
CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2015

Lecture 4: September 10, 2015
Lecturer: Mohammad R. Salavatipour Scribe: Nadia Ady

4.1 Recall: Set Cover via Randomized Rounding

In our last lecture, we introduced an approximation algorithm for Set Cover using Randomized Rounding.

4.1.1 Randomized Rounding

SC-Rand-Rounding

1 let x∗ be an optimum LP solution for Set Cover
2 Ci ← ∅ for 1 ≤ i ≤ α log n
3 for i← 1 to α log n
4 do for each s ∈ S
5 do add s to Ci with probability x∗s
6 return

⋃
Ci

For one round of the outer for-loop in lines 3-5,

E[cost(C)] =

n∑
i=1

c(Si) · Pr[Si is chosen] (4.1)

=

n∑
i=1

x∗Si
· c(Si) (4.2)

= OPTLP (4.3)

This implies that the total cost ∼ O(log n ·OPTLP).

Lemma 4.1 If we choose α large enough that eα logn ≤ 1
4n , then the probability that there is some uncovered

element is at most 1
4 .

Proof: Let α be large enough that eα logn ≤ 1
4n . Consider an arbitrary element ej and suppose it belongs to k

sets S1, ..., Sk. Since we are starting with a feasible solution, we have x∗1 + x∗2 + ...+ x∗k ≥ 1.

The probability that ej is covered in a single iteration of the loop is:

Pr[ej is covered] = 1−
k∏
l=1

(
1− x∗Sl

)
(4.4)

It is a straightforward exercise to show that the worst case occurs (ie. the probability that no s ∈ S will be
selected in the iteration is highest) when x∗Sl

= 1
k for 1 ≤ l ≤ k. In this case,

Pr[ej 6∈ Ci] ≤
(

1− 1

k

)k
≤ e−1 (4.5)

4-1

4-2 Lecture 4: September 10, 2015

The probability that ej is not covered after α log n iterations is:

Pr[ej is not covered at the end] ≤ e−α logn ≤ 1

4n
(4.6)

=⇒ Pr[there is some uncovered element] ≤ 1

4
(4.7)

Lemma 4.2 The probability that the cost of the collection C is at least 4 log n ·OPTLP is less than 1
4 .

Proof: We recall Markov’s inequality.

Pr[x > t] ≤ E[x]

t

From the equality in equation 4.1, this implies that

Pr[cost(C) > 4 log n ·OPTLP] ≤ 1

4
(4.8)

By combining the results of the preceding two lemmas we can see that, with probability at least 1
2 , we will have

a solution where each ej is covered by an element in C (the solution is feasible) and the total cost is at most
O(log n ·OPTLP). To increase this probability, it is sufficient to increase the number of iterations.

4.2 Polynomial-time Approximation Schemes (PTAS)

For any fixed ε > 0, a PTAS provides a (1 + ε)-approximation with time polynomial in n.
Similarly, for any fixed ε > 0, an FPTAS provides a (1 + ε)-approximation with time polynomial in n and 1

ε .

4.2.1 Knapsack

In the Knapsack problem, our input is a collection of n items and a capacity. Item i has value vi ∈ Z+ and
weight wi ∈ Z+. Our knapsack has a capacity of B ∈ Z+. The optimization problem is to select a subset of
items which maximize the total value

∑n
i=1 vi subject to the constraint that the total weight must be at most

B (i.e.
∑n
i=1 wi ≤ B).

4.2.1.1 Natural Greedy Knapsack

The natural greedy algorithm is simply to sort the items by decreasing vi
wi

and pick the items in that order.
This algorithm is a 2-approximation.

Example 4.3

B = 20

v1 = 10,w1 = 10

v2 = 10,w2 = 10

v3 = 12,w3 = 11

Consider what happens when you multiply all of these values by 1
ε for ε arbitrarily close to zero.

Lecture 4: September 10, 2015 4-3

4.2.1.2 Dynamic Programming Knapsack

Say max1≤i≤n vi = V and assume that wi ≤ B for all 1 ≤ i ≤ n. Let us define for 1 ≤ i ≤ n and 0 ≤ v ≤ n · V :

A[i, v] =

{
the min weight of a packing using items 1, ..., i with total value v, or
∞ if there is no such solution

(4.9)

Our aim is to find the max v such that A[n, v] ≤ B.
Observe that, for each i, we either use item i or we don’t, so we can define A[v, i] recursively:

A[i, v] = min

{
A[i− 1, v],
A[i− 1, v − vi] + wi

(4.10)

DymProg-Knapsack

1 for i← 1 to n
2 do A[i, 0]← 0
3 for v ← 1 to n · V
4 do if v = v1
5 then A[1, v]← w1

6 else ∞
7 for i← 2 to n
8 do for v ← 1 to n · V
9 do A[i, v]← min{A[i− 1, v], A[i− 1, v − vi] + wi}

The running time of this algorithm is O(n2V). However, this is not polynomial in the size of the input because V
is not polynomial in size of the input. We need log V bits to represent V . We call this a pseudopolynomial -time
algorithm. However, this will lead us to an FPTAS for Knapsack:

1. Let k = εV
n and for 1 ≤ i ≤ n, let v′i =

⌊
vi
k

⌋
2. Run DymProg-Knapsack using input items 1, ..., n with each item i having weight wi but value v′i.

3. Let S′ be the solution returned.

4. Return S.

Theorem 4.4 This is an FPTAS for Knapsack.

Proof: Suppose S is an optimum solution and has value OPT.
Observe that for 1 ≤ i ≤ n,

kv′i ≤ vi ≤ k(v′i + 1) (4.11)

=⇒ OPT =
∑
i∈S

vi ≤ k
∑
i∈S

v′i + kn (4.12)

Notice that the value of S′ is optimum for v′i values.

our solution =
∑
i∈S′

v′i ≥
∑
i∈S

v′i (4.13)

4-4 Lecture 4: September 10, 2015

This implies that: ∑
i∈S′

vi ≥
∑
i∈S′

kv′i (4.14)

≥ k
∑
i∈S

v′i (4.15)

≥ OPT− nk (4.16)

≥ OPT− εV (4.17)

≥ (1− ε)OPT (4.18)

Most NP-complete problems are strongly NP-hard; that is, they don’t have pseudo-polytime algorithms.

Theorem 4.5 Suppose that π is an NP-hard minimization problem such that the objective function is always
integer on any instance I of π and OPT(I) < p(|Iu|) where p is some polynomial and |Iu| is the size of I
represented in unary. Then if π has an FPTAS then it is not strongly NP-hard.

Sketch of Proof: Let ε < 1
p(|Iu|) . Then the solution by an FPTAS has value at most

(1 + ε)OPT(I) < OPT(I) +
OPT(I)

p(|Iu|)
(4.19)

< OPT(I) and is an integer (4.20)

=⇒ = OPT(I) (4.21)

4.2.2 Bin-Packing

The one-dimensional bin-packing problem is as follows: Given an input set of items 1, .., n with each item i
having a size si ∈ (0, 1] ∩Q+, the goal is to pack the items into as few unit-sized bins as possible.

Theorem 4.6 There is no α-approximation for the bin-packing problem for any α < 3
2 unless P = NP .

Proof: Consider the Partition problem (which is NP-hard.)
Given set S = {S1, ..., Sn} ⊆ Z+, can we partition S into 2 sets A and B such that

∑
Si∈A Si =

∑
Sj∈B Sj?

Consider an instance I of the Partition problem normalized such that
∑
Si∈S Si = 2. We can, in polynomial

time, convert instance I into an instance I ′ of bin packing such that Si is the size of item i for 1 ≤ i ≤ n. If all
of the items from I ′ fit into 2 bins, then I ′ is a YES instance of Partition, otherwise it is a NO instance.

On the other hand, if we have a YES instance of Partition, I, then the corresponding instance of bin packing
has a solution using two bins following the rule that if Si is in A, it belongs in the first bin, and it belongs in
the second bin otherwise. Since A and B are of equal size (that is (2

2 = 1), we know that this is a valid bin
packing.

Notice that since
∑
Si∈S Si = 2, an optimum bin packing for I ′ requires at least two bins (i.e. OPT(I ′) ≥ 2).

If we had an α-approximation for some α < 3
2 , we could compute the cost of OPT, allowing us to solve the

Partition problem on I exactly, which cannot occur unless P = NP .

Lecture 4: September 10, 2015 4-5

4.2.2.1 First Fit (Greedy) Algorithm

FF-Bin-Packing

1 for i← 1 to n
2 do let j be the first bin into which you can fit item i.
3 put item i into bin j
4 return the used bins

Theorem 4.7 The cost of a first-fit solution is at most 2 ·OPT + 1.

Proof: Observe that the number of bins containing objects whose size sums to ≤ 1
2 is at most 1. This can

be seen by noting that if you have i < j such that both bin i and bin j are at most half full at termination
of the algorithm, then at the time items were put into bin j, there was enough room for them to fit in bin i,
contradicting our assumption that we followed the “first fit” policy. Therefore, if FF is the number of bins used
by (i.e. the cost of) a first-fit solution, then 1

2 (FF− 1) ≤
∑n
i=1 si.

It is clear that OPT ≥
∑n
i=1 si.

It follows that FF ≤ 2OPT + 1.

References

N3-13 M.R. Salavatipour (scribe: A. Arefi), Lecture 4, 5 (Sep 17, Sep 19, 2013): Set Cover, LP Duality,
0-1 Knapsack, University of Alberta CMPUT 675: Approximation Algorithms Course Notes, Fall 2013.
Retrieved from http://webdocs.cs.ualberta.ca/∼mreza/courses/Approx13/week3.pdf

N4-13 M.R. Salavatipour (scribe: R. Sivakumar), Lecture 6,7 (Sep 24 and 26, 2013): Bin Packing, Facility
Location, K-Center, University of Alberta CMPUT 675: Approximation Algorithms Course Notes, Fall
2013. Retrieved from http://webdocs.cs.ualberta.ca/∼mreza/courses/Approx13/week4.pdf

http://webdocs.cs.ualberta.ca/~mreza/courses/Approx13/week3.pdf
http://webdocs.cs.ualberta.ca/~mreza/courses/Approx13/week4.pdf

	Recall: Set Cover via Randomized Rounding
	Randomized Rounding

	Polynomial-time Approximation Schemes (PTAS)
	Knapsack
	Natural Greedy Knapsack
	Dynamic Programming Knapsack

	Bin-Packing
	First Fit (Greedy) Algorithm

