
-13

CMPUT 675: Approximation Algorithms Fall 2011

Lecture 12-13, (Oct. 18 and 20, 2011): MST, Min-cost Bounded Degree ST
Lecturer: Mohammad R. Salavatipour Scribe: Xida Chen

12.1 Minimum Spanning Tree

Recall the following LP relaxation for the Minimum Spanning Tree (MST) problem from last lecture:

min
∑

e∈E ce · xe

s.t. x(E(v)) = |V | − 1
x(E(S)) ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2

xe ≤ 1
xe ≥ 0

We call this LPMST . Our goal is to prove that:

Theorem 1 LPMST is integral, i.e. every bfs of this LP is integral.

We know that any bfs is uniquely determined by n linearly independent tight constraints (where n is number of
variables of the LP ). Since we have exponentially many constraints in this LP, a bfs may be satisfying many of
them with equality (i.e. being tight). We want a “good” set of linearly independent tight constraints defining
it. The notion of “good” here will be clear soon. First, observe that in any bfs, we can safely delete any edge
e ∈ E with xe = 0 from the graph. So we can assume that every edge of G has xe > 0. Our goal is to show
that there are at most |v| − 1 linearly independent tight constraints which implies that there are at most |v| − 1
non-zero variables. Since for any set S with size |S| = 2, the condition x(E(S)) ≤ |S| − 1 implies the value of
that edge must be at most 1 and because x(E(v)) = |v| − 1 we get that all the |v| − 1 non-zero variables must
have value exactly 1, i.e. the bfs is integral. Before we present the algorithm for this LP, we introduce some
Lemmas first. Recall that:

Definition 1 Two sets X,Y over a ground set U are called crossing if X ∩Y 6= ∅, X−Y 6= ∅, and Y −X 6= ∅.
A family of sets is called laminar if no two sets in the family cross.

Lemma 1 Suppose U is a ground set and |U | = n and L is a laminar family of subset of U without subsets of
size 1, then |L| ≤ n− 1 (n = |E|)

Proof. We proof this lemma by induction. First we define S ∈ L to be maximal if ∄S′ ∈ L s.t. S ⊂ S′. Let
S1, ..., Sm be collection of maximal sets of L (i.e. roots of the tree in the corresponding forest). We can see that
each Si contains at most |Si| − 1 sets of L since the difference of each set and its parrent is at least one element
and leaf nodes contain at least two elements. Hence, we have:

|L| ≤
m∑

i=1

(|Si − 1|) ≤
m∑

i=1

|Si| −m ≤ n− 1
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The following observation can be proved by noting that every type of edge contributes the same amount to each
side of the equation below:

Observation 1 For any two sets of vertices X,Y ⊆ V . Then

x(E(X)) + x(E(Y )) = x(E(X ∪ Y )) + x(E(X ∩ Y ))− x(δ(X,Y ))

where δ(X,Y ) denotes the edges between X and Y .

An immediate corollary is:

Corollary 1 For any two sets X,Y ⊆ V : x(E(X)) + x(E(Y )) ≤ x(E(X ∪ Y )) + x(E(X ∩ Y )).

Let x be a bfs of the LPMST with xe > 0 for all edges e ∈ E. Let F = {S|x(E(S)) = |S| − 1} be the family
of all tight constraints of the LP. For each set S we use χ(E(S)) to denote the characteristic vector of E(S) of
size |E|:

χ(E(S)) =

{

1 if e ∈ E(S)

0 o.w.

Lemma 2 If S, T ∈ F and S
⋂
T 6= ∅, then both S

⋃
T and S

⋂
T are in F , furthermore

χ(E(S)) + χ(E(T )) = χ(E(S
⋃

T )) + χ(E(S
⋂

T )).

Proof.
|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S
⋃
T )) + x(E(S

⋂
T ))

≤ |S
⋃
T | − 1 + |S

⋂
T | − 1

= |S| − 1 + |T | − 1

Here the first inequality is inferred by the observation stated above, and the second inequality is inferred by LP.

From the above equations we can see that the equality holds everywhere. Hence, we have x(E(S
⋃
T )) =

|S
⋃
T | − 1 and x(E(S

⋂
T ) = |S

⋂
T | − 1. It implies that both S

⋃
T and S

⋃
T are tight sets and are in F .

From the observation we have x(δ(S, T )) = 0, which means that ∄e = (u, v) ∈ E, s.t. u ∈ S and v ∈ T .
Therefore, we conclude that

χ(E(S)) + χ(E(T )) = χ(E(S
⋃

T )) + χ(E(S
⋂

T )).

We use span(F) to denote the vector space of those sets S ∈ F i.e. the vector space of {χ(E(S)) : S ∈ F}.

Lemma 3 If L is a maximal laminar sub-family of F , then span(L) = span(F)

Proof. We proof this lemma by contradiction. Suppose L is a maximal laminar sub-family, but span(L) ⊂
span(F). For each S /∈ L, we define

intersect(S,L) = |{T ∈ L|T intersect S}|.
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Figure 12.1: Cases for proof of Proposition 1

There must be exists set S ∈ F with characteristic vector χ(E(S)) /∈ span(L). Pick such set S with smallest
intersect(S,L). We will have intersect(S,L) ≥ 1 since L is maximal. Let T be any set of L intersecting S,
using Lemma 2 both S

⋃
T and S

⋂
T are tight sets. We will prove the following Proposition shortly.

Proposition 1
intersection(S ∩ T, L) < intersection(S, L)

intersection(S ∪ T, L) < intersection(S, L)

For now assume this proposition is true. Applying Lemma 2 to S and T , we get both S ∩ T and S ∪ T are in
F . So using this proposition and by minimality of intersect(S,L), both S ∩ T and S ∪ T are in span(L). On
the other hand, χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )). Since χ(E(S ∩ T )) and χ(E(S ∪ T )) are in
span(L) and T ∈ L, we must have χ(E(S)) ∈ span(L), a contradiction.

So it only remains to prove the above proposition. Consider the case shown in Figure 12.1, we can see that
for every R ∈ L and R 6= T , anything intersecting S

⋂
T and S

⋃
T must be intersecting S. Therefore,

the contribution to intersect(S
⋂
T,L) is no larger than that of intersect(S,L). Also, the contribution to

intersect(S
⋃
T,L) is no larger than that of intersect(S,L). However, S intersect T , but S

⋃
T doesn’t, hence

intersect(S
⋃
T,L) < intersect(S,L). The same argument holds for S

⋂
T , and hence intersect(S

⋂
T,L) <

intersect(S,L)

Thus, we obtain the following:

Lemma 4 Let x be a bfs of the LPMST with xe > 0 for all e ∈ E and let F = {S|x(E(S)) = |S| − 1}. Then
there is a laminar family L ⊆ F such that:

1. vectors of {χ(E(S))|S ∈ L} are linearly independent, and

2. span(L) = span(F)

3. |L| = |E|

12.1.1 Iterative Algorithm

Here we describe an iterative algorithm to obtain a tree T from a bfs of the LPMST ; this is done by picking
edges with value 1 in the LP iteratively:
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Iterative Algorithm I

F ← ∅
while V (G) 6= ∅ do

Find a bfs x of LPMST and remove any edge e with xe = 0
Find a vertex v with degree 1, say e = uv; then G← G− {v} and F ← F ∪ {e}

Figure 12.2: First Iterative Algorithm for Minimum Spanning Tree

Lemma 5 For any basic feasible solution x from step 3 with all xe > 0, there is a vertex v with deg(v) = 1. (It
implies that every iteration there exist a v in step 4).

Proof. We proof this lemma by contradiction. Suppose ∀v ∈ V, deg(v) ≥ 2. Then |E| = 1
2

∑

v∈V deg(v) ≥ |V |.
Since there is no edge with xe = 0, each tight constraint x(E(S)) = |S|−1. For each basic feasible solution, there
is a laminar family L with |L| = |E| ≥ |V |. Note that L cannot have sets of size 1 because every constraint
for laminar family is not for singletons, which means |L| ≥ 2. Then by using Lemma 1 we can imply that
L ≤ |E| − 1. Clearly this is a contradiction to |L| = |E|. Therefore, we can always find a vertex v where
deg(v) = 1 in the last step.

Alternatively we can use the following iterative algorithm:

Iterative Algorithm II

1. F ← ∅
2. while V (G) 6= ∅ do
3. find a basic feasible solution of LPST (G) and remove any e with xe = 0.
4. find an edge e with xe = 1, then G← G/e, F ← F

⋃
{e}.

Figure 12.3: Second Iterative Algorithm for Minimum Spanning Tree

Lemma 6 For any bfs x with xe > 0 for all edges, there is an edge e with xe = 1.

Proof. We proof this lemma by contradiction. By Lemma 4, there are |L| linearly independent tight constraints
of the form x(E(S)) = |S| − 1, and |L| = |E|. We derive a contradiction by a counting argument. Assign one
token for each edge e to the smallest set in L that contains both endpoints of e. So there are a total of |E| tokens.
We show we can collect 1 token for each set and still have some extra tokens, which is a clear contradiction.

Let S ∈ L be a set have children R1, . . . , Rk (in the laminar family). Since these are all tight sets, we have:

x(E(S)) = |S| − 1

x(E(Ri)) = |Ri| − 1 for all 1 ≤ i ≤ k

Subtracting the sides we get:

x(E(S)) −
∑

i

x(E(Ri)) = |S| −
∑

i

|Ri|+ k − 1
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Let A = E(S)\
⋃

iE(Ri). Then x(E(A)) = |S| −
∑

i |Ri| + k − 1. Set S gets exactly one token for each edge
in A. If A = ∅ then χ(E(S)) =

∑

i χ(E(Ri)) which contradicts linear independence of L. Also we cannot have
|A| = 1 since x(E(A)) is an integer (as the right-hand side is sum/difference of sizes of a number of sets) that
is positive and each xe is assumed to be fractional. Therefore, |A| ≥ 2, so S gets at least two tokens!

Using Lemma 5 or 6 it is easy to show that the iterative algorithms find a MST.

Theorem 2 The iterative algorithms I and II find a MST.

Proof. It only remains to show that the result is a spanning tree and this is done by induction on the number
of iterations. Consider the first form of the algorithm. If we find a vertex of degree 1, say deg(v) = 1 then the
edge incident to it must have xe = 1 (since x(δ(v)) ≥ 1 is a constraint). Thus each edge added to F in either
form of the algorithm has value 1. When e is added to F and v is removed from G note that for any spanning
tree T ′ of G−{v}, we can build a spanning tree T of G by defining T = T ′ ∪{e}. So it is sufficient that we find
a spanning tree in G′ = G − {v}. Note that the restriction of x to E(G′), call it xres, is a feasible solution to
the LP for G′. So by induction, we find a tree F ′ for G′ of cost at most optimum value of the LP for G′. Thus
c(F ′) ≤ c · xres and C(F ) = C(F ′) + ce. Thus

c(F ) ≤ c · xres + ce = c · x

since xe = 1.

Theorem 3 Every basic feasible solution to this LP is integral.

Proof. Take any basic feasible solution, and remove all the edges with xe = 0. Then by using the previous
lemma, we know that there are at most |V | − 1 linearly independent tight constraints. It implies that there are
at most |V | − 1 non-zero variables, which means all of them are 1s.

12.2 Minimum Cost Bounded Degree Spanning Tree

In this section we show how iterative algorithms can solve even more general problems. Here we consider the
problem of bounded degree spanning trees. Given a graph G = (V,E) and a bound k, suppose we want to find
a spanning tree with maximum degree at most k. This is NP-complete since with k = 2, it is the Hamiltonian
path problem.

Theorem 4 (Furer & Raghavarchi ’90) There is a polynomial time algorithm that finds a spanning tree of
maximum degree a most k + 1 (if there is one of with maximum degree at most k).

As a more general case, suppose each edge of the graph has some given cost ce. Also, each vertex v has a given
bound Bv and our goal is to find a minimum cost spanning tree with degree bounded by Bv’s.

Theorem 5 (Singh & Lan ’07) There is a polynomial time algorithm that finds a spanning tree of cost at
most opt and degree in which every vertex v has degree at most Bv + 1.

Our goal is to prove this theorem. For that end, we first formulate the problem as an integer program and
consider the LP relaxation. The following LP is the relaxation for an even more general form of the problem in
which we have degree bounds Bv for a subset W ⊆ V of vertices. We call the following LP, LPBDMST .
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min
∑

e∈E ce · xe

s.t. x(E(v)) = |V | − 1
x(E(S)) ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2
x(δ(v)) ≤ Bv ∀v ∈W

For ease of exposition, we first prove a weaker version of the above theorem. We show that the following
algorithm finds a tree whose cost is at most optimum and degree of every vertex v is bounded by at most
Bv + 2.

12.2.1 Additive +2 approximation algorithm

Algorithm I for MCBDST

Input: Graph G = (V,E)
Output: A minimum cost bounded degree spanning tree F
1. F ← ∅
2. B′

v = Bv

3. while V (G) 6= ∅ do
4. find a basic feasible solution to the LP and remove any e with xe = 0.
5. if there is a v ∈ V with at most one edge e = uv incident to v, then
6. F ← F

⋃
e,G← G− v,W ←W − v,B′

u ← B′
u − 1

7. if there is a v ∈W with deg(v) = 3, then
8. W ←W − v
9. return F

Figure 12.4: First Algorithm for Minimum Cost Bounded Degree Spanning Tree

First we prove a weaker version of the main theorem mentioned above. We introduce some lemmas first and
then prove that deg ≤ Bv + 2. Consider the algorithm of Figure 12.4. At each iteration, if there is an edge e
that is the only edge incident to v, and we show that we must have xe ≥ 1 and we pick this edge. Thus the cost
we pay for an edge is not more than what the optimum pays. We argue that if there is no such vertex v with
an edge of value 1 then there is a vertex v ∈ W with d(v) ≤ 3; so at each iteration we make progress in one of
the two steps. Note that if there is a vertex v with d(v) ≤ 3 and we remove this constraint since Bv ≥ 1 in the
worst case we will have picked all the at most 3 edges incident with v in our final solution, so the degree bound
will be at most 3 which is at most Bv + 2.

Let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of tight set constraints. Then the following lemma can be
proved similar to lemma 4 by applying uncrossing to sets in F :

Lemma 7 Let x be a bfs of LPBDMSP with xe > 0 for all edges. There is a T ⊆W with x(δ(v)) = Bv for each
v ∈ T , and a laminar family L ⊆ F such that

1. vectors {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T } are linearly independent

2. vector space of span(L) ∪ {χ(δ(v)) : v ∈ T } = span(F)

3. |L|+ |T | = |E|
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By the argument given earlier, it is thus sufficient to prove the following lemma:

Lemma 8 Let x be a basic feasible solution for LP with xe > 0, then there is a vertex v with deg(v) = 1 or
v ∈ W with deg(v) ≤ 3.

Proof. We prove this lemma by contradiction. Suppose the lemma is not true. Then each vertex is incident

to at least 2 edges, and v ∈ W,deg(v) ≥ 4. Then we will have |E| ≥ 2(n−|W |)+4|W |
2 = |V | + |W |. By using the

previous lemma we have |L|+ |T | = |E| ≥ |V |+ |W |. Since we know that L doesn’t have singletons, therefore
|L| ≤ |V | − 1 and |T | ≤ W . We add the two equations together and obtain |L|+ |T | ≤ |W |+ |V | − 1, which is
clearly a contradiction to |L|+ |T | = |E| ≥ |V |+ |W |.

Theorem 6 Algorithm I for MCBDST returns a spanning tree F of minimum cost such that the degree of
v ∈ F is at most Bv + 2 for v ∈W .

Proof. If there is a node v with degree(v) = 1 then since x(δ(v)) ≥ 1 is a valid constraint (obtained by
subtracting x(E(V − v)) ≤ |V | − 2 from x(E(V )) = |V | − 1), we must have xe ≥ 1. So we pay no more than
what the LP pays at each step we pick an edge. Also, the remaining variables define a feasible solution for the
residual LP, so inductively, the cost of T is at most the cost of the LP solution. As for the degree bounds, let
B′

v be the current residual degree bound for a vertex v. It is easy to see that since we always pick full edges
and update the degree bounds, if v ∈W then degF (v) +B′

v = Bv. Now when v is removed from W (because it
has deg(v) ≤ 3) then degT (v) ≤ degF (v) + 3 ≤ Bv −B′

v + 3 ≤ Bv + 2, since B′
v ≥ 1.

12.2.2 Additive +1 approximation algorithm

In this Section we prove Theorem 5. We start from a bfs and show that at each iteration we can either find an
edge e with xe = 1 (and so pick it) or there is a vertex v ∈ W with deg(v) ≤ Bv +1 and we relax the constraint.
The following equivalent algorithm is easier to analyze. We start from a bfs x with xe > 0, for all e ∈ E. We
iteratively find a vertex v ∈ W with deg(v) ≤ Bv+1 and remove v from W . At the end we have the LP without
any degree constraints, so it is the same LP as for MST and is thus integral.

Algorithm II for MCBDST

Input: Graph G = (V,E)
Output: A minimum cost bounded degree spanning tree F
1. F ← ∅
2. B′

v = Bv

3. while V (G) 6= ∅ do
4. find a basic feasible solution to the LP and remove any e with xe = 0.
5. Let v ∈W be a node with deg(v) ≤ Bv + 1
6. W ←W − v

Figure 12.5: Second Algorithm for Minimum Cost Bounded Degree Spanning Tree

It is easy to see that if at each iteration we find a vertex v ∈ W with deg(v) ≤ Bv+1 then the degree of v at the
final solution is no more than Bv +1 once we remove that constraint from the LP. Also, x as it is, is feasible for
the more relaxed LP. Therefore, the value of the solution for the residual (relaxed) LP is no more than optimum
of LP. This implies that at the end we have a tree with cost at most optimum and degree bounds are violated
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Figure 12.6: Illustration for the proof

by no more than +1. Thus we only have to show that at each iteration of the algorithm we can find such a
vertex v ∈ W to remove from W . Note that from Lemma 7 we can find the laminar family L ⊆ F and tight
degree nodes T ⊆ W such that |L|+ |T | = |E| and the corresponding constraints are linearly independent. So
it is enough to prove the following theorem which will imply Theorem 5.

Theorem 7 Let x be a basic feasible solution with xe > 0 for all e, and L and T be the ones defined in Lemma
7. Then if T 6= ∅, there is some vertex v such that deg(v) ≤ Bv + 1.

Proof. We proof this theorem by contradiction.

Suppose the theorem is not true. Then we have T 6= ∅ and deg(v) ≥ Bv + 2 for all v ∈W .

We first show the ∀e ∈ E with xe = 1, χ(e) ∈ span(L). Let E1 = {e|xe = 1}. We can see that E1 is a forest.
Let c1, ..., cj be the connected components of E1. It is clear that each ci is a tree. Take any component, say

C and consider an ordering of its edges

edges of C
︷ ︸︸ ︷
e1, e2, e3, ..., ej, er such that the graph induced by edges e1, . . . , ej, i.e.

Cj = {e1, . . . , ej} is connected. Note that Cj is a tight set too and that C1, C2, ..., Cr forms a laminar family of
tight sets; also χ(ei) = χ(Ci)− χ(Ci−1). Therefore, χ(ei) ∈ span({χ(Ci) : 1 ≤ i ≤ r}). Take the union of these
and expand it to obtain a laminar family L as in the proof of Lemma 7.

Now we use the token argument that is been used frequently in the proof of previous lemmas. We assign one
token to each edge, which means the total number of tokens is the number of edges which is |E|. Then we
re-distribute the tokens. The rule for the re-distribution can be described as follows. Each e gives 1−xe

2 to each
of its two end points for the degree constraints and xe tokens to the smallest set S in L containing both end
points of e. We would like to show that each set S ∈ L and v ∈ T gets one token and there are still some tokens
left, which derives a contradiction because the total number of tokens is |E|.

Let’s first consider vertices v ∈ T . Each such v gets 1−xe

2 for each edge of v. Then:

∑

e∈δ(v)

1− xe

2
=

d(v)−
∑

e∈δ(v) xe

2
≥ 1

In the above equation, e ∈ δ(v) means the edge incident to v.
∑

e∈δ(v) xe = Bv because T has a tight degree

constraint. The inequality in the equation is inferred by d(v) ≥ Bv + 2 by our assumption.

Now consider any S ∈ L. S gets xe token for each e such that S is the smallest set containing e. Consider the
case shown in Figure 12.6. We assume that S has children R1, . . . , Rk in the laminar family. We can see that
R1, ..., Rk and S are all tight sets. Hence:

x(E(S)) = |S| − 1
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x(E(Ri)) = |Ri| − 1, i = 1, ..., k

Subtracting the equations of Ri’s from that of S:

x(E(S)) −
k∑

i=1

x(E(Ri)) = |S| − 1−
k∑

i=1

(Ri − 1).

Note that this is actually the number of token that S would get. Then similar to the proof of Lemma 6, by
using the linear independency, we can show that the number is non-zero and integer. Therefore, S gets one
token as well.

Now what is left is to show that there are still some tokens left unaccounted for. First of all, V ∈ L. Otherwise
the largest set is some set S 6= V , with δ(S) 6= ∅, which means there exists some edge e such that e /∈ E(S),
so there will be xe tokens not assigned anywhere which is a contradiction. Also, if there is v ∈ W\T , then by
the same argument as for the case of v ∈ T and noting that deg(v) ≥ Bv + 2, v collects one token, which is
unaccounted for. Therefore, we can never have v ∈ W\T . Suppose there is v ∈ V \T , then each edge e at v
must have xe = 1. Otherwise 1−xe

2 > 0 tokens are extra, which is a contradiction. We have shown that for
every such e, χ(e) ∈ span(L). And we will use this argument here. We have:

2χ(E(V )) =
∑

v∈V

χ(δ(v)) =
∑

v∈T

χ(δ(v)) +
∑

v∈V \T

χ(δ(v)).

We showed that V ∈ L and for each e ∈ δ(v) with v ∈ V \T , x(e) = 1 and so e ∈ span(L). Since we assumed
T 6= ∅, the constraints in T and L have linear dependecem, which is a contradiction.


