
CMPUT 675: Approximation Algorithms Fall 2015

Lecture 6 (Sep 17, 2015): Max SAT
Lecturer: Mohammad R. Salavatipour Scribe: Samuel Fischer

6.1 Max SAT (Continuation)

6.1.1 Derandomizing the ”random assignment using a fair coin”-algorithm

Last lecture we saw that randomly assigning true/false values (using a fair coin) to the variables in the Max
SAT problem yields a 1

2 -approximation. Recall that we named this algorithm Max SAT 1.

This algorithm can be derandomized using the method of conditional expectation.

Lemma 1 Suppose we have assigned the first i boolean variables x1 = a1, . . . , xi = ai. Then we can compute
the expected value of solution in polynomial time.

Proof. Observe that we can calculate the expectation of W conditioned on any partial set of assignments
to the variables if a literal is false, then remove it from all the clauses in which it appears; if it is true, then
ignore the clauses which contain it, as they are already satisfied. Then the conditional expectation of W is the
unconditioned expectation of W in the reduced set of clauses plus the weight of the already satisfied clauses.
Thus let f ′ be the formula over variables xi+1, . . . , xn obtained from original formula f by substituting values
of x1, . . . , xi and simply we can compute the expected value of f ′.

This lemma suggests the following simple algorithm.

Algorithm 1 Derandomized Max SAT 1 with conditional expectation

• Consider the variables in arbitrary order.

• Whenever we consider a variable, consider assigning True and False to it and compute the respective
expected values, if all the not yet considered variables were assigned randomly.

• Choose that boolean value for the current variable that led to the greater expected value.

• Proceed until all variables have been regarded.

To see why this algorithm returns a solution that is as good as the expected value of the randomized algorithm
Consider x1. For each of the two assignment of x1 = T or F , we compute the expected value of the solution. If
E [W |x1 = T] > E [W |x1 = F], then we assign x1 = T , otherwise, x1 = F . Now set x1 = τ as above and write
the expected value of W as a weighted average of conditional expectations.

E[W] = E [W |x1 = T]Pr(x1 = T) + E [W |x1 = F]Pr(x1 = F)

=
1

2
(E [W |x1 = T] + E [W |x1 = F])

Then we have E [W |x1 = τ] ≥ E[W] ≥ 1
2OPT So if we go through all the variables and always choose the

assignment that gives a larger expected W , eventually we will find some assignment to all the variables such
that the value of W is at least OPT

2 .

6-1

6-2 Lecture 6: Max SAT

6.1.2 Random assignment using a biased coin

As a pre-stage to a more sophisticated approximation algorithm let us consider a simplified version of the
problem. Suppose that all literals of size 1 appear in positive form. Unless a variable appears in a size-1-clause
in positive as well as in an other one in negative form, we can do this assumption without loss of generality.

We will see that a slightly altered form of algorithm 1 leads to better results.

Algorithm 2 (Max SAT 2) Random assignment with bias

• Randomly assign truth values to the variables as we did in algorithm 1. However, let the probability for
True be p > 1

2 .

Lemma 2 In the results of Max SAT 2, it is P[cj is satisfied] ≥ min
(
p, 1− p2

)
.

Proof. We perform a case-by-case analysis:

• If |cj | = 1, then P[cj is satisfied] = p. This is true, because the only literal in the clause appears in positive
form.

• If |cj | ≥ 2, then P[cj is satisfied] = 1 − pα (1− p)β ≥ 1 − pα+β ≥ 1 − p2, whereby α is the number of
positive literals in cj and β the respective number of negative literals. For the first inequality we used
that 1− p < p and for the second that α+ β = |cj | ≥ 2.

The desired statement follows directly from the above observations.

Claim 1 Algorithm Max SAT 2 is a 0.618-approximation for the simplified maximum satisfiability problem.

Proof. We have to choose the parameter p such that the probability that a clause is satisfied is maximized.
That is, we want to find popt := arg max

p

(
min

{
p, 1− p2

})
.

In the domain [0, 1] it is f1(p) := p strongly monotonously increasing and f2(p) := 1−p2 strongly monotonously
decreasing. Therefore, the value popt, in which the minimum of the two functions is maximized, is at the
intersection of f1 and f2

1.

Solving p = 1 − p2 leads to p = popt = 1+
√
5

2 ≈ 0.618. Using this result, we can calculate the expected total
weight obtained using the Max SAT 2 algorithm:

E[w] =
∑
j

wj · P[cj is satisfied] ≥ popt opt.

However, these finding apply only to our simplified version of the Max SAT problem. What happens, if a
variable xi appears in pure and negated form in two 1-literal-clauses? That is, what if there are k and l such
that ck = xi and cl = x̄i?

1This statement can easily be shown: Choose popt such that f1(popt) = f2(popt). For all p < popt it is f1(p) < f1(popt) and for
all p > popt it is f2(p) < f2(popt). Thus, min(f1(p), f2(p)) is maximized at popt.

Lecture 6: Max SAT 6-3

Claim 2 Algorithm Max SAT 2 is also a 0.618-approximation for the general maximum satisfiability problem.

Proof. Suppose without loss of generality that for all k and l with ck = xi and cl = x̄i for some i it is
wk ≥ wl. Let us furthermore call the set of indices of 1-literal-clauses in which a variable appears in negative
form N := {j : ∃ i s.t. cj = {x̄i}}.

In the best case, all clauses with more than 1 literal are satisfied. Then it is of course optimal to choose always
those 1-literal-clauses in which the variable is positive. Hence,

∑
j

wj −
∑
j∈N

wj ≥ opt.

With the Max SAT 2 algorithm we obtain

E[w] ≥ popt
∑
j /∈N

wj

= popt

∑
j

wj −
∑
j∈N

wj


≥ popt · opt.

6.1.3 LP-rounding algorithm for Max SAT

We can find an even better approximation using LP-rounding. In preparation of this approach let us recall the
definition

zj :=

{
1 if clause cj is satisfied

0 else

for all clauses cj . Furthermore, let Pj the set of all positive literals in a clause cj and Nj the set of the respective
negative literals. Finally, remember that we defined for all variables xj

yj :=

{
1 if xj is True

0 else.

The Max SAT problem is equivalent to maximizing
∑
j

wjzj under the constraint that for all j it is
∑
i∈Pj

yi +∑
i∈Nj

(1− yi) ≥ zi. The constraint ensures that each satisfied clause contains a literal that is True.

To transform this problem into a linear programming problem, we relax the constraints for yj and zj such that
they can take all values in [0, 1]. That way, we can formulate the algorithm with LP-rounding:

6-4 Lecture 6: Max SAT

Algorithm 3 (Max SAT 3) LP-rounding

• Solve the linear program formulated above and let (y∗, z∗) be the obtained optimal solution.

• Set xi = True with probability y∗i .

Theorem 1 (Goemans & Williamson ’94) Algorithm Max SAT 3 is a
(
1− 1

e

)
-approximation for the Max

SAT problem.

Proof. We will prove this theorem in multiple steps. First of all, we recall a theorem from calculus:

Lemma 3 Let a1, . . . ak be non-negative numbers. Their arithmetic mean is greater or equal to the geometric
mean:

1

k

k∑
i=1

ai ≥ k

√√√√ k∏
i=1

ak .

Next, we do an observation regarding concave functions:

Lemma 4 Suppose f(x) is a function with f(0) = 0 and f(1) = α, which is concave in [0, 1]. Then f is lower
bounded by a line going through the origin and (1, α).

Proof. This follows directly from the definition of concavity. In addition, figure 6.1 allows to understand the
statement visually and intuitively.

Now we use lemmas 3 and 4 to find a lower bound for the probability that a clause is satisfied:

Lemma 5 For any clause cj let k := |cj |. Then, P[cj is satisfied] ≥
(

1−
(
1− 1

k

)k)
z∗j .

0 1

fα

f (x)

x

Figure 6.1: Concave function with f(0) = 0 and f(1) = α. Obviously, the straight line between (0, 0) and (1, α)
is a lower bound for the function in [0, 1].

Lecture 6: Max SAT 6-5

Proof. The probability that a clause is satisfied is one minus the probability that no literal is true:

P[cj is satisfied] = 1−
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

= 1−


k

√∏
i∈Pj

(1− y∗i)

k
k

√∏
i∈Nj

y∗i

k

lemma 3
≥ 1−

1

k

∑
i∈Pj

(1− y∗i) +
1

k

∑
i∈Nj

y∗i

k

|Pj |+|Nj |=k
= 1−

1− 1

k

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

k

constr. for zj
≥ 1−

(
1−

z∗j
k

)k
≥ 1−

(
1− 1

k

)k
z∗j

and the lemma is proven. For the last inequality we used lemma 4: Let g(z) := 1 −
(

1− z∗j
k

)k
. Clearly, it is

g(0) = 0 and g(1) = 1 −
(
1− 1

k

)k
. Furthermore, g′′(z) = 1−k

k

(
1− z

k

)k−2 ≤ 0 ∀ z ∈ [0, 1] , if k ≥ 1. That is, g

is concave in [0, 1]. Therefore, the line 1−
(
1− 1

k

)k
z∗j is a lower bound for g in the interval [0, 1].

With lemma 5 we can easily compute the expected value of the result of algorithm Max SAT 3:

E[w] =
∑
j

wjP[cj is satisfied]

lemma 5
≥

∑
j

wjz
∗
j

(
1−

(
1− 1

k

)k)

≥ opt

(
1− 1

e

)

For the last inequality we used that
∑
j

wjz
∗
j ≥ opt and that

(
1− 1

k

)k ≤ 1
e . The latter fact holds true, because(

1− 1
k

)k
is a monotonic increasing function in k and lim

k→∞

(
1− 1

k

)k
= 1

e (here: without proof). A plot of the

function can be seen in figure 6.2.

Hence, algorithm Max SAT 3 is a
(
1− 1

e

)
-approximation for the Max SAT problem.

Note that
(
1− 1

e

)
≈ 0.632 and therefore algorithm Max SAT 3 slightly better than Max SAT 2.

Remark 1 Algorithm Max SAT 3 can be derandomized using conditional expectation.

Remark 2 If all clauses are small, this algorithm returns a better result than
(
1− 1

e

)
.

6-6 Lecture 6: Max SAT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14 16 18 20

k

f(k)

Figure 6.2: The function f(k) :=
(
1− 1

k

)k
(blue) and the constant 1

e (red line) that f approaches.

6.1.4 Combining the algorithms for an even better approximation

We have seen that algorithm Max SAT 3 works better, if the clauses are small, while algorithm Max SAT 1
works better with large clauses. This is a fact that we can take advantage on, if we combine the two algorithms:

Algorithm 4 (Max SAT 4) Combination of unbiased random assignment and LP-rounding

• Choose randomly either algorithm Max SAT 1 or Max SAT 3 with probability 1
2 , respectively.

• Apply the chosen algorithm to the problem.

Theorem 2 Algorithm Max SAT 4 is a 3
4 -approximation for the Max SAT problem.

Proof. Define

a :=

{
1 if we chose algorithm Max SAT 1

0 else.

Lecture 6: Max SAT 6-7

Let again k := |cj | be the number of literals in cj and vj := wjzj be the weight contribution of clause cj to our
solution. The expected weight contribution of a clause is given by

E[vi] =
1

2
E[vj | a = 0] +

1

2
E[vj | a = 1]

=
wj
2

(P[cj is satisfied | a = 0] + P[cj is satisfied | a = 1])

≥ wj
2

((
1− 1

2k

)
+

(
1−

(
1− 1

k

)k)
z∗j

)
0≤zi≤1
≥

wjz
∗
j

2

(
1− 1

2k
+ 1−

(
1− 1

k

)k)

≥ 3

4
wjz

∗
j .

For the first inequality we used our observations regarding the Max SAT 1 algorithm from the last lecture and

lemma 5. To show the last inequality we regard the function f(k) := 2− 1
2k
−
(
1− 1

k

)k
. Simply calculating the

respective values shows that f(1) = f(2) = 3
2 . Furthermore, 1

2k
≤ 1

8 for k ≥ 3 and as we noted already above(
1− 1

k

)k ≤ 1
e . Therefore, since 2− 1

8 −
1
e >

3
2 , it is f(k) ≥ 3

2 for all k ≥ 1. Moreover, a simple curve sketching
could show us that f(k) ≥ 2− 1

e ≈ 1.632 for k ≥ 5.

The expected value for our solution is therefore

E[w] = E[
∑
j

vj]

=
∑
j

E[vj]

≥
∑
j

3

4
wjz

∗
j

≥ 3

4
opt.

Claim 3 Our analysis of algorithm Max SAT is tight. That is, we cannot find a better lower bound than 3
4opt

for the expected value of our result.

Proof. Suppose we are given the CNF

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

and the weight of all clauses is 1. Clearly, at most 3 of the clauses can be satisfied, i.e. opt = 3. On the other
hand, choosing yi = 1

2 and zi = 1 for i ∈ {1, 2} satisfies all LP constraints and leads to an LP solution with
total weight 4. Hence, the integrality gap is at least 4

3 which is equivalent to the statement we want to show.

The best approximation for Max SAT that is currently known uses semi-definite programming to get to a
0.7968-approximation. For the special case Max E 3 SAT, in which each clause has exactly 3 literals, algorithm
Max SAT 1 returns a 7

8 -approximation. [H01] showed that a better approximation algorithm cannot be found
for this problem, unless P = NP . Since Max E 3 SAT is a special case of Max SAT, 7

8 is also an upper bound
for Max SAT approximations.

6-8 Lecture 6: Max SAT

6.2 The uncapacitated facility location problem

A prominent and well-studied problem in computer science is the facility location problem. It addresses the
question where to open facilities in order to serve the demand in an optimal way (see figure 6.3).

Uncapacitated facility location problem:

• Input:

– A set D of demand points (clients) along with their respective demands dj for all j ∈ D. The demand
can be thought of as a measure of how many clients a demand point holds. Note, however, that we
use the word ”client” as synonym for ”demand point”, rather than as a unit of demand.

– A set F of facilities among with their respective opening costs fi for all i ∈ F .

– The distance cij from any client j ∈ D to any facility i ∈ F . The distances must be given as costs to
get from j to i and be metric, that is ∀ i, j, k ∈ F ×D it is cij + cjk ≥ cik and cij ≥ 0.

• Goal: Find a subset F ′ ⊆ F and a mapping M : D → F ′, j 7→M(j) that assigns each client to exactly
one facility in F ′ such that the total costs

∑
i∈F ′

fi+
∑
j∈D

cM(j)j are minimized. Note: M will map each client

to its closest open facility.

Special cases of the problem are given if F = D or dj = 1 ∀ j ∈ D.

6.2.1 Formulation as integer program

In order to find an approximate solution to the facility location problem using linear programming, we have to
formulate the problem as a linear program first. Let us set

xij :=

{
1 if client j is served at facility i

0 else

and

yi :=

{
1 if facility i is open

0 else.

Legend:

Closed facility

Open facility

Demand point

Figure 6.3: Visualization of the facility location problem. A subset of the facilities (squares) has to be opened
such that all clients (small circles) can be assigned to respectively one opened facility (grey square) with
minimized costs for open facilities and travel to facilities.

Lecture 6: Max SAT 6-9

We want to minimize the sum of the total opening costs and the costs clients have to pay to get to their
respective facilities. That is, we desire to find

min

∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij

 .

Thereby, each client must be served by at least one facility. That is,

∀ j ∈ D :
∑
i∈F

xij ≥ 1

Furthermore, a client j can only be served at facility i is open, that is,

∀ i ∈ F, j ∈ D : xij ≤ yi.

As we switch from an integer- to a linear program, we will allow all positive values for all xij and yj :

∀ i ∈ F, j ∈ D : xij , yj ≥ 0.

