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17.1 Semidefinite Programming

Quadratic programming is concerned with optimizing a quadratic function of variables subject to quadratic
constraints. A quadratic program is strict if the objective function and each of the constraints consist only of
degree 0 or 2 monomials. Here we are concerned with a type of strict quadratic program called a semidefinite
program.

Definition 17.1 Let x € R"*™ be a symmetric n X n real matriz. We say that x is positive semidefinite (and
write x = 0) if a¥za > 0 for all a € R™.

Theorem 17.2 If x € R"*", the following are equivalent:

(a) x = 0.
(b) x has non-negative eigenvalues.
(c) x =vTv for some v € R™*™ with m > n.

(d) z=3%", Nw;wl for some A; >0 and w; € R™ with wlw; =1 and wlw; =0 fori # j.
In the following, let C, Dy, Do, ..., D € R™*™ be symmetric matrices and dy,ds, ..., dr € R be constants.

Definition 17.3 A semidefinite program is an optimization problem of the form

max / min Z Cijxij, x € R
1<i,5<n
subject to: Z Dl,ijxij =d;, foralll <I<Ek;
1<i,j<n
x>~ 0.

Using the notation A-B (for A, B € R"*") to mean tr(ATB) =", > AijBij, we can also write a semidefinite
program as

max /min C - x z € R™™,
subject to: Dy-x =d;, foralll <<k
z > 0.
If the matrices C' and Dy, Ds, ..., Dy are diagonal, then the above semidefinite program is a linear program.
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Definition 17.4 A vector program is an optimization problem of the form

max /min Y Ci;(5,7), Ty, T, ..., 0, € R
1<ij<n
subject to: Y Dy (U, ;) =di, for all 1 <1< k.
1<ij<n
The n vectors ¥, %2, ...,7, € R™ give n? variables, with Y;; = (7;,7;). The matrix Y is always positive

semidefinite.

Lemma 17.5 A vector program is equivalent to the corresponding semidefinite program defined by the matriz
Y as above.

Proof: Given a solution v1,0s, ..., U, € R™ to the vector program, let W € R™*" be defined as
W= |v1 Uy ... U,

and let x = WTW. By condition (c) of Theorem 17.2, x = 0, so it is a feasible solution to the semidefinite
program. Moreover, x;; = (U;,U;), so it has the same objective value.

The converse proof is left as an exercise. ]

For any given € > 0, we can find a solution to the semidefinite program with additive error €.

17.2 Max-Cut

Given an undirected graph G = (V, E) with weights w : E — Q*, the Max-Cut problem is to find a maximal
cut S:

where §(.5) is the set of edges with one vertex in S and the other not in S.

The randomized algorithm that independently picks each edge with probability 1/2 is a trivial 1/2-approximation
for this problem. To try to do better, consider the following integer program formulation:

o 1
maximize: 7 Z wij (1 — viy5), Yy €Z
(i,j)EE
subject to: yf =1, forallie F.

Since this is an integer program, the constraint ensures y; € {—1,1} for each i € E. A vector program relaxation
of this integer program is:

. 1 S, .
maximize: 3 Z w;; (1 — 7 - U), v; € R"
(i,J)€EE
subject to: v;-v; =1, forallie E.
Given a solution y to the integer program, setting ¥; = (y;,0,...,0) for each ¢ € V gives a feasible solution to

the vector program with the same objective value.
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17.2.1 Example

Figure 17.1a shows a cyclic graph G = (V, E) with 5 vertices. If each edge has weight 1, the maximum cut has
a value of OPTy¢c = 4. Figure 17.1b shows the vectors 91, ..., U5 that are the optimal solution to the above
vector program relaxation. The angle between ¢; and ; for any (i, ) € E is 47/2, so ¥; - U; = cos(4w/5). The
value of the vector program objective is therefore

5(1 — cos(47/2))
2
Any rounding procedure that produces an integer solution based on this vector program solution will therefore

incur an approximation ratio of at least OPTyc/Zyp =~ 0.885. With a good rounding strategy, we could do
better than the naive randomized algorithm which has a ratio of 1/2.

Zyp = ~ 4.52

V2

3 4

(b) Optimal max-cut vector pro-

(a) A cyclic graph with 5 vertices. gram solution.

Figure 17.1: An example of a graph and the optimal solution to the corresponding max-cut vector program
relaxation.

17.2.2 Random Hyperplane Rounding

VP Max-Cut Rounding

1 let @4,...,7, < optimal solution to above vector program
2 let 7 + uniformly random from the unit n-sphere

3 return S={i: 70, -r>0}

Note: To sample the random vector 7 uniformly from the unit n-dimensional sphere, sample each of its compo-
nents from a standard normal distribution. The resulting vector has a spherically symmetric distribution, so it
is enough to then normalize it.

Lemma 17.6 For any distinct i,j € V, the probability that i and j are separated by the cut is 0;; /7, where 0;;
is the angle between U; and v; in the vector program solution.

Proof: Let § be the projection of i onto the plane containing #; and ¥;. Then 7 — § is perpendicular to both
¥; and Tj, so

R = (57— 5)
= (0 8) + Ui - ("= §)

<
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Figure 17.2: Vectors ¥; and ¥; are separated by the dashed line perpendicular to 7 whenever 5 lies in either of
the two shaded regions, each subtending an angle of 6;;.

Similarly, U; - 7= % - 5. Consider expressing %, ¥;, and 5 using polar coordinates. Without loss of generality, ¥;
has an angular coordinate of 0, ¥; has angular coordinate 6;;, and 5 has angular coordinate ¢. Now 5 separates
¥; and ¥; if and only if 7/2 < ¢ < 7/2+6,; or 3w/2 < ¢ < 3w/2 + 6;;. Because 7 has a spherically symmetric
distribution on the n-dimensional sphere, the angular coordinate of § is uniformly distributed in [0, 27). Thus
the above condition is satisfied with probability 2 - 6,;/2m = 6;; /7. [ |

Theorem 17.7 The above algorithm is a 0.8785-approximation for Maz-Cut.

Proof: We define

2 0
a=— min —— = 0.8785,
T 0<f<m 1 — cosf

§> 1—cosf
W*a — )

If X;; is the indicator random variable that is 1 if vertices 7,5 € V are separated by the cut and 0 otherwise,
the expected weight of the cut produced by the above algorithm is

— B[ Y wiXy]

(i,5)eE

_ 0ij
= Wi —=
T

so that for any 6 we have

(i,j)EE
>« Z w;;(1 — cos B;5)
(i,j)eE
= Z wij (1 — 7 - 7)
( J)EE

:Oé~ZVP Za-OPTMc.

We use the fact that ¢; - 0; = ||T;| - ||} - cos 0;5, and ||| = ||v;]| = 1. [ |

Theorem 17.8 (Hasdard, 1997) Unless P = NP, Maz-Cut has no (-approzimation where § > 16/17 =~
0.941.

Theorem 17.9 Assuming the Unique Games Conjecture (UGC), there is no (a + €)-approximation for Maz-
Cut.
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17.3 Max-2SAT

The Max-2SAT problem is concerned with logical formulae in 2-conjunctive normal form (2-CNF), which is a
formula like:

(x1 Vaa) A (TgVaa)A---

There are n literals x;, ..., x, and m clauses in the conjunction, and each clause is the disjunction of at most
two literals and their negations. The Max-2SAT problem is to find an assignment of truth values to the literals
that maximizes the number of satisfied clauses; it is NP-hard.

The natural linear program relaxation of the problem has an integrality gap of 4/3, which is no better than
random assignment. Instead, we look at an SDP relaxation:

Yy = 1, fori=0,...,m;

Yo = Yi, if and only if x; is true.

To define the objective function, we want each clause C' to have a value v(C) that is 1 if the clause is satisfied,
and 0 otherwise:

1+ :
v(z;) = #, for clauses of one variable.
- 1 —yiyo
v(T;) = 5
v(z; Vo) =1—v(x)v(T;) for clauses of two variables.
1o -y
2 2
_ 3+ Yibo + Y% — Y
4
Ity | T+yyo 1 — iy,
N 4 + 4 + 4
T—yiyo 14wy 1+,
o(Ts V 35) = 41/ Yo i/Jyo N 4y Y
T+yiyo  1—ymo 1+ v,
1—wyiyo  l—yimo 11—y,

We see that the terms in the value function are of the form ¢(1 + y;y;) or ¢(1 — y;y;), so by collecting the
coefficients of like terms we can write the objective function as:

max Z aij(1+ yiy;) +bij(1 — viy;),  yi = £1.
0<i,j<n
As we did before for MAX CUT, we relax the above into a vector program:

S S 1 - =
max E aij(L+T; - T) + ai; (1 — 0 - 75), v e R" 47 = 1.
0<i,j<n

VP Max-2SAT Rounding

1 let wp,...,7U, + optimal solution to above vector program.
2 let 7 < uniformly random from the unit n-sphere.

3 let y;, < 1ifv;-7>0, y; + 0 otherwise.
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4 let z; < TRUE if and only if y; = yo.

Theorem 17.10 The above algorithm is a 0.8785-approximation for Maz-2SAT.

Proof: The expected weight of a cut produced by the above algorithm is

EW]= Y ai;Ply; =y;]+bi; Ply: # v5).

0<i,j<n
From the argument given for Max-Cut above, we have

P[’yl 7& yj] = gij/ﬂ' Z a(l — COSHZ']')/Q,
Plyi = y;] = 1= 0i;/m = a1 — cos 0;) /2.

Thus

E[W] > aZspp =~ 0.8785Zspp.

Note: A result of Livnat, Lewin, and Zwick (2002) improves the approximation ratio to 0.940. There is also an

upper bound on the ratio of 0.943.



