchcode[22] wasconmpiled using GNU
G++ version 2.95.2°. The SunJDK only supports the
gr een threadng model, which is implemened using
pthreads under Linux. We report averageand stardad
deviationsfor 10 runsof eachbenchmark.

We testedthree different virtual machines. First, we
have jdk, the stardard JDK 1.2.2 Linux runtime, rur-
ning in intempretermode. This JVM sewres asa basline
for conpaiing the remaning four multi-dispach sys-
tems. Secoml, we have a non-JIT multi-dispatch JVM
with threedifferent multi-dispatchtechriques jdk-MSA
ard two implementatins (jdk-fSRP, ard jdk-tSRP) of
thesamealgorithm. Third, we have customzedOpendI T
1.1.15 to be compatible with our multi-dispatt JVM.

For the first and secand micro-benchmalks, (Tables2
ard 3) we repat userystem time in secads, aong
with normalizedvaluesagainst the jdk runtime. For the
third ard fourth experiments(Take 4 andFigure 7), we
describe individual dispatchtimesin microsecads, ig-

8Typicd flagsare- @
Swith options -ansi -fno-inplicit-tenplates -fkeep-
inline-functions -Q2.

noring other costs. In thefinal benchmaik, Swing, were-
port execution timesfor a syrtheticapplication thatcre-
atesa numberof companentsard insetts 200,000 events
into the eventqueue.

4.1 Javac — Compatibili ty Test

The first experiment requres the runtime to load and
execue the javac comnpiler to translatethe ertire
sun. t ool s hierarchy of Java soucefilesinto . cl ass
files. This hierarchy includes 234 saurce files enrcom
passing 49,798 lines of code (excluding conmerts).
Ead compilation was verified by conpaiing the eror
messages® andby checksumming the generated bina-
ries. Eachvirtual machine pas®d the test; the timing
resuts are shown in Tale 2. Thesetimescome from the
Unix ti me usercommand and are averages with stan
dard deviation, of 10 runs.

[ v™ | Timein sec (o) | Nom. ]|
jdk 6541+0.25 (0.39) | 100
jdk-MSA | 67.38+0.31 (0.14) | 1.03
jdk-TSRP | 6822+0.45 (0.25) | 1.05
jOk-1SRP | 6713+051 (0.35) | 103

Tabe 2: Compatibility Tesing andPerormarce

(Use+SysemTime to Recampile sun. t ool s, in seonds)

The negligible differenes between the uni-dispatt
ard multi-dispatch executin times demanstrate that
the overtheadof running uni-dispatch code on a mullti-
dispatch VM is essertialy zem. Note thatin our im-
plemertation, tablebased JVMs do not constrict a dis-
pach table urtil the first multi-dispatctable mettod is
inseted.

4.2 Simple Multi-Dispatch

In this micro-benchmark, we show that multi-dispatd
is correct ard measue its overhead. The tesing code
is shat ard is shown in Figure 6. Note that class M>-

JDri ver implementsthe marker interfacemul ti Di s-

pat chabl e. The compler usesstatic multi-dispatchto
code all four callsto MDJDri ver. n( X, X) to execue
the metha for two argumentsof type A, becasethatis
the static type of baoth anA and aB. Multi-dispatch ac-
tudly selectsamong the four methals based upon the
dynamic typesof the agumerts. Therefore, correct out-
put corsists of 100,000 repetitions of four cornsecutive
lines: AA, AB, BA, and BB. For timing purposes,all out-
put wasredrectedto / dev/ nul | to reducetheimpact
of input/output. Our resultsare sunmatizedin Takle 3.

Thetablebasedechnques,jdk-fSRP ard jdk-tSRR suf
fer from a substantialstartip time, whereasj dk- M5A

0There is onewarring noting that 8 filesuseddeprecated APIs.



class A {}
class B extends A { }

class MDIDriver inplenents MiltiDispatchable {
String m(A al, A a2) { return "AA";

String m(A al, B b2) { return "AB"; }

String m(B bl, A a2) { return "BA"; }

String m(B bl, B b2) { return "BB"; }

static public void main(String args[]) {
final int LOOPSIZE = 100000;

A anA = new A();

A aB = new B();

MDIDriver d = new MDJIDriver();

for( int i=0; i<LOOPSIZE; i++) {
Systemout. println(d. n(anA, anA));
Systemout. println(d.n(anA, aB));
Systemout. println(d.n(aB, anA));
Systemout.printlin(d.n(aB, aB));

}

}

}

Figure 6: SimpleMulti- DispatchTesing Code

primarily usesexisting datastructuresfoundin the JVM
interpreter and lazily computes ary additional values.
This reducesthe cost of program startup.

[ Ivm | Timein sec (o) [ Norm. | Correct |
jak 2640+ 068 (0.07)] 100 No
jok-MSA | 2888+083 (0.22)| 110 Yes
jOk-TSRP | 3153+091 (0.11)| 120 Yes
jOk(SRP | 2948+ 084 (0.17)| 112 Yes

Tabe 3: Simpe Multi-Dispatch
(User+SystemExecutian Time in secands)

4.3 Double Dispatch of Events

Our third expeliment involves conputing the peffor-
mancedifferercesbetweendouble dispatchandthetwo
multi-dispatchimplementaions of the exarmple givenin
Figure 2. We corstructed a syrthetic type hierarcty of
AWIEvent classesto matd those in Figure 2. The dis-
cussion of Swingfollows in Section4.5. We alsocon
strudedthreedifferent componenttypes:

Double Dispatch (DD) implements double dispath
via type-casesand programmner-coded type num-
bering asshowvn in Figure 2(a) 1t

Multi-Dispatch (MD) implements multi-dispatch as
shavn in Figure 2(b), wher the type-casesfrom
DD have beenrepgacedwith multi-dispatch

U Type-casesare not the mosteffective double-dispath technicue,
but this code matthes Suns AWT implemenéation. For a comparison
with other doule-dispach techriques, se€[8, 13].

Full Multi-Dispat ch (FMD) eliminatesthe type-cases
ard the programmer-coded type-numbering from
DD. It divides MbuseEvent into two different
classesndeliminatestheswi t ch statemeh

To avoid inlining effects, we added code for updating
an instarce vaiiable to the body of each process-

Event (AWIEvent ). This experiment consists of dis-
paching atotal of one mill ion eventsthroughpr ocess-

Event (AWIEvent ). Ead eventtype appears equally
often,aswe iterate over anarray containing equal num-
bers of eachevent. We computethe loop overhead sub
traa theoverheadamaunt, andthendivide theremaining
time by the number of everts dispatcked. Thetiming re-
sultsareshowvn in Tade 4.

Also, we give an addtional timing value for our cus-
tom SRPimplementation, wherewe disabdled mutual ex-
clusion in the dispatcter. Currently our implementation
usesacostly monitor to ensue thatno otherthreadis up-
dating the dispatchtablesduring amulti-dispatch.High-
performancecorcurren-read exclusive-write protocols
caneliminatethis overhead;the ndock value represents
this highestperformancecase.

As DD doesnat declae itself multi-dispatclable, the
similarity of the results in column 2 of Table 4 agan
shaws that our multi-dispatchable virtual madines do
nat significartly penalize uni-dispatch code. Furher,
we seetha the cost of intempreting numeraus expen
sive JVM byteaodes, suchasi nst anceof , followedby
arother i nvokevi rtual (which is DD’s stratgy), is
more costlythanour multi-dispatchtechmiques.The full
multi-dispatchimplemertation (FM D) is fasterthanthe
partial multi-dispatch(MD). Thisis reasomablebeause
MD ends up doube-dispatcling two of everysix events.

Again, we seethat the framevork-based SRPtechrique
suffersfrom corsiderdle initial overhead We hypothe-
sizethatit is aresultof the object-ariented natue of our
implemertation of the talde-based techniques. In eadh
dispatch,several C++ objectsarecreatedard destroyed
onthe heg. Our tuned SRPimplemertation, jdk-tSRR
removes this overheal andprovidesfasterdispatchper-
formancethanprogranmercoded double dispatch.

OpenJIT conpilation gains only minor improvements
for the multi-dispatch system This matches our ex-
pectatiorssinceOpendI T cdlsthesanesel ect Mul tii -

Met hod() routinethattheinterpreteruses thereis only
a dlight bendit from avoiding someinterpreter frame
manipulations.

4.4 Arity Effects

Our final micro-berchmark exploresthe time penalties
asthenumber of dispatchdle argumentsard applicabde



Dispach Interpreter Openll T

Dispach DD MD FMD DD MD FMD
JVM Time (o) | Time (o) | Time (o) || Time (o) | Time (o) | Time (o)
jdk 091 (0.00) = = 0.48  (0.00) - -
jdk-MSA || 095 (000) | 2.63 (0.01)| 249 (0.02)|| 0.95 (0.00)| 255 (004) | 2.43 (0.03)
jdk-TSRP || 096 (001) | 3.12 (0.08) | 2.52 (0.05) || 0.96 (0.01)| 290 (005) | 2.47 (0.05)
jdk-tSRP || 094 (000) | 0.75 (0.03)| 0.72 (0.02) || 0.95 (0.00)| 074 (002) | 0.71 (0.01)
nolock 095 (000) | 0.34 (0.00)| 0.32 (0.00) || 0.95 (0.00)| 032 (001) | 0.32 (0.00)

Tale 4: EventDispatchComparison
(Cal-site Dispath Timesin micraseconds)

methods grow. To do this, we built a simple hierarchy
of five classes(one root classA, with three sulclases

tion. Also, our SRP implemenatiors suffer only lin-
eargrowth in time-pendties asaiity increaes,whereas

B, C, and D, ard finally classk asa subclassof C) ard
constricted methals of different arities aganst that hi-
erachy. We definedthefollowing methals:

e classesA, B, C, D, and E contain unaly methads
R n() (whereR representshe receiver agument
class).

e classe®\, B, C, D, ard E aso implenmentfive binary
methods, R. n{ X) where X can be any of A, B, C, D,
orE.

e classe, B, C, D, andEimplemert 25termary meth
ods,R m( X, Y) whereX andY canbe ary of A, B,
C, D, orE

e classe®\ B, C, D, ard E implement 125 quatenaty
methods, R m( X, Y, Z) where X, Y, ard Z canbe
ary of A, B, C,D, Or E.

MSA looks at one fewer dispatctable agumentsthan
the table-basedtechmiques becaise the receiver argu-
ment hasalrealy been dispatcred by the VM. For in-
stance given a unaly method, MSA makes no widert
ing conversims for dispatclable aguments. A binary
method requres MSA to checkonly one widening con
version The tade-based techriquesdispatchon all ar-
guments andgain no benefit from the dispatd done by
the VM.

We invoke one million methas for eacharity. This
means that each of the unary mettods is executel
200,000 times Howevereach of the quatenaly methals
is exeautedonly 1,600 times. After computing the loop
overhead via an enpty loop, we detemine the elapsed
time to millisecord accuracy and determine the time
taken for eachdispatch Our reallts are shown in Fig-
ure?.

We can evaluae the arity effectsin theuni-dispatchcase
by cading a third level of double dispatch Already the
overhead of constricting a third activation recad ex-
ceed the dispatchtime of our tuned SRP implemerta-

MSA sufers quadmatic effects.

Avrity Effects on Multi-Dispatch

Dispatch Latency (microseconds)

L L
1 2 3 4
Arity (including single receiver)

Figure 7: Impactof Arity on DispatchLatercy
4.5 Swing and AWT

Our final ted is to apply multi-dispatchto AWT ard
Swing apdications. To do this, we nealedto rewrite
AWT andSwingto take advantag of multi-dispatch

We modified 11% (92 out of 846) of the classesn the
AWT and Swing hierachies We eliminated171 deci-
sion points, but neeced to insert 123 new methals to
reface existing double-dispatch code sedions. Within
the modified classes,we removed 5% of the condition-
alsandreduced the averagenumberof chdce paints per
method from 3.8 to 2.0 per metlod. This redwctionill us-
tratesthe valueof multi-dispatchin redwcing code com
plexity.

Inall, 57 claseswereadded al of themnew eventtypes
to replacethosepreviously recogizedonly by a special
typeid (asin the AWT exanplesdescriled previously).
Ou multi-dispatch libraries are a drop-in regdacemat
tha execuesatotal of 7.7% fewer methal invocations
ard givesvirtually idertical perfformancewith applica-
tions suich as Swi ngSet . In our sampe apgication,
we found that the number of multi-dispatchesexecutel
almost exactly equaledthetotal reduction in method in-



Uni-Swing Multi-Swing
Stage Methods || Uni-Methods | Multi-methods
wam-up 901,938 901,795 160 (0.02%9
eventloop || 32,543,684 27807327 | 2,350,172  (7.7%)

Tale 5: SwingApplication Method Invocatiors

vocatiors. This suggests that every multi-dispatchre-
placedadouble dispatchin theoriginal Swing ard AWT
libraries.

We verified the opemation of the entire unmodified
Swi ngSet application with our redacement libraries.
Finally to measurepefformarce, we timed a simgde
Swing application that handes 200,000 AWrEvent s of
differenttypes. Thetiming reallts aregivenin Tale 6.

Dispach Uni-Swing Multi-Swing
JVM Time (o) | Time (o)
jdk 28.03 (0.35) —
jdk-MSA | 28.69 (0.31) | 70.09 (0.15)
jdk-tSRP | 29.33 (0.42) | 28.30 (0.36)

Table6: Swing Application Executian Time
(Event looptimesin seconds)

The Swing and AWT conversion alsodenpnstratesthe
robustress of our appoach We neeckd to support
multi-dispatchon instanceard static methods. The jdk-
fSRPvaluesarenat givenbecause the framevork-based
systemdoes nat support static mettods.  Swing and
AWT expect to dispatchdifferertly on Qbj ect andar-
ray types. In modifying the libraries,we found numer-
ous opportuniti es to apply multi -dispach to private,pro-
tected and super mettod invocations. In addtion, ses-
erd multi-methodsrequiredthe VM to accep covariant
return typesfrom multi-methals. All of thesefeatues
arerequiredfor amainstrean progranming language.

5 Multi-Dispatd Issues

Beddes performane and comectress multi-dispath
must contend with anumbe of seious difficultieswhich
thej avac conpiler camat recoquize. They are: am
biguous mettod invocatins cawsed by inheritance con
flicts, incompatide retum type charges, maskng of
methods by primitive widening operatims, and null ar-
guments. Each of these is ill ustratedin Figure 8. We
have developed a tool called MDLi nt that canidentify
these problemsand wam the programmer.

The first difficulty is that multi-dispatch even in a
singe-inheritarce language, cansuffer from ambiguous
methods. The two exanplesusing theml mettodsill us-
tratethis. For the first methal invocation, the compiler
knowsthatA. ni(B) andB. nil( A) arecanddates.Nei-
ther oneis more specificthan the other, sothe compiler

abortswith anerror. We canfix that by statically typing
the receiver argument to A, but multi-dispatch seesex-
actly the sameconflict at runtime. Our MDLi nt program
warns about the problem. If the progranmer disregards
the waming, our JVM detectsthe eror and throws an
Anbi guousMet hodExcept i on.

Throwing aruntime excegtion may seemeitherelegant
nor aceptathe, but one of the key attributesof the JVM
is to maintan security. A madicious progranmer can
sepaately comple eachclasssothaterrors are not evi-
dent until execution. The VM must protect itself from
these possibilities, ard throwing anexcepion is theonly
option. As we noted, our MDLi nt tod canrecanize
ard repat potertial amhguities, exceptian incorsisten
ciesard retum-type conflicts at compil etime.

The secand difficulty centes araund the factthatj avac
consides methods with differentargumenttypes as dis-
tinct. This meansthat they can have different retum
types. Multi-dispatchforgesaddtiond connectiors be-
tweenclassedased on the additional dispatchableargu-
ments. This meansthat methods which j avac consid-
erd distinctare now overriding eachother. Intheexam-
ple, we seethatthetwon®(. . . ) methalsoverideeadh
other for multi-dispach. Our multi-dispatchimplemen
tatiors throw an | | egal Ret ur nTypeChange excep
tion, unlessthe more specificmetha retuns a sultype
of theoriginal returned value.

Anothe ramificatin of the fact that uni-dispatch Java
consides differert agumert conbinations as distinct
methods is thatj avac doesnat ersure thatthet hr ows
clases are compdible. As with ary overiding
method, we would wanta more speific multi-methal to
covariantly-spedalize the setof excegtions. Our type-
checler validaes this, but, in conpliance with the VM
specificéion, our virtual machine neitherchecksnor re-
ports this inconsigercy.

The third difficulty involvesthe useof literal null asan
argument. If null istyped asin the first invocatian of
n8(), then j avac performs static multi-dispatchwith
that type. This restrictsthe set of apdicable methads
j avac will consider In our examge, an ordinary JVM
canavoid loadng classC. The multi-dispatchJVM rec-
ognizestha n8( C) might apgy (sincea is dynamically
of null type and null is subtype of class C). Therebre,
multi-dispatch Java loads classC in order to determine



class A {
void mi(B bl) {...}
void mi(int i) {...}}

class B extends A {
void mi(A al) {...}
void mi(byte b) {...}}

class C extends B {...}

class MDJIssues {

int n2(Aal, Aa2) {. ..}

String n2(B bl, B b2) {...}

void nB(A al) {...}

void n8(B bl) {...}

void m3(Ccl) {...}

public static void main(String args[]) {

A Ab = new B(); // static: A, dynamic: B
B Bb = new B(); // static: B, dynamc: B

/1 multi-dispatch difficulties
Bb. ml(Bb); // javac: anbiguous nethod
Ab. ml(Bb); // javac: OK, MDJ: anbi guous

/1 inconpatible return type change

int i = n2(Bb, Bb); // javac: bad return type
int | = n2(Ab, Ab); // javac: OK, MDJ: exception
/1 null arguments are nore consi stent

Aa=null;

nB(a); // regular Java: executes nB(A)
/1 MDJ: loads C, executes nB(C)
n8(null); // both execute nB(C)

Il stronger referential integrity
nB(Ab); // regular Java: executes nB(A)
/1 MDJ: executes nB(B)

nB(new B()); //both execute nB(B)

/1 primtive w dening hides correct nethod
byte b = 7;
Ab.m4(b); // javac: widens, calls A mi(int)
/1 MDJ: ignores B.mi(byte), calls A mi(int)
Ab. mi(int(b)); // programmer w dening

Figure 8: Examplesof Multi-Dispatch Issues

its placein thetype hierarchy, and deddesthatn8( C) is
the most-specific methal. Literal nulls, as shown in the
secom invocation of nB8() , illustrate the inconsisteng
of stardad Java; it now agees with the multi-dispatt
JVM thatn8( C) should beinvoked. The ordinary JVM
canstill avoid loadirg class C, beausej avac hasal-
realy static multi-dispatchel to n8( C) *2. Presumaly,
theargumert is usedin n8( C) , sothe ordinary JVM will
erd up loading class C, justlik e the multi-dispatchJVM.

The null agumert problemis anexanple of amore gen
erd referertial trarspaeng/ problemin Java. Incansis-
tert invocatiors can ocaur when expressons are substi-
tutedin placeof varialdes. Thisis becausg avac might
apply more precisetypeinformationfrom the substitutel
expresson. As an example, compare the executian of
thethird and fourth invocatiors of n8(. . . ) . By replac-
ing Ab with its value, we have alteredthe execttion of a
program

LThere is a subtlety here becausej avac sdects the most-speific
method from the metod dictionary of the staic type of the receiver.
Therdore, dynamicuni-dispath still may not sekectthe most-speific
methodof thereceiver's dynamic class.

The last difficulty is more complex and at this time,
unsolved. The compiler seleds a method basedupon
widening operatians andmay charnge the type of primi-
tive agumens. In the examge, the conpiler inserts in-
strudionsto convert b fromabyt e to ani nt. At run-
time, we have lost all tracesthatb wasoriginaly spee-
ified asa byte. Indeed the programner might have
warted to force that exact conversian; the bytecales
would beidenticd to compiler-geneatedconversims.

6 Implementation

In this section we describe how the JVM is exterded to
support dynamic multi-dispatch. We begin by examin
ing how to indicateto the JVM which classes@remulti-
dispatchaltte. We then examire where multi-dispatt
must ocaur and finally, we review threedifferent multi-
dispatchimplementaions.

6.1 Marking Multi-Dispatch Classes

We tell the JVM that multi-dispatchis required on a
class-byclassbasis by implementing the enpty inter-
faceMul ti Di spat chabl e in eachclassthatis muliti-

dispatchatte. The Java progranming language has al-
ready leveragedthis idea for marking classcaphlities
with the d oneabl e interface. We usethe Ml ti -

Di spat chabl e interfaceto dendethatany methodsent
to a multi-dispatchrecever shaild be handed by the
multi-dispatcher For efficiency, we add a flag to the
intemal classrepreseiation to indicate tha a class is
multi-dispatchalbe, ratherthansearcing its li st of inter-
faces at eachmethal invocatian. The value of this flag
is setonce, atclassloadtime.

Our selection of Mul ti Di spat chabl e as the marker
requires us to recagnize multi-dispach on a classhy-
classbasis,not on a metha-by-mettod or argumert-
by-amument basis That is, every methal invocation
wherethe uni-dispdch receiver is a memker of a multi-
dispatchatte class goes through our multi-dispatcler.
Futhemore, becaiseinterfaces are inheiited, this ap-
proad recuires ary subclassof a multi-dispatchalte
classto aso be multi-dispachalle. Most importantly,
ary method invocation where the recever agument
is not marked for multi-dispatch cortinues uncharged
through the uni-dispatcher The bendit of thisis thatthe
syrtax of Java programsis uncharged ard the peffor-
manceandsemaitics of uni-dispatchremainsintad.

The techrniquesusedto mark code asmulti-dispatchalte
ard to implemat multi-dispatch methad invocatins
are independent. Mul ti Di spat chabl e marks ertire
classesawithout language extersions, but our JVM ac-
tudly supports multi-dispatch on a methal-by-method



basis. An dternae tagging mechaism, that marked in-
dividual methadsasmulti-dispatchdnle, may be possble
if we permittedlanguageextersiors.

6.2 Adding Multi- Dispatch

As partof the uni-dispatchof ani nvoke bytecale, the
JVM finds a mettod pointer from the array of methads
in the recaver argument class. At this paint, the in-

terpreterloop is about to build a new frame to execue
thefound metlod. The interpreterloop (ard classc VM

JIT compilers) proceedto cdl a special function, cdled
thei nvoker that handes the dedails of building the
new frameandstartirg the new methad. The Resear
JVM usesdifferent invokers for native, bytecode, syn

chronized, JIT-compiled, andother mettod types. Sim-

ilar to the OpendITsystem [21], we redacethis invoker
function with a custom muti-invoker that compuesthe
corred multi-dispatch methad. Once the more precise
method is known, we simdy invoke it directly.

The multi-invoker is installed at class-loa time. The
interpreter loop and invoker for uni-dispatchare un-
changed. This supports our claim that uni-dispatchpro-
gramsand libraries suffer no execution time peralties.

OpenJIT is supported in exactly the sameway. Ev-
ery methal containsa conpi | edCode function pointer
onto which OpenJITinstallsits compiled methal body.
Once the complation is conplete, OpenlIT saves the
compiled mettod body of any multi-method to a new
field ol dConpi | edCode andinstalls apointerto a rou
tineDi spat chMWul ti (). Thisredacememninvokersim-
ply calls the same mettod specializer sel ect Mul tii -

Met hod() thattheinterpreteruses.If the more precise
method-body is already compiled, then OperdI T jumps
into the ol dConpi | edCode, execuing the more spe-
cific conpiled method. Alternately, if the more precise
method is not alreadyJIT-ed, thenDi spat chMul ti ()

setsit to be compiled andinvokesthe interpreteron the
bytecaleversion.

Unfortunately, we must disable much of the inlining
facility of OpenJIT when using multi-dispatch The
uni-dispatch OpendIT compiler can inline private,
static, and fi nal methods becausethey can never
change. With multi-dispatchthisis nolonger true — at
a givencall-site,the selectedmulti-mettod may change
deperding on the agumentsto the curmrent invocation
The JIT compiler ard VM must work togetherto en
sure that every metlod invocationis cheded for multi-
dispatchandcorredly spedalized.

The core componert of our systemis the sel ect -
Mul ti Met hod() routine, whichlocaes a more-specific
method apgicableto a setof argumerts. We have exper-

imerted with three different multi-dispatchtechiques;
they are examired in the following sectiors. For eath
tecique, we also describe our solution for the imple-
mentationissuesdegribedin section5.

6.3 Referencel mplementation: MSA

Our refererce implementatin is an extersion of the
Most SpecificApplicable algorithm descibedin sectin
15.11 of The Java Language Secification and in sec-
tion 2.2 of this paper. In patticular, we re-examine the
stepsdescribedin section 2.2in light of the dynamicar-
gument typesbeingused

When the multi-invoker is called it hasacess to the
met hodbl ock that hasalread beenfound by the uni-
dispatchresoldion mecharism. We also have thetop of
the operand stak, so we canpeekat eachof the argu-
ments. Lag, we have theactual recever, which canpro-
vide the list of methals (including inherited ones)that it
implemerts.

Every methal is represented by a met hodbl ock con
taining mary useful piecesof information. First, it holds
the name of the methad. Secad, it contairs a hande
to the classthat cortainsthis metrod3. Third, it con-
tains the sigrature which we can parseto get the arity
ard types of the dispatclable arguments. For peffor-
mance, we parsethe signatue only once. We add two
fields to the net hodbl ock: int arity to cachethe
arity ard d assC ass **argd ass to hold the class
handesfor the dispachalle aguments.

With thesethree piecesof informaion, we implemert a
dynamic versia of the MSA algorithm directly. Wher-
ever the origina algaithm would use the static type
of anamgument, we apply the known dynanic type in-
stead.In step2(b) from sectim 2.2, the conpiler would
compare the statictype of eachamgument with the cor-
respnding declaed type for the cardidae methal. In
the dynamic case, we have the argumerts on the stack
sowe canfind their dynamic types. We compare eat
argument’s dynamic type against the declaral type of
the correspamding argument of the method. We dis-
cad ary methal that is nat applicable due to acces
rights (pri vat e methals) or whosedeclaed types do
not matchthe arguments on the stack. The remaining
methods aredyramicadly applicable.

The isste of null-valued aguments becanessigrificant
at this point. JLS chaper 4 recmgnizesthe need for a
null typeto represent(untyped) null values. It further
declaresin section 4.1 thatthe null type canbe coercal
to any non-primitivetype Also, sectionb.1.4allowsnull

BReall tha mehods might be inherited; this classhandle is the
original implementing class.



typesto bewidenedto ary object, array or interfacetype.
Statically this mears that an (untyped) null agument
canbe widenedto ary class. In the dynamic case, we
wart to do the sane. Therefore, whenever we encounter
anul agument we aaceptthe conversion of that null to
amethal agumert of type class,aray, or interface.

Unfortunately, if we have anull algumert, we may retain
amethal whichaccefs argumerts of clasgsthatare not
yet loaded. We ned to force the clas&sto be loadel
to ensue that the next stepoperatescorrectly.

Giventhe list of applicable mettods, step 2(d) findsthe
unigue most specfic method. Again the operatian is
identical to the processthat the j avac conwpiler fol-
lows. Oneapplicade mettod is tertatively selected as
themostspeeific. Each otherapgicablemethodisteged
by comparing argumert by argument (including the re-
ceiver agumert) against the tertatively most specific.
At eachstep,we discad ary metlods that are lessspe-
cific. We continue this process urtil only one cand-
date method remains, or two or more equally specific
methods remain. In the latter case we have anambgu-
ous method invocation and we throw an Anbi guous-

Met hodExcept i on to advertisethis fact.

Next, we verify that the retum type for our more spe-
cific method is compatibde with the conpiler-selecte
method. This checkrelaxesJLS 8.4.6.3, where we must
reject ary invocation that has a different return type,
yet ersurestype-safety If the retum type is differen,
wethrow anl | | egal Ret ur nTypeChange exception at
runtime.

6.4 Table-basedDispatch

Ou SRPframework-basedechnquesis takenfrom the
DispatchTableFramework (DTF) [22]. This is atoalkit
of mary differen uni-dispatchandmulti-dispatchtech
nigues. In order to call the DTF to dispach a call-site,
we neal to inform the DTF of the various clas®s ard
methods presert in our Javaprogram. Our interfacecon
sigsof anumber of straght-forwardroutinesto perform
this registraion.

The JVM maintairs in-memory structures for eath
loaded . cl ass file. We have exterded that d ass-

d ass structureto corntaina DTF_Type field. It cortains
apointer to the C++ object generatedby the DTF. Once
a class is dynamically loaded by the JVM, we ched
to see if we must registerit with the dispatcter. If the
dispatcherhasalreadybeeninstartiated, we register the
classvia j avaAddd ass(...) ard store awvay the re-
turnedDTF_Type pointer.

If a dispatcherhas not beeninstantiated and the just-
loaded classis uni-dispatch only, we defer the regis-

tration in order to redwce the overtheadto uni-dispatt
programs. If the just-loackd class is marked for multi-
dispatchandthedispdacherhas not been instantiated the
processis more complex. First,we instantiatea new dis-
pacher Then, we register eachclass that has alread/
beenloaded ersuring thatits superclasss ard superin-
terfacesareregisteredfirst.

Finally, as the last part of registering a classwith the

dispatcher we needto see whetherary methads from

other classesvereheld in abeyance until this classwas
loaded This canoccu if the methods from other classes
expect dispatchdle argumerts of the classwe are just
now loadng. As we shallseebelov, we deferred regis-

tering thesemethads until the classwasloaded.

Java’s fadlity for dynamically reloadng classedorces
us to ensue that two classeswith the samenane are
assgned different DTF_Types. Java ersures that two
classeswith the sane nane are treatedas distinct by
insisting that eachonre is loaded by a differert class-
loader [19]. We apply the sarre techique by supply-
ing the DTF framavork with a name corsisting of the
classloadrnane, followedby “: : * andfollowedby the
classnarre. They systemclassloaleris given theempy
name“ ”.

For a class marked for multi-dispach, we needto reg-
ister its methads alorng with ther types via j ava-
AddMet hod(...). If this classimplemens Ml ti -
Di spat chabl e directly, thenwe registerall of its meth
ods, including inheiited ones. Alternately if Ml ti -
Di spat chabl e is aninherited interfacefor this class,
then we know that its superclasshas already registeral
its methals. Therefore, we do not nedl to registerthem;
we only needto register the methods that we directly
implemert.

This methdl registration proces is conplicatedby our
desireto loadclassedazily. If amethal acceptsanargu-
ment with aclassnot yetseen by the JVM, we know that
we could never dispatchto it until that class is loaded.
We setthatmethad adde for future registration

If all of the agument types for the methal are al-
ready registeredwith the DTF, thenwe procee to reg-
ister the method. We provide a et hodbl ock pointer
tha we want the framework to retun if this method
is the dispatcled target. We bunde up the DTF_Type
valuesfound in the O assd ass structues for eah
argument class (including the receiver argument) ard
pass themto the framework. The framavork retums a
DTF_Behavi or pointer that we store in the net hod-
bl ock.

14As mentonedabove, our DTF-based systens do not permit null
asadispathable agument. Therefore, this guarantee holds.



Dispatchbecones a very simpe opemtion We build
an array of the DTF_Type pointers from the arguments
on the Java stack. If we ercounter a null argument,
we throw a Nul | Poi nt er Excepti on. The DTF_Type
array, along with the DTF_Behavi or painter from the
compiler-selectednethal allow theframework to locate
thenmet hodbl ock pointer thatwe hadpreviously regis-
teral.

We expect that the retumed et hodbl ock pointer is
the methal for multi-dispatch We validateit against
the compiler-selectedmethal. If the retun type has
changed, we abat thedispatchandthrow ani | | egal -

Ret ur nTypeChange excegion. Othewise,we call the
found mettod's original invoker andreturnits value as
theresultof theinterpreters call to a metlod invoker.

Single Receiver Projections Single Recever Projec-
tions (SRP) [16] is a techique tha consides a mullti-
dispatchasa request for the joint mast specific method
available on eachargument. For a givenargument posi-
tion and type,anordered(most-speti c to least-speific)
vectorof potertial methadsis mairtained The vedors
for all the argumert positiors areinterseded to provide
anorderedvector of all applicade methals. Becauseof
the ordering, this vectorcanbe quickly searcledfor the
most apdicable method.

SRP uses a uni-dispatch techmique to mantain the
vector of patential methods for each individual agu-
ment. Thesevectas are typically conpressedto con
sene space.Mary differert compressionteciquesare
known: row displacenent, selectorcdoring [2], ard
compres®d selector tabe indexing [25]. Our imple-
mentationusesselecto coloring, because timing exper-
imerts [17] indicates that tecique providesthe fastest
dispatchtimes.

7 Future Work

Our MSA andtuned SRP dispatches are the mostcom
plete. They suport nul | as a dispatchalte agumert,
multi-dispatchon otheri nvoke bytecales®, widening
of primitive dispatctablearguments,andmulti -threadel
dispatch. Our table-framework-baseddispachess do not
currertly support all of thesefacilities Adding them
would provide addtional flexibility and allow them to
fully support the Javaprogranming languagesemantics.
In particuar, we have a two-tablededgn thatwill alow
one threadto dispach through an existing table, while
we register additional methals ard/or classesto a new
ore.

Our custom SRP code implemerts multi-dispath asa

155ignded by implementing the empty interfaces Stati cMul ti -
Di spat chabl e and Speci al Mul ti Di spat chabl e.

critical section, protectedby a mutual-exclusion lock.
We have devised, but nat asyet implemented a tech
niguewhichwould eliminatethe lock overhead(approx-
imatdy 0.38 us for every multi-dispach) ard all ow con
currert multi-dispatch. Thetradeoff is thatevery thread
would needto halt while the multi-dispatchtables are
being updated

The OpendIT support for multi-dispatchis still primi-
tive; in particdar, we eliminateall inli ning actions. This
is a consenative agproachand one can identify situa-
tions whereinlining in multi-dispatch Java would pro-
vide correctrestts. Identifying theseopportunities will
yield higher overall performarce.

Othe multi-dispatchtechniques exist, including com
presed n-dimensioal tades [1, 12], look-up au
tomata[9, 10|, ard efficient multiple andpredcatedis-
pach [7]. A comprehensie exploration of these tech
nigues usingJavais inconpleteat thistime.

Anothe significart improvemern for multi-dispachisto
incorporate our code testingtod into thej avac com
piler. At this time, MDLi nt exists as a serate ex-
ecuable which will recoqiize ard wam the progran+
mer abaut common ambiguities anddifficulties. It ama-
lyzesa conpleteapplication andidentifiesthe code sec-
tions wherethe programmer could invoke anambiguous
method, or have a conflicting retum type.

Our refererce implemertation MSA, supports multi-
dispatch on all method types (instarce, static, in-
terface, private, efc.), excep corstructas. Because
the same bytecale is usedto invoke a constructar in the
superclassand a constrictor with different aguments,
we canrot distinguish the two posshilities. This issue
is a specificinstance of the need to apdy a super to
anargumert other thanthe receiver. Fortunatdy, in our
experience, this requiremert doesnat arisein common
progranming practice(excep for constrictors).

Ou tuned SRP implemenation allows our dispatt
tades to idertify only those types tha are multi-
dispatched This lazy type numtering is reversible, al-
lowing the tables to shrink as clases are unloaded
In turn, multi-methods canrevert to lower arity multi-
dispatch(or evenuni-dispatch) We seegreatpromisein
this tecmiquefor long-lived Java sener apgications.

The DTF framavork contains anaher dispatcter, Mul-
tiple Row Displacemen [22] (MRD) that operates15%
fastethanSRP. Therefore,we exped thatdispatchcould
be enhancedto provide even lower latengy by apgdying
this technique. Unfortunately MRD currertly doesnot
support incremenal dispatchtable updaes in the same
way that SRPdoes. In a dynamic environment sud as
Java, incremental updating of dispatt tablesis desir



albe. Enharcing MRD to sypport incremeral updatesis
arother resarchpriority.

Last, our maiker interface Mul ti Di spat chabl e de-
notesthat eat metlod in a given classis to be multi-
dispatched Our JVM relieson this tag only to inform
it abaut which methods are eligible for multi-dispatch
Therefbre, without changing our multi-dispatchimple-
mentation altermate Java syntax would alow usto se-
lectively mak individual methals (andtheir overriding
multi-methods) asmulti-dispatchable,ratherthanertire
classesWe would lik e to explore the space of corserva-
tive languageextensiors to exposethis featue.

8 Related Work

Othes have attemped to add multi-dispatd to
Java through language preprocessrs. Boyland and
Cagagna [3] provide an additional keyword parasite to
mak methadswhich should have multi-dispatchproper-
ties. They effectively translatehese methadsinto equiv-
alert double-dispatchJava code. By trarslating directly
into compiledcode,they apply atextud priority to avoid
thethorny issue of ambiguous methads. Unfortunately,
the parasiticmethod selectio processis a sequenceof
several dispatchesto searchover a patentially exponen
tial tree of overriding mettods.

The languageextersion and preprocessolappoachhas
other limitations. First, existing tods do not sugport
the extersions; for examge, deluggersdo nat elide the
auomaically geneateddouble-dispdch routines. Sec-
ond, instancemettods appearto only take arguments
that are objects which is too limiting. Our experierce
with Swing shows tha existing prograns often dou-
ble dispatchon literal nul | andarray agumerts ard
pass primitive types asargumerts; multi-methods needl
to support thesenon-objecttypes. Third, preproces®rs
limit codereuseard extersibility; adding multi-methals
to an existing behaviour requires either accessto the
original source code or additional double-dispatd lay-
ers.

Chatteton [8] examines two different multi-dispatt
techiques in mainstreamlanguages: C++ and Java.
First, he considers providing a spedalized dispatcter
class. Each classthat participaesasa methal receiver
must registeritself with the dispatche. To relieve the
progranmer of this repetitive coding process,he pro-
videsa preprocessa tha rewrites the Java saurceto in-
clude the appropriate calls. Eachmethal, marked with
thekeyword multi, is also expanded by the preprocessar
into mary individud methals, one for eachcombina-
tion of clas®s(andsuperclas®s). A method invocation
is redacedby acall to the dispatchemwhich searchesvia
refledion for an exad match That methd is thenin-

voked This system suffersfrom exponertial blowup of
methods.

Chatteton’s secoml approachexamiresthe performarce
of various double dispatch enranemerns. He pro-
videsa modified C++ prepmocessomwhich analysesthe
ertire Java program It can build a number of dif-
ferent double-dispatch structures including cascade
ard nestedif...el se-if...el se statemats, inline
swi t ch statemerts, and simple two-dimensioral tables.
Again, he expards every possble agument-type com
binationin order to aply fast equality testsrather than
slow subtypecheclks. A significart restriction isthatfull-
program analysis is requred. This defeatsthe ahility
to useexisting librariesand diminishes Java’s dynamic
classloadng benefits.

Ore interestinglanguage for multi-dispatchis Leavens
ard Millstein’'s Tuple [18]. They descibe a language
“similar in spirit to C++ andJava” that pemits the pro-
gramner to specily ateachcall-sitethe individual argu-
ments that will be consideredfor multi-dispatd. This
paperdoes not describe animplementaion; it appearsto
be a model of potertial syrtax and semartics only. A
future project might be to implemert his syntax specif
ically into the Java ervironment. In particuar, a sSim-
ple syrtax extensionwould allow super mettod invo-
cationson aritrary multi-dispatcharguments.

Anothe recent development is MultiJava [11]. There,

the authors exterd the Java language with additional

syrtax to sugport open clases and multi-dispatch

The MultiJava compil er enits double-dispatchtype-case
bytecalesfor invocatimnsof the openclassmethods and

multi-methods. The emitted bytecale is accepted by

standird VM, but suffers a substantialoverheadfrom

interpreting slow sultype-testingbytecodes. Unfortu-

naely, multi-dispatchcanonly apply to methalsdefined

using the open-class syntaxand only within the program

text thatimportstheopenclassdefintions. If sulclases
wish to further specializethe multi-methals, additional

open-classdefinitionsarerequired. Conmpilation of these
further opensubdassesmay resultin multiple layers of

type-case double-dispatch. Intemally, MultiJava inlines
the multi-method bodiesinto a staticmetha in a sep

arde archor class— this mears that the multi-methads
disappea from the binary code andbecane invisible to

thereflective subsystemin Java. Finally, MultiJava is a
paperdesignat this time'®, so performarce conpaiisons
arenat possble.

18persond communication at OOPSLA2000.



9 Concluding Remarks

We have presentedthe designand implementation of
an extended Java Virtual Machine that supparts multi-
dispatch. This is the first published desciption of how
to implement arbitrary-arity multi-dispatchin Java. In
contrast to the more verbose and eror-prone double-
dispatch techrique, currently found in the AWT (Fig-
ure 2), multi-dispatch typically reducesthe amount of
progranmerwritten code and gererdly improves the
readahility and level of abstration of the code.

Our approach preseres both the pefformarce and se-
mantics of the existing dynamic uni-dispatd in Java
while allowing the programner to selectdynamic multi-
dispatchon a class-byclass basiswithout ary language
or conpiler extensiors. The changesto the JVM it-
self are smallard highly-localized Existing Java com:
pilers, libraries,and programs are not affected by our
JVM madifications and the programs can achieve per-
formancecomparmableto the original JVM (Table?2).

In a series of micro-berchmarks, we shaved that our
prototype implemenation adds no performarce over-
head to dispatchif only uni-dispach is used(Tale 2)
ard the overheal of multi-dispatch can be conmpetitive
with explicit double dispatch(Table 4).

We have alsointroduced ard implemerted anextensian
of theJavaMost Speific Applicable (MSA) staticmullti-
dispatch algorithm for dynamic multi-dispatch In ad
dition, we have pefformed the first headto-headcom:
paison of tablebasedmulti-dispatchtecmiquesimple-
mentedin a mainstramlanguage. In particuar, we im-
plemerted Single Recever Projections (SRP).Overall,
our tuned SRPimplemenationpefformsaswell (or bet-
ter) than programmae-targeted multi-dispatch With per-
formanceimprovemerts in concureng/, we exped our
tuned systemto out-perform type-cas double dispatch.
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