
CMPUT 675: Approximation Algorithms Fall 2015

Lecture 9 (Sept 29, 2015): Primal/Dual for Steiner Forest
Lecturer: Mohammad R. Salavatipour Scribe: Dean Koch

9.1 Primal-Dual Method

Recall our formulation of the primal and dual LP problems: Given vectors c = (c1, c2, ..., cn), b = (b1, b2, ..., bm),
and an m× n matrix A, we seek solutions x = (x1, x2, ..., xn), y = (y1, y2, ..., ym) satistfying:

Primal

min
x
{c · x}

such that Ax ≥ b

Dual

max
y
{b · y}

such that Āy ≤ c

By the LP duality theorem, a finite optimum, x∗, for the primal implies the existence of a finite optimum, y∗,
for the dual (and vice versa), and at these solutions the objective functions are equal: c · x∗ = b · y∗. For such
solutions, we also have the complementary slackness property:

Primal slackness condition

for i = 1, ...n

either x∗i = 0 or

m∑
j=1

aijy
∗
j = ci (9.1)

Dual slackness condition

for j = 1, ...m

either y∗j = 0 or

n∑
i=1

aijx
∗
i = bj (9.2)

If a relaxed version of these slackness conditions can be shown to hold for feasible solutions x and y (not
necessarily optimal), a bound on the value of the objective for the optimal solution will result

Lemma 1 Fix any α > 0 and β > 0 for which αβ > 1. If, for feasible solutions x and y, the following relaxed
slackness conditions hold:

Relaxed primal slackness condition

for i = 1, ...n

ci
α
≤

m∑
j=1

aijyj ≤ ci (9.3)

Relaxed dual slackness condition

for j = 1, ...m

bj ≤
n∑
i=1

aijxi ≤ βbj (9.4)

then it follows that
∑n
i=1 cjxj ≤ αβ

∑m
j=1 bjyj

Proof. For each i = 1, ...n multiply the relaxed primal slackness condition by αxi, yielding n inequalities. Sum
together all of these to obtain:

9-1

9-2 Lecture 9: Primal/Dual for Steiner Forest

n∑
i=1

cixi ≤
n∑
i=1

 m∑
j=1

aijyj

xi

 ≤ α n∑
i=1

cixi

Similarly, for each j = 1, ...m multiply the relaxed dual slackness condition by αyj , to get m inequalities, the
sum of which is:

α

m∑
j=1

bjyj ≤
m∑
j=1

((
n∑
i=1

aijxi

)
yj

)
≤ αβ

m∑
j=1

bjyj

In both cases, the order of summation in the double sum can be exchanged to show that the middle term of
each chain of inequalities is identical.

Notice that if a finite optimal solution x∗ exists for the primal, then we can use Lemma 1 and the LP duality
theorem to bound the value of its objective function:

n∑
i=1

cjxj ≤ c · x∗ = b · y∗ ≤
m∑
j=1

bjyj ≤ αβ
m∑
j=1

bjyj (9.5)

9.1.1 Approximation using primal-dual

We can sometimes use the relaxed complementary slackness conditions to build an approximation scheme. The
general idea is:

1. Start with an infeasible primal and a feasible (but non-optimal) dual (e.g. x = y = 0)

2. Iteratively improve the feasibility of the primal, and optimality of the dual (always maintaining its feasi-
bility)

3. Once a dual variable goes tight (i.e. satisfying (9.2)), stop increasing it. Increase the variables in the
primal corresponding to tight dual constraints. Increase these only by integral amounts (to ensure an
integral solution)

4. Once the primal is feasible, use equation (9.5) to bound its error (no more than factor αβ)

It is not always clear when this strategy will work, but when it does, it often gives a nice and clean algorithm
that is usually efficient as well. A common example in textbooks is set cover. We will consider the more
interesting Steiner forest problem.

9.1.2 An example: Steiner forest

The generalized Steiner tree, or Steiner forest problem is the following:

Input: A graph G(V,E) with a cost function c : E → Q+ defined on the edges, and a disjoint collection of
subsets of V , say S1, S2, ...Sk ⊆ V

Lecture 9: Primal/Dual for Steiner Forest 9-3

Goal: Find a minimum cost subgraph in which each Si (i = 1...k) belongs to a connected component

In Figure 9.1, for example, we are given subsets S1 = {s, t} and S2 = {u, v} and must identify the minimum
cost Steiner tree(s) needed to (individually) interconnect both S1 and S2. A feasible solution is highlighted.

u v

ts

a b

6

16

21

6

12

19

20

12

Figure 9.1: Example Steiner forest problem. A feasible solution is indicated by the bolded edges

9.1.3 LP formulation of Steiner forest

We can rephrase the Steiner forest problem with the requirement of pairwise connectivity of all pairs within
each of the sets Si (i = 1...k). First, some definitions:

connecting requirement, r, is defined on all vertex pairs u, v of V :

r(u, v) :=

{
1 if u, v ∈ Si for any i = 1...k

0 otherwise

cut δ, for a given set S ⊆ V , is the set of edges having one end in S and one end outside S:

δ(S) := {e = (u, v)|u ∈ S, v /∈ S}

function f(S) indicates whether, in the cut of S, we separate a vertex pair that must be connected:

f(S) :=

{
1 if ∃(u, v) with u ∈ S, v /∈ S such that r(u, v) = 1

0 otherwise

indicator variable, x = (x1, x2, ...x|E|), to indicate edges picked for our solution:

xe :=

{
1 if edge e is picked for our solution

0 otherwise

9-4 Lecture 9: Primal/Dual for Steiner Forest

Now we can define the LP problem:

Primal for Steiner forest

min
x

{∑
e∈E

cexe

}
s.t. ∀S ⊆ V

∑
e∈δ(S)

xe ≥ f(S) (9.6)

Dual for Steiner forest

max
y

∑
S⊆V

f(S)ys

s.t. ∀e ∈ E :

∑
S|e∈δ(S)

yS ≤ ce (9.7)

If the condition (9.7) holds with equality for a given edge, we say that the edge has gone tight. We now consider
an algorithm following the guidelines in 9.1.1. Note that we may start with x = y = 0, since this is a feasible
solution for the dual. We then integrally raise the variables until the primal is feasbile.

The idea is to raise the yS values simultaneously until an edge e goes tight, then set xe = 1 (picking this edge
to include in our solution). We then freeze the corresponding yS values, and repeat (with a reduced number of
free yS variables). The challenge is to narrow down the number of sets S that must be considered (since this
could be exponential at the beginning).

As a first step, consider that, in the interest of satisfying constraint (9.6), we need only increase the yS values
for which f(S) = 1 (since our solution x has no negative components, if f(S) = 0, then (9.6) is always trivially
satisfied). Define the degree of set S to be the number of picked edges crossing cut (S, S)

Primal: For each e ∈ E, xe 6= 0⇒
∑

S:e∈δ(S)
ys = ce. Equivalently, every picked edge must be tight

Relaxed dual conditions: The following relaxation of the dual conditions would have led to a factor 2
algorithm: for each S ⊆ V, ys 6= 0 ⇒

∑
e:e∈δ(s)

xe ≤ 2f(S), i.e., every raised cut has degree at most

2. However, we do not know how to ensure this condition. But we can still obtain a 2-approximation
algorithm by relaxing this conidition further.

We will see that in fact only a subset of these yS must be incremented at each step. To make this concrete, two
more definitions are necessary. If S ⊆ V , we say:

Definition 1 • S is unsatisfied if f(S) = 1 and no edges from δ(S) have been picked yet

• S is active if it is a minimal (inclusion-wise) unsatisfied set

9.1.4 Formal definition and analysis of the algorithm

Lemma 2 Set S is active if and only if it is a connected component in the currently picked forest, and f(S) = 1.

Proof. Let S be an active set and suppose that S comprises a part (but not all) of a connected component of
F . Then there exists an edge from S to F − S. Since this edge belongs to δ(S), and has been picked, then S is
satisfied by definition and therefore cannot be active (contradiction).

Now suppose S is active and contains multiple connected components. Since f(S) = 1, one of these components
must contain a vertex in one of the Si (i = 1...k). But then this component, on its own, is unsatisfied,
contradicting minimality.

Lecture 9: Primal/Dual for Steiner Forest 9-5

Steiner Forest Primal-Dual Algorithm

Input: Graph G = (V,E), subsets Si, i = 1...k and a cost ce ∈ Q+ for each edge
Output: A minimum cost subgraph G′ ⊆ G such that ∀u, v ∈ Si (i = 1...k), u is connected to v
1. F ← ∅
2. yS ← 0, ∀S ⊆ V
3. while ∃S ⊆ V which is unsatisfied, do
4. For each active S, simulataneously raise yS until an edge e goes tight
5. F ← F ∪ {e}
6. F ′ ← {e ∈ F |F − e is infeasible}
7. return F ′

Figure 9.2: Algorithm Primal-Dual

For the reverse implication, we simply assume that S is a connected component of F with f(S) = 1. Since it is
connected in F , no chosen edge can leave S (i.e. no edge in δ(S) is picked). For the same reason, it is minimal,
for any subset would exclude an edge in F and thus contribute a chosen edge to δ(S). Therefore, S must be
active.

9.1.5 An example to visualize the algorithm

Figure 9.1 shows a sample run of the algorithm. Suppose we have two disjoint subsets S1 = {u, v} and
S2 = {s, t}. At the beginning of the algorithm, {u}, {v}, {s}, {t} are four active sets, each of which contains one
vertex only. The algorithm raises their yS values simultaneously, and stops at the value of 6 when edge ua and
bv become tight. One of them, say ua is picked, and the iteration ends. In the second iteration, {u, a} replaces
{u} as an active set and the algorithm finds already tight edge bv. Then algorithm updates active sets and raise
value of their variables, and continues. The next edge to go tight is us when set {u, a} has value 2 and {s} has
value 8; the two sets merge into one active set. next bt goes tight when {b, v} has value e and {t} has value 9.
At this point set {u, s, a} has value 1. Finally edge uv goes tight. Figure below shows the final result of running
the algorithm. In this figure, active sets are shown with a closed area containing them and the final value of
their variables are depicted beside the boundary of these closed areas. The bold edges are the edges added to
F in the loop. At the end, all edges in F except the redundant edge ua are added to F ′ and returned.

9.1.6 analysis continued: runtime, feasibility, and approximation ratio

Lemma 3 Algorithm 9.2 completes in polynomial time.

Proof. Since we add an edge in every iteration of the while loop, the total number of iterations is at most
|V | − 1. In each iteration we simply identify all the connected components of the subgraph, F (which can be
done in polynomial time), and check whether f(S) = 1 for each of these. Then by Lemma 2, we have identified
all active sets. Noting that since the existence of an active set implies the existence of an unsatisfied set, we
have evaluated the condition of the loop in this process. Thus the loop completes in polynomial time.

The last step of the algorithm checks if edges can be deleted to yield a feasible solution. Since F is a tree, this
amounts to asking if the edge lies on the path between any two vertices in the same Si subset. This can also be
implemeneted in polynomial time.

Therefore the algorithm completes in polynomial time.

9-6 Lecture 9: Primal/Dual for Steiner Forest

vu

a

s

b

t

20

16

6 6

19

12 12

6
2

2

8

6

1
3

9

Figure 9.1: A sample run of algorithm Steiner-Forest(G,S).

Lemma 4 Algorithm 9.2 yields feasible primal and dual solutions.

Proof. The dual condition (9.7) can never be violated, since we begin with y = 0 (feasible) and we freeze the
values of the yS variables as soon as an edge becomes tight (i.e., once (9.7) holds with equality, the sum on the
left hand side can no longer increase). As for the primal, consider that as long as an active set exists we keep
iterating. This means that once the algorithm terminates, there are no active sets. i.e. whenever f(S) = 1, we
have at least once edge in δ(S) selected, and thus the sum in (9.6) is no smaller than 1. Therefore the primal
solution is feasible.

For the next lemma, we require a definition:

Define the degree in F ′ of any subset S ⊆ V by:

degF ′(S) = the number of edges of δ(S) in F ′

Lemma 5 Let C be any connected component with respect to the selected edges F (in the current iteration of
algorithm 9.2). If f(C) = 0 then degF ′(C) 6= 1

Proof. Suppose f(C) = 0 and degF ′(C) = 1, and denote by e the edge that leaves C to connect with a vertex
in F ′\C. Since e was not removed in the pruning step of the algorithm, there must be some vertex pair (u, v)
for which their connecting path includes e. Furthermore, since e is the only edge connecting C to F ′\C, it must
be that case that one of u, v lies in C and the other does not. However, since we must also have r(u, v) = 1,
then by definition f(C) = 1, contradicting our assumption.

Lemma 6 For any primal and dual solution computed by algorithm 9.2,∑
e∈F ′

ce ≤ 2
∑
S⊆V

yS (9.8)

Lecture 9: Primal/Dual for Steiner Forest 9-7

Proof. First note that since an edge is added to F ′ only when it is tight, we have:

∑
e∈F ′

ce =
∑
e∈F ′

∑
S|e∈δ(S)

yS

=
∑
S⊆V

∑
S|e∈δ(S)∩F ′

yS

=
∑
S⊆V

degF ′(S)yS (9.9)

We can break this sum into pieces by observing that the yS values were increased from their starting value of
zero in stages; consider only the increment ∆i made to the yS values in the ith iteration of the algorithm. This
increment applied only to the active sets, and contributed the following quantity to the sum in (9.9):

∆i

∑
S active at step i

degF ′(S)

Now consider the connected components of F in this iteration. Suppose we coalesce each component into a
single node. We may then connect these coalesced nodes together, by adding edges that appear in subsequent
iterations (and are not pruned at the end). This generates a new graph H ′ (see Figure 9.3) in which the node
corresponding to active set S has degree degF ′(S).

If we delete all isolated nodes from H ′, then what remains is a tree, which has average degree no more than 2.
Thus:

∑
S active at step i

degF ′(S) ≤ 2× {# of nodes in H ′} = 2× {# of active sets in step i}

Applying this result to (9.9), we have:

∑
e∈F ′

ce =
∑
S⊆V

degF ′(S)yS

=
∑
i

∆i

 ∑
S active at step i

degF ′(S)

≤
∑
i

∆i (2× {# of active sets in step i})

= 2
∑
i

∆i {# of active sets in step i}

= 2
∑
S⊆V

yS

At last, we conclude that the value of the objective for the primal is no more than twice that of the dual. Since
the optimal lies in between these values, we conclude that algorithm 9.2 is a 2-approximation.

9-8 Lecture 9: Primal/Dual for Steiner Forest

Figure 9.3: Illustration of how connected components of F are grouped together into vertices (large circles) of
the new graph H ′, which inherits edges (bolded edges, added in subsequent iterations) in F ′, forming a forest.
We delete isolated nodes, and obtain a tree with average degree at most 2.

