
&16

CMPUT 675: Approximation Algorithms Fall 2015

Lecture 15&16 (Oct 20 & 22, 2015): Iterative Rounding
Lecturer: Mohammad R. Salavatipour Scribe: Arnoosh Golestanian

15.1 Minimum Cost Bounded degree Spanning Tree

A natural generalization of minimum cost spanning tree is when we have some given degree bounds for each
vertex and our goal is to find a minimum cost spanning tree statisfying the degree bounds. In other words, for
a given graph G(V,E) and a bound Bv for each node v ∈ V , we want to find a spanning tree with minimum
cost while degree of each v ∈ V is at most Bv (MCBDST).

Note: This problem is NP-complete since if edge costs are all 1 and all degree bounds are 2 it is the Hamiltonian
path problem.

When all Bv’s are equal (say k) and the graph is unweighted, the problem is finding a spanning tree of maximum
degree k.

Theorem 1 (Furer & Raghavarchi ’90) There is a polynomial time algorithm that finds a spanning tree of
maximum degree at most k + 1 (if there is one of with maximum degree at most k).

In this lecture we see the proof of the following result.

Theorem 2 (Singh & Lan ’07) For MCBDST there is a polynomial time algorithm that finds a spanning
tree of cost at most optimum in which every vertex v has degree at most Bv + 1.

We first formulate the problem as an IP and then consider the following LP relaxation (LPMBDST):

(LPMBDST) min
∑

e∈E

Cexe

s.t. x(E(s)) ≤ |S| − 1 ∀S ⊆ V

x(E(v)) = |V | − 1

x(δ(v)) ≤ Bv ∀v ∈ W.

(15.1)

Let x(δ(S)) =
∑

e∈δS
xe. The proof of following lemma is similar to the corresponding lemma we had for

minimum spanning tree (using uncrossing).

Lemma 1 Let x be a basic feasible solution to LPMBDST with xe > 0 for all e then there is a set T ⊆ W and
a laminar family L such that:

1. x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L.

15-1

15-2 Lecture 15&16: Iterative Rounding

2. Vectors of {χ(E(s)) : s ∈ L} ∪ {χ(δ(v)) : v ∈ T } are linearly independent.

3. |T |+ |L| = |E|

The following is our algorithm for MCBDST.

Minimum bounded degree spanning tree Algorithm

Input: Graph G(V,E)
Output: A minimum cost bounded degree spanning tree F .
1. F ← ∅
2. while W 6= ∅ do
3. find a basic feasible solution to LPMBDST and remove any e with xe = 0
4. let v ∈W be a node with x(δ(v)) = Bv + 1
5. W ←W − {v}
6. let x be a basic feasible solution and add all xe > 0 to F
7. return F

Figure 15.1: Algorithm Minimum cost bounded spanning tree

For now let’s assume that we can always find a vertex v for line 6 of the above algorithm.

Lemma 2 The cost of the returned solution is at most OPT.

Proof. Note that in each iteration we remove a degree constraint. Therefore, the current LP solution is feasible
for the residual LP. Thus, the cost can only go down per iteration.

Lemma 3 The returned solution is a spanning tree with each node v having degree at most Bv + 1.

Proof. Since for a vertex v with degree at most Bv + 1 we remove the constraint on that node and we only
work with edges with xe > 0 in worst case the final solution has all those edges, thus the degree of v will be no
more than Bv + 1.

Theorem 3 Let x be a basic feasible solution with xe > 0 for all e, and L and T be the set of tight constraints
(defined in Lemma 1) then if T 6= ∅, there is some vertex v such that deg(v) ≤ Bv + 1.

Proof. We will prove this theorem by contradiction assuming that T 6= ∅ and ∀v ∈W,deg(v) ≥ Bv + 2.

Observation 1 If there is any edge e such that xe = 1 then that edge belongs to span of L (set of tight
constraints).

To see this, let vertices u and v be two endpoints of the edge e. Then we define set S = {u, v} which means
that E(S) = {e}. So, x(E(S)) = 1 = |S| − 1 = 1 which means that constraint x(E(s)) ≤ |S| − 1 is tight in
LPMBDST .

For the proof of this Theorem we will use the common argument of token assignment that we used for the proof
of the previous lemmas. We assign one token to each edge. So overall we will have |E| number of tokens. We
will show that from this |E| number of tokens each laminar family will get at least one token but there are some
extra tokens which did not assign to any laminar families. We will distribute the assigned tokens from each
edge e = uv in a following way:

Lecture 15&16: Iterative Rounding 15-3

1. e will give 1−xe

2 tokens to the smallest set in L containing u and 1−xe

2 tokens to the smallest set in L
containing v.

2. e will give xe tokens to the smallest set in L containing both u and v.

Fist consider vertices v ∈ T . Each vertex v gets 1−xe

2 tokens from each edge incident to v. According to the
assumption that deg(v) ≥ Bv + 2 we will get the following:

∑

e∈δ(v)

1− xe

2
=

deg(v)− x(δ(v))

2
=

deg(v)−Bv

2
≥

Bv + 2−Bv

2
= 1

Which means that each vertex in T gets at least one token.

Now to show that each set in the laminar family gets at least one token we consider set S that has children
R1, ..., Rk in the laminar family. Since R1, ..., Rk and S are all tight sets we have the following result:

x(E(S)) = |S| − 1

x(E(Ri)) = |Ri| − 1 , i = 1, ..., k

x(E(S)) −
k
∑

i=1

x(E(Ri)) = |S| − 1−
k
∑

i=1

x(Ri − 1).

Also, x(E(S)) −
∑k

i=1 x(E(Ri)) = x(E(S)\
∑k

i=1 E(Ri)) is the number of tokens that set S will get because

E(S)\
∑k

i=1 E(Ri) is the set of edges that are in S but not in its children. So, it will be a positive integer.

On the other hand, |S| − 1 −
∑k

i=1 x(Ri − 1) cannot be zero because sets of L are linearly independent. As a
result, each set of laminar family will get at least one token.

The size of laminar family is |L| and we had |E| number of tokens. If each set in L and each vertex in T receive
at least one token it means that |L|+ |T | ≤ |E|. Now we need to show that some extra tokens left that we did
not assign them to any set and as a result, equality does not hold.

If V 6∈ L then assume that S′ is the maximal set in L. Since graph is connected there is an edge e1 coming out
of set S′. But there is not any set in L that contains both endpoints of edge e1. So, edge e1 cannot give any
sets in L, xe tokens. So, some extra tokens left.

If ∃v ∈ V \T , then v gets
1− xe

2
that is unaccounted for unless xe = 1. So, for each v ∈ V \T all edges must

have xe = 1. Hence, we can write the following equality.

2χ(E(V)) =
∑

v∈V

χ(δ(v)) =
∑

v∈T

χ(δ(v)) +
∑

v∈V −T

χ(δ(v)) =
∑

v∈T

χ(δ(v)) +
∑

v∈V −T

∑

e∈δ(v)

χ(e)

Since xe = 1, χ(e) will be in span(L). Since v is in span(L), χ(δ(v)) will be in span(L). As a result, we can
write

∑

v∈T χ(δ(v)) as a convex combination of the other two terms which contradicts the fact that they must
be linearly independent. So, xe 6= 1 and there are some extra tokens that are not assigned to any laminar
families. Hence, the equality does not hold and |T | + |L| < |E| which contradicts Lemma 1. This proves the
Theorem 4.

15-4 Lecture 15&16: Iterative Rounding

15.2 Survivable Network Design Problem

This problem is the generalization of steiner forest problem. In this problem we are given an undirected graph
G(V,E) with cost Ce, ∀e ∈ E and connectivity requirement r(u, v) for all pairs of vertices u, v ∈ V , where u 6= v.
Also, the connectivity requirement are nonnegative integers. Our goal is to find a minimum cost set of edges
F ⊆ E such that for all pairs of vertices u, v ∈ V with u 6= v, there are at least r(u, v) edge disjoint paths
connecting u and v in (V, F). Steiner forest is a spacial case of this problem where r(u, v) = 1 for all pairs in Si.

Examples: If r(u, v) = 1 for all pairs then our problem is the Minimum Spanning Tree problem.
If r(u, v) = 1 for all u, v ∈ T for a set T ⊆ V then our problem is actually Steiner Tree.
If r(u, v) ∈ {0, 1} for all pairs then our problem is actually Steiner Forest(Generalized Steiner Tree).
If r(u, v) = k for some given k, for all pairs then our problem is actually Minimum Cost k-edge-connected
subgraph problem.
If r(u, v) = 2 for all pairs then our problem is actually Minimum Cost 2-edge-connected subgraph problem.

Definition 1 The cut requirement function f : 2V → Z
+, ∀S ⊆ V is the largest requirement across the cut S, S̄.

In other words, f(s) = maxu,v r(u, v) s.t. u ∈ S, v /∈ S.

Definition 2 We define Ue to be maximum number of copies of edge e that you can pick. In a simple graph it
would be 1. But in this problem, it is possible to have a graph with multiple edges.

Following is an LP rexation of the problem:

min
∑

e∈E ce · xe

s.t.
∑

e∈δ(S) xe ≥ f(S) ∀S ∈ V (1)

0 ≤ xe ≤ Ue ∀e ∈ E (2)

Definition 3 Suppose that we have picked a set of edges so far, say H ⊆ E. For each set S ⊆ V we define the
residual cut requirement as f ′(S) = f(S)− |δH(S)|.

Note that f ′ may not correspond to any connectivity requirement function r(u, v).

Definition 4 A function f : 2V → Z+ is strongly submodular if f(V) = 0 and for all A,B ⊆ V both of the
following hold:

1. f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

2. f(A) + f(B) ≥ f(A−B) + f(B −A)

Lemma 4 Function |δG(S)| is strongly submodular.

Proof. We prove that the first situation holds. The proof for second condition is very similar.

If sets A ∩B 6= ∅ or A ⊆ B or B ⊆ A then it is easy to check.

For the case that A and B do not cross we have Figure 15.2. We want to show that |δG(A)| + |δG(B)| ≥
|δG(A ∪B)|) + |δG(A ∩B)|.

Lecture 15&16: Iterative Rounding 15-5

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

B A

e

e

e
1

2

3

4
e

Figure 15.2: Different type of edges between crossing sets A and B.

Edges of type e4 are contributed in both δG(A)| and δG(B) (two times in the left hand side). Edges of type e3
contribute two times in the left hand side and two times in the right hand side. Edges of type e1 or e2 contribute
one time in the left hand side and right hand side. So, the statement is true.

Definition 5 We say f is weakly super modular if at least one of the following holds. For all A,B ⊆ V :

1. f(A) + f(B) ≤ f(A ∪B) + f(A ∩B)

2. f(A) + f(B) ≤ f(A−B) + f(B −A)

Lemma 5 f and f ′ are weakly super modular.

Proof.

First we will prove that f(S) = max{r(u, v)|u ∈ S, v 6∈ S} is weakly super modular. It is clear that f(V) = 0 =
f(∅) and f(S) = f(V − S).

Also, we can observe that f(A ∪ B) ≤ max(f(A), f(B)). Based on this fact we can write the following four
inequalities:

f(A) ≤ max(f(A−B), f(A ∩B));

f(A) ≤ max(f(B −A), f(A ∪B));

f(B) ≤ max(f(B −A), f(A ∩B));

f(A) ≤ max(f(A−B), f(A ∪B));

For example the first inequality comes from the fact that (A−B)∪ (A ∩B) = A. For the second inequality we
know that f(V −A) = f(A) and (B −A) ∪ (V − (A ∪B)) = V −A.

Now without loss of generality assume that min(f(A−B), f(A ∩B), f(B −A), f(A ∪B)) = f(A ∩B) then by
adding the first and the third inequality we have,

15-6 Lecture 15&16: Iterative Rounding

f(A) + f(B) ≤ f(A−B) + f(B −A)

which means that f is a weakly super modular.

Then, we should prove that if f is weakly super modular then f ′ is weakly super modular. We know that
f ′(A) = f(A) − |δ(A)| and f ′(B) = f(B) − |δ(B)|. From Lemma 4 and first part of this Lemma we have the
following:

(f(A)− |δ(A)|) + (f(B)− δ(B)| ≤ (f(A−B)− |δ(A−B)|) + (f(B −A)− |δ(B −A)|)

f ′(A) + f ′(B) ≤ f ′(A−B) + f ′(B −A).

As a result, f ′ is weakly super modular.

15.2.1 Jain’s Iterative Rounding

Following is the Jain’s Iterative Rounding algorithm.

Jain’s rounding

1. H ← ∅
2. f ′ ← f
3. while H is not feasible do
4. find an optimum extreme point solution (basic feasible solution) x for graph G = (V,E −H) using f ′

5. delete edges with xe = 0
6. for each edge e with xe ≥

1
2 do

7. add ⌈xe⌉ copies of e to H
8. for every S ⊆ V : f ′(S)← f(S)− |δH(S)|
9. return H

Figure 15.3: Jain’s iterative rounding

Note that although the LP has exponentially many constraints we can solve this using Ellipsoid algorithm if we
have a separation oracle for it. For every pair of vertices u, v ∈ V (G) we can run a max-flow-min-cut from u
to v with these x values as flows to find a min-cut between u, v. This min-cut gives you a cut S and then you
need to have at least r(u, v) in this cut and the capacity of the cut with these values has to be at least r(u, v).
If a min-cut with less capacity than r(u, v) is found, then this cut represents a violated constraint.

For updating f ′, imagine an arbitrary iteration. Given x′ we want to check feasibility using ellipsoid algorithm.
We define xe = x′

e + eH , where eH is the number of copies of e added to H so far.

Lemma 6 Cut (S, S̄) is violated by x′ under f ′, if and only if it is violated by x under f .

Proof. We know that:

Lecture 15&16: Iterative Rounding 15-7

δx(S) = δ′x(S) + |δH(S)|

f(S) = f ′(S) + |δH(S)|

So we can easily conclude that:

δx(S) ≥ f(S)⇐⇒ δ′x(S) ≥ f ′(S)

So, you don’t need to update f ′ in each iteration, instead you can work with function f . The update statement
in Jain’s rounding is for easier description of algorithm.

Until now we have proved that Jain’s algorithm can be implemented to run in polynomial time. Now we should
prove that algorithm gives us a 2-approximation.

Lemma 7 (Main Lemma) For any weakly super modular f and any basic feasible solution x, there is an edge

e with xe ≥
1

2
.

For now we assume that Lemma 7 is true and we will prove that this algorithm is 2-approximation algorithm.

Theorem 4 Jain’s algorithm is 2-approximation.

Proof. We will prove this Theorem by induction on number of iterations. Let ZLP be the optimum value of

original LP. Assume that ∃e ∈ E with xe ≥
1

2
added to F and Z ′

LP is the optimum cost of the updated LP.

According to the induction hypothesis, cost of edges picked in the subsequent of iterations is at most 2Z ′
LP .

We claim that Z ′
LP ≤ ZLP − cexe. This is because the restriction of x to the edges in E − e is feasible for the

residual LP . Since xe ≥
1

2
we have the following:

Z ′
LP ≤ ZLP − cexe ≤ ZLP −

ce
2

According to the induction hypothesis we will have:

cost ≤ 2Z ′
LP + ce ≤ 2(ZLP −

ce
2
) + ce = 2ZLP

15.2.2 Characterization of basic feasible solutions

From now on, we prove Lemma 7 Assume that 0 < xe < 1 for all edges because we can delete edges with xe = 0
and add those with xe = 1 to the solution without any cost increase w.r.t optimum. Let m = |E| be the number
of edges after deleting 0 and 1 values, i.e. the size of the totally fractional solution. For every set F ⊆ E we use
x(F) to denote the sum of the xe values for e ∈ F .

15-8 Lecture 15&16: Iterative Rounding

Definition 6 A set S is called tight if x(δ(S)) = f(S).

Definition 7 For each set F ⊆ E the characteristic vector is defined as χF ∈ {0, 1}|E|=m, such that χF (e) =
{

1 if e ∈ F
0 otherwise

Lemma 8 For any basic feasible solution x that is totally fractional (i.e. 0 < x < 1) there is a collection of
m = |E| tight sets L s.t.

1. L is Laminar.

2. characteristic vectors of δ(S) (S ∈ L) are linearly independent.

To prove this lemma we need to prove some other statements first. Let x be a basic feasible solution and τ be
a collection of m tight constraints corresponding to this solution. (note that they are all linearly independent)

Definition 8 Span of τ is the vector space generated by these m linearly independent vectors, i.e. {χδ(S) : S ∈
τ}. So, we will have span(τ) = R

m

Let L be a maximal laminar family that is a subset of τ . If |L| = m then we have what we need in Lemma 8.
Otherwise, we show there is a tight set S which can be added to L while increasing the span of L and keeping
it Laminar.

Lemma 9 Let τ be a collection of m tight constraints corresponding to basic feasible solution and they are all
linearly independent. If A,B ∈ τ and are crossing (tight and linearly independent), then one of following two
holds:

1. A ∪B and A ∩B are tight and χ(δ(A)) + χ(δ(B)) = χ(δ(A ∩B)) + χ(δ(A ∩B))

2. A−B and B −A are tight and χ(δ(A)) + χ(δ(B)) = χ(δ(A−B)) + χ(δ(B −A))

Remark: This lemma can be used to uncross two sets A and B that cross by replacing them with A ∪ B and
A ∩B or A−B and B −A.

Proof. We know that f is weakly super-modular. Suppose that the second condition holds: f(A) + f(B) ≤
f(A−B) + f(B −A) (the proof when the first condition holds is similar). Because A,B ∈ T both are tight we
must have x(δ(A)) = f(A) and x(δ(B)) = f(B).

So x(δ(A)) + x(δ(B)) = f(A) + f(B) ≤ f(A− B) + f(B − A). Because x is feasible x(δ(A −B)) ≥ f(A − B)
and x(δ(B −A)) ≥ f(B −A); thus x(δ(A −B)) + x(δ(B −A)) ≥ f(A−B) + f(B −A). Combining these two
yields x(δ(A)) + x(δ(B)) ≤ x(δ(A −B)) + x(δ(B −A)).

We show that this holds with equality by the same technique as Lemma 4. Consider the four edge types in
Figure 15.2. Edge e3 contributes twice to the left hand side but edges e1, e2 and e4 contribute equally to both
sides. Therefore the inequality holds in other direction too; so we must have equality.

Because this holds with equality and we also have x(δ(A − B)) ≥ f(A − B) and x(δ(B − A)) ≥ f(B − A)
(because x is a feasible solution) we must have x(δ(A − B)) = f(A − B) and x(δ(B − A)) = f(B − A). Also,
there is only one type of edge, namely e3 in the figure, that does not contribute to both sides equally; since we
have x(δ(A)) + x(δ(B)) = x(δ(A − B)) + x(δ(B − A)), these edges must have value 0, i.e. don’t exist. Thus
χ(δ(A)) + χδ(B) = χδ(A−B) + χδ(B−A), as wanted.

Lecture 15&16: Iterative Rounding 15-9

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

R2
R

1

S

B

C

D

A

Figure 15.4: Diferent type of edges between R1 and R2.

We now return to prove lemma 8.

Proof. for Lemma 8

Assume |L| < m. There must be a tight set S s.t. χδ(S) ∈ span(τ) but χδ(S) /∈ span(L). Pick such S that
crosses the fewest number of sets in L. Suppose that S crosses S′ ∈ L. Apply Lemma 9 to S, S′. Either S ∩ S′

and S ∪ S′ or S − S′ and S′ − S are tight and at least one of the following holds:

1. χδ(S) + χδ(S′) = χδ(S∪S′) + χδ(S∩S′)

2. χδ(S) + χδ(S′) = χδ(S−S′) + χδ(S′−S)

We know that S /∈ L and S′ ∈ L. If from the two situation mentioned above the first one is true, then at least
one of S ∪S′ and S ∪S′ are not in L and if the second statement is true, then at least one of S−S′ and S′−S
are not in L. In either case it is easy to show that for example S ∪ S′ /∈ L crosses fewer sets in L than S′.

Now we can prove the main lemma 7 by contradiction. We assume that for all e ∈ E, 0 < xe <
1

2
. At the end

we will get a contradiction to the fact that |L| = |E|. We will assign one token to each edge. So overall we will
have |E| number of tokens.

We will distribute the assigned tokens to each edge e = uv in a following way:

1. e will give xe tokens to a smallest set in L containing u and xe tokens to a smallest set in L containing v.

2. e will give 1− 2xe tokens to a smallest set in L containing both u and v.

Now to show that each set in laminar family get at least one token, we consider set S that contains two children
R1 and R2. Assume that we have four different type of edges between these sets which are shown in Figure
15.4.

By using the two rules that are mentioned earlier for distributing tokens, the total number of tokens that set S
will get is the following:

15-10 Lecture 15&16: Iterative Rounding

x(A) + x(B) + |B| − 2x(B) + |C| − 2x(C) ≥ 0

|C|+ |B|+ x(A) − 2x(C)− x(B) ≥ 0

Since this is the number of tokens that set S will get, the left hand side is an integer greater than or equal to
zero.

Also, we have the following tight constraints for R1, R2 and S.

x(δ(S)) = f(S)

−x(δ(R1)) = −f(R1)

−x(δ(R2)) = −f(R2)

We substitute the values for δ(S), δ(R1) and δ(R2) based on different types of edges A, B, C and D. Then we
sum up these 3 equality. As a result we get the following result:

x(δ(S))− x(δ(R1))− x(δ(R2)) =

x(D) + x(A)− x(C) − x(D) − x(B)− x(c) =

x(A)− 2x(C) − x(B) = f(s)− f(R1)− f(R2)

Recall that sets of L are linearly independent. So, the right hand side of last equality can not be zero. So,
x(A) − 2x(C)− x(B) is integer and is greater than 0 which means that each set will get at least one token.

The size of laminar family is L and we had |E| number of tokens. If each set receives at least one token it means
that |L| ≤ |E|. Now we need to show that some extra tokens left that we did not assign them to any set.

Assume that S being the maximal set in L. Recall that L does not contain V because L is a family of tight sets.
Since graph is connected there is an edge e1 coming out of set S. But there isn’t any set in L that contains the
whole of edge e1. So, edge e1 cannot give any sets in L, 1− 2xe tokens. So, there are some tokens left that are

unaccounted for unless xe =
1

2
. But we assumed that ∀e ∈ E, 0 < xe <

1

2
.

Hence, the equality does not hold and |L| < |E| which contradicts Lemma 8. This proves Lemma 7.

