
–18 Semidefinite Programming, Max-Cut, Max-2SAT

CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2015

Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27
Lecturer: Mohammad R. Salavatipour Scribe: Roshan Shariff

17.1 Semidefinite Programming

Quadratic programming is concerned with optimizing a quadratic function of variables subject to quadratic
constraints. A quadratic program is strict if the objective function and each of the constraints consist only of
degree 0 or 2 monomials. Here we are concerned with a type of strict quadratic program called a semidefinite
program.

Definition 17.1 Let x ∈ Rn×n be a symmetric n× n real matrix. We say that x is positive semidefinite (and
write x � 0) if aTxa ≥ 0 for all a ∈ Rn.

Theorem 17.2 If x ∈ Rn×n, the following are equivalent:

(a) x � 0.

(b) x has non-negative eigenvalues.

(c) x = vT v for some v ∈ Rm×n with m ≥ n.

(d) x =
∑m
i=1 λiwiw

T
i for some λi ≥ 0 and wi ∈ Rn with wTi wi = 1 and wTi wj = 0 for i 6= j.

In the following, let C,D1, D2, . . . , Dk ∈ Rn×n be symmetric matrices and d1, d2, . . . , dk ∈ R be constants.

Definition 17.3 A semidefinite program is an optimization problem of the form

max /min
∑

1≤i,j≤n

Cijxij , x ∈ Rn×n;

subject to:
∑

1≤i,j≤n

Dl,ijxij = dl, for all 1 ≤ l ≤ k;

x � 0.

Using the notation A ·B (for A,B ∈ Rn×n) to mean tr(ATB) =
∑
i

∑
j AijBij, we can also write a semidefinite

program as

max /min C · x x ∈ Rn×n;

subject to: Dl · x = dl, for all 1 ≤ l ≤ k;

x � 0.

If the matrices C and D1, D2, . . . , Dk are diagonal, then the above semidefinite program is a linear program.

17-1

17-2 Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27

Definition 17.4 A vector program is an optimization problem of the form

max /min
∑

1≤i,j≤n

Cij〈~vi, ~vj〉, ~v1, ~v2, . . . , ~vn ∈ Rn;

subject to:
∑

1≤i,j≤n

Dl,ij〈~vi, ~vj〉 = dl, for all 1 ≤ l ≤ k.

The n vectors ~v1, ~v2, . . . , ~vn ∈ Rn give n2 variables, with Yij = 〈~vi, ~vj〉. The matrix Y is always positive
semidefinite.

Lemma 17.5 A vector program is equivalent to the corresponding semidefinite program defined by the matrix
Y as above.

Proof: Given a solution ~v1, ~v2, . . . , ~vn ∈ Rn to the vector program, let W ∈ Rn×n be defined as

W =


...

...
...

~v1 ~v2 . . . ~vn
...

...
...


and let x = WTW . By condition (c) of Theorem 17.2, x � 0, so it is a feasible solution to the semidefinite
program. Moreover, xij = 〈~vi, ~vj〉, so it has the same objective value.

The converse proof is left as an exercise.

For any given ε > 0, we can find a solution to the semidefinite program with additive error ε.

17.2 Max-Cut

Given an undirected graph G = (V,E) with weights w : E → Q+, the Max-Cut problem is to find a maximal
cut S:

max
S⊂V

∑
e∈δ(S)

w(e),

where δ(S) is the set of edges with one vertex in S and the other not in S.

The randomized algorithm that independently picks each edge with probability 1/2 is a trivial 1/2-approximation
for this problem. To try to do better, consider the following integer program formulation:

maximize:
1

2

∑
(i,j)∈E

wij(1− yiyj), yi ∈ Z

subject to: y2i = 1, for all i ∈ E.

Since this is an integer program, the constraint ensures yi ∈ {−1, 1} for each i ∈ E. A vector program relaxation
of this integer program is:

maximize:
1

2

∑
(i,j)∈E

wij(1− ~vi · ~vj), ~vi ∈ Rn

subject to: ~vi · ~vi = 1, for all i ∈ E.

Given a solution y to the integer program, setting ~vi = (yi, 0, . . . , 0) for each i ∈ V gives a feasible solution to
the vector program with the same objective value.

Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27 17-3

17.2.1 Example

Figure 17.1a shows a cyclic graph G = (V,E) with 5 vertices. If each edge has weight 1, the maximum cut has
a value of OPTMC = 4. Figure 17.1b shows the vectors ~v1, . . . , ~v5 that are the optimal solution to the above
vector program relaxation. The angle between ~vi and ~vj for any (i, j) ∈ E is 4π/2, so ~vi · ~vj = cos(4π/5). The
value of the vector program objective is therefore

ZVP =
5(1− cos(4π/2))

2
≈ 4.52

Any rounding procedure that produces an integer solution based on this vector program solution will therefore
incur an approximation ratio of at least OPTMC/ZVP ≈ 0.885. With a good rounding strategy, we could do
better than the naive randomized algorithm which has a ratio of 1/2.

1

2

3 4

5

(a) A cyclic graph with 5 vertices.

~v1

~v2

~v3

~v4

~v5

(b) Optimal max-cut vector pro-
gram solution.

Figure 17.1: An example of a graph and the optimal solution to the corresponding max-cut vector program
relaxation.

17.2.2 Random Hyperplane Rounding

VP Max-Cut Rounding
1 let ~v1, . . . , ~vn ← optimal solution to above vector program
2 let ~r ← uniformly random from the unit n-sphere
3 return S = {i : ~vi · r ≥ 0}

Note: To sample the random vector ~r uniformly from the unit n-dimensional sphere, sample each of its compo-
nents from a standard normal distribution. The resulting vector has a spherically symmetric distribution, so it
is enough to then normalize it.

Lemma 17.6 For any distinct i, j ∈ V , the probability that i and j are separated by the cut is θij/π, where θij
is the angle between ~vi and ~vj in the vector program solution.

Proof: Let ~s be the projection of ~r onto the plane containing ~vi and ~vj . Then ~r − ~s is perpendicular to both
~vi and ~vj , so

~vi · ~r = ~vi · (~s+ ~r − ~s)
= (~vi · ~s) + ~vi · (~r − ~s)
= ~vi · ~s.

17-4 Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27

~vi ~vj

~r

~s

θij

θij
θij

Figure 17.2: Vectors ~vi and ~vj are separated by the dashed line perpendicular to ~r whenever ~s lies in either of
the two shaded regions, each subtending an angle of θij .

Similarly, ~vj ·~r = ~vj ·~s. Consider expressing ~vi, ~vj , and ~s using polar coordinates. Without loss of generality, ~vi
has an angular coordinate of 0, ~vj has angular coordinate θij , and ~s has angular coordinate φ. Now ~s separates
~vi and ~vj if and only if π/2 ≤ φ ≤ π/2 + θij or 3π/2 ≤ φ ≤ 3π/2 + θij . Because ~r has a spherically symmetric
distribution on the n-dimensional sphere, the angular coordinate of ~s is uniformly distributed in [0, 2π). Thus
the above condition is satisfied with probability 2 · θij/2π = θij/π.

Theorem 17.7 The above algorithm is a 0.8785-approximation for Max-Cut.

Proof: We define

α =
2

π
min

0≤θ≤π

θ

1− cos θ
≈ 0.8785,

so that for any θ we have

θ

π
≥ α

(
1− cos θ

2

)
.

If Xij is the indicator random variable that is 1 if vertices i, j ∈ V are separated by the cut and 0 otherwise,
the expected weight of the cut produced by the above algorithm is

E[W] = E
[∑
(i,j)∈E

wijXij

]
=

∑
(i,j)∈E

wij
θij
π

≥ α · 1

2

∑
(i,j)∈E

wij(1− cos θij)

= α · 1

2

∑
(i,j)∈E

wij(1− ~vi · ~vj)

= α · ZVP ≥ α ·OPTMC.

We use the fact that ~vi · ~vj = ‖~vi‖ · ‖~vj‖ · cos θij , and ‖~vi‖ = ‖~vj‖ = 1.

Theorem 17.8 (Hasdard, 1997) Unless P = NP, Max-Cut has no β-approximation where β > 16/17 ≈
0.941.

Theorem 17.9 Assuming the Unique Games Conjecture (UGC), there is no (α + ε)-approximation for Max-
Cut.

Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27 17-5

17.3 Max-2SAT

The Max-2SAT problem is concerned with logical formulae in 2-conjunctive normal form (2-CNF), which is a
formula like:

(x1 ∨ x2) ∧ (x3 ∨ x2) ∧ · · · .

There are n literals xi, . . . , xn and m clauses in the conjunction, and each clause is the disjunction of at most
two literals and their negations. The Max-2SAT problem is to find an assignment of truth values to the literals
that maximizes the number of satisfied clauses; it is NP-hard.

The natural linear program relaxation of the problem has an integrality gap of 4/3, which is no better than
random assignment. Instead, we look at an SDP relaxation:

yi = ±1, for i = 0, . . . ,m;

y0 = yi, if and only if xi is true.

To define the objective function, we want each clause C to have a value v(C) that is 1 if the clause is satisfied,
and 0 otherwise:

v(xi) =
1 + yiy0

2
, for clauses of one variable.

v(xi) =
1− yiy0

2
v(xi ∨ xj) = 1− v(xi)v(xj) for clauses of two variables.

= 1− 1− yiy0
2

· 1− yjy0
2

=
3 + yiy0 + yjy0 − yiyjy20

4

=
1 + yiy0

4
+

1 + yjy0
4

+
1− yiyj

4

v(xi ∨ xj) =
1− yiy0

4
+

1 + yjy0
4

+
1 + yiyj

4

v(xi ∨ xj) =
1 + yiy0

4
+

1− yjy0
4

+
1 + yiyj

4

v(xi ∨ xj) =
1− yiy0

4
+

1− yjy0
4

+
1− yiyj

4

We see that the terms in the value function are of the form c(1 + yiyj) or c(1 − yiyj), so by collecting the
coefficients of like terms we can write the objective function as:

max
∑

0≤i,j≤n

aij(1 + yiyj) + bij(1− yiyj), yi = ±1.

As we did before for MAX CUT, we relax the above into a vector program:

max
∑

0≤i,j≤n

aij(1 + ~vi · ~vj) + aij(1− ~vi · ~vj), vi ∈ Rn+1, ~vi · ~vi = 1.

VP Max-2SAT Rounding
1 let ~v0, . . . , ~vn ← optimal solution to above vector program.
2 let ~r ← uniformly random from the unit n-sphere.
3 let yi ← 1 if ~vi · ~r ≥ 0, yi ← 0 otherwise.

17-6 Lecture 17–18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25–27

4 let xi ← True if and only if yi = y0.

Theorem 17.10 The above algorithm is a 0.8785-approximation for Max-2SAT.

Proof: The expected weight of a cut produced by the above algorithm is

E[W] =
∑

0≤i,j≤n

aijP [yi = yj] + bijP [yi 6= yj].

From the argument given for Max-Cut above, we have

P [yi 6= yj] = θij/π ≥ α(1− cos θij)/2,

P [yi = yj] = 1− θij/π ≥ α(1− cos θij)/2.

Thus

E[W] ≥ αZSDP ≈ 0.8785ZSDP.

Note: A result of Livnat, Lewin, and Zwick (2002) improves the approximation ratio to 0.940. There is also an
upper bound on the ratio of 0.943.

