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CMPUT 675: Approximation Algorithms Fall 2015

Lecture 11-12 (Oct 6 & 8, 2015): Multiway Cut (Continuation), Multi-Cut
Lecturer: Mohammad R. Salavatipour Scribe: Yao Xu

11.1 An LP Rounding Algorithm for the Multiway Cut Problem

In the last lecture, we introduced an LP relaxation and the corresponding LP rounding algorithm for the
Multiway Cut problem.

11.1.1 Recall: Definition and the Linear Program

Definition 1 Multiway Cut Problem: Given an undirected graph G = (V,E), a cost function c : E → Q+

on edges, and k distinguished terminals, s1, s2, . . . , sk, where si ∈ V , for all i = 1, 2, . . . , k, the goal is to find a
minimum-cost set of edges, E′ ⊆ E, whose removal disconnects all terminals from each other.

The linear program (LP) of the Multiway Cut problem we talked about in the last lecture is as follows:

minimize
∑

e=(u,v)∈E

ce · ‖xu − xv‖1 (11.1)

subject to xsi = ei i = 1, 2, . . . , k,

xu ∈ ∆k ∀u ∈ V.

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector with 1 in the ith coordinate and zeros elsewhere, and ∆k is the

k-simplex, i.e., ∆k = {x ∈ Rk|
∑k
i=1 x

i = 1}.

11.1.2 Recall: The Randomized Rounding Algorithm

For any r ≥ 0 and 1 ≤ i ≤ k, let B(si, r) be the set of vertices in a ball of radius r in the `1-metric around si,
that is, B(si, r) = {u ∈ V | 12‖xsi − xu‖1 ≤ r}. Note that B(si, 1) = V for all i. Then, as we introduced in the
last lecture, the following algorithm MWC2 is a randomized rounding algorithm for the Multiway Cut problem.

Algorithm MWC2: LP Rounding Algorithm for the Multiway Cut Problem

1. Let x∗ be an optimal fractional solution to (11.1)
2. Ci ← ∅ for all 1 ≤ i ≤ k
3. Pick r ∈ (0, 1) uniformly at random
4. Pick a random permutation π of {1, 2, . . . , k}
5. for i← 1 to k − 1 do
6. Cπ(i) ← B(sπ(i), r)−

⋃
j<i Cπ(j)

7. Cπ(k) ← V −
⋃
j<k Cπ(j)

8. return F =
⋃k
i=1 δ(Ci)
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11.1.3 Analysis of the Randomized Rounding Algorithm

Lemma 1 For each e = (u, v), the probability of e belonging to the cut, i.e., Pr[e is in cut] ≤ 3
4‖xu − xv‖1.

Lemma 1 implies the following theorem and we will prove the lemma later.

Theorem 1 Algorithm MWC2 is a randomized 3
2 -approximation algorithm for the multiway cut problem.

Proof. Let W be a random variable denoting the value of the cut, and Ze be a 0-1 variable which is 1 if e is
in the cut, so that W =

∑
e∈E ceZe. Let OPT be the optimum solution of the LP. Then, we have

E[W ] = E

[∑
e∈E

ceZe

]
=
∑
e∈E

ceE[Ze] =
∑
e∈E

ce Pr[e is in cut]

≤
∑

e=(u,v)∈E

ce
3

4
‖xu − xv‖1 / by Lemma 1

=
3

2
· 1

2

∑
e=(u,v)∈E

ce‖xu − xv‖1

=
3

2
·OPT.

Before proving Lemma 1, we first prove the following two lemmas.

Lemma 2 For any index ` and any two vertices u, v ∈ V , |x`u − x`v| ≤ 1
2‖xu − xv‖1.

Proof. Without loss of generality, assume that x`u ≥ x`v. Then

|x`u − x`v| = x`u − x`v =

1−
∑
j 6=`

xju

−
1−

∑
j 6=`

xjv

 =
∑
j 6=`

(xjv − xju) ≤
∑
j 6=`

|xju − xjv|.

Add |x`u − x`v| to both sides, we have

2|x`u − x`v| ≤ ‖xu − xv‖1 ⇒ |x`u − x`v| ≤
1

2
‖xu − xv‖1.

Lemma 3 u ∈ B(si, r)⇔ 1− xiu ≤ r.

Proof.

u ∈ B(si, r)⇔
1

2
‖xsi − xu‖1 ≤ r

≡ 1

2

k∑
j=1

|xjsi − x
j
u| ≤ r

≡ 1

2

∑
j=i

xju +
1

2
(1− xiu) ≤ r

≡ 1− xiu ≤ r. / since
∑
j=i

xju = 1− xiu
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Now we can prove Lemma 1 based on the above two lemmas.

Proof. Consider an edge e = (u, v), define the following two events:

• Event Si: we say that index i settles e if i is the first index such that at least one of u, v ∈ B(sπ(i), r);

• Event Xi: we say that index i cuts e if exactly one of u, v ∈ B(sπ(i), r).

Then, we have Pr[e is in cut] =
∑k
i=1 Pr[Si ∧Xi]. By Lemma 3, we get

Pr[Xi] = Pr[min{1− xiu, 1− xiv} ≤ r < max{1− xiv, 1− xiu}] = |xiu − xiv|.

Let ` = arg mini{1 − xiu, 1 − xiv}, that is, s` is the nearest terminal to either u or v. Then we can claim that
index i 6= ` cannot settle e = (u, v) if ` comes before i in π, since by Lemma 3, if at least one of u, v ∈ B(sπ(i), r),

then at least one of u, v ∈ B(sπ(`), r). Note that Pr[` comes after i] = 1
2 . Thus,

• for ` 6= i, we have

Pr[Si ∧Xi] =
1

2
Pr[Si ∧Xi|` comes after i] +

1

2
Pr[Si ∧Xi|` comes before i]

≤ 1

2
Pr[Xi|` comes after i] + 0

=
1

2
Pr[Xi] / Xi is independent of π

=
1

2
|xiu − xiv|.

• for ` = i, we have
Pr[S` ∧X`] ≤ Pr[X`] = |x`u − x`v|.

Therefore,

Pr[e is in cut] =

k∑
i=1

Pr[Si ∧Xi] ≤ |x`u − x`v|+
1

2

∑
i6=`

|xiu − xiv|

=
1

2
|x`u − x`v|+

1

2
‖xu − xv‖1

≤ 1

4
‖xu − xv‖1 +

1

2
‖xu − xv‖1 / by Lemma 2

=
3

4
‖xu − xv‖1.

11.1.4 Best Known Results

Theorem 2 There is a Multiway Cut randomized approximation algorithm with an approximation guarantee
of 1.3438. [K04]

Theorem 3 There exists a (1.32388− 1
2k )-approximation algorithm for the Multiway Cut problem. [BNS13]

Theorem 4 There is an algorithm that provides a 1.2965-approximation for the Multiway Cut problem. [SV14]
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11.2 The Multi-Cut Problem

Definition 2 Multi-Cut Problem: Given an undirected graph G = (V,E), a cost function c : E → Q+ on
edges, and k distinguished source-sink pairs of vertices, (s1, t1), (s2, t2), . . . , (sk, tk), where si, ti ∈ V , for all
i = 1, 2, . . . , k, the goal is to find a minimum-cost set of edges, E′ ⊆ E, whose removal disconnects all pairs of
si, ti, for every i = 1, 2, . . . , k. Note that there can be paths connecting si and sj or si and tj for i 6= j.

Let Pi be the set of all paths from si to ti. Then an LP of this problem is as follows:

minimize
∑
e∈E

cexe (11.2)

subject to
∑
e∈P

xe ≥ 1, ∀P ∈ Pi, 1 ≤ i ≤ k,

xe ≥ 0, ∀e ∈ E.

Although this LP has exponentially many constraints, we can solve it in polynomial time by considering a
polynomial-time separation oracle, which is defined as follows:

Separation oracle: Given a solution of xe values, either say it is indeed a feasible solution to the LP or, if it
is infeasible, find a violating constraint.

The separation oracle for this LP works as follows: Consider xe as the length of each edge in G, compute the
length of the shortest si − ti path for each i, 1 ≤ i ≤ k. If for each i, the length of the shortest si − ti path is
at least 1, then the length of every path P ∈ Pi is at least 1, indicating that the solution is feasible; if for some
i, the length of the shortest si − ti path P is less than 1, we return it as a violated constraint, since we have∑
e∈P xe < 1 for P ∈ Pi.

11.2.1 The Region Growing Algorithm

Now we introduce an approximation algorithm based on a region growing method presented by Garg, Vazirani,
and Yannakakis (GVY) for solving this problem. First, we restate this problem as a pipe system with some
denotations as follows:

• xe: length of a pipe

• ce: cross-sectional area of a pipe

• cexe: volume of a pipe

• dx(u, v): length of the shortest u− v path with edge length xe

• Bx(v, r) = {u|dx(v, u) ≤ r}: ball of radius r around vertex v

The LP objective is then the minimum-volume pipe system such that for every si − ti path, si and ti are at
least 1 unit apart, i.e., dx(si, ti) ≥ 1. See Figure 11.1 for an illustration of a pipe system.

Let V ∗ be the optimum total volume of the pipes to the LP, we define the volume of pipes within distance r of
si plus an extra term V ∗

k as follows:

Vx(si, r) =
V ∗

k
+

∑
e=(u,v), u,v∈Bx(si,r)

cexe +
∑

e=(u,v), u∈Bx(si,r), v /∈Bx(si,r)

ce(r − dx(si, u)).
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Figure 11.1: An illustration of a pipe system.

Let δ(S) be the set of edges between S and V \ S for all S ⊂ V . The following algorithm GVY is a region
growing algorithm for the Multi-Cut problem.

Algorithm GVY: The Region Growing Algorithm for the Multi-Cut Problem

1. C ← ∅
2. Let x be an optimal fractional solution to (11.2)
3. while there is a connected si, ti do
4. S ← Bx(si, r) for some r < 1

2
5. C ← C ∪ δ(S) / δ(S) cuts S from the rest
6. V ← V \ S / δ(S) Remove the ball from the G
7. return C

11.2.2 Analysis of the GVY Region Growing Algorithm

Lemma 4 Algorithm GVY terminates in polynomial time.

Proof. In each iteration of the while loop, lines 4 and 5 indicate that δ(S) will separate at least one pair of
(si, ti), thus there are at most k iterations. Therefore, algorithm GVY terminates in polynomial time.

Lemma 5 Algorithm GVY returns a Multi-Cut.

Proof. If algorithm GVY does not return a Multi-Cut, then there must be some sj − tj pair in a removed
ball. Thus, we show that no sj − tj pair remains connected within a ball that is removed by contradiction. If
∃sj , tj ∈ Bx(si, r) for r < 1

2 , then dx(sj , tj) ≤ 2r < 1, which contradicts the constraints for sj , tj .

Let V ∗ be the optimum total volume of the pipes to the LP, then as we introduced in the last lecture, define:

Vx(si, r) =
V ∗

k
+

∑
e=(u,v), u,v∈Bx(si,r)

cexe +
∑

e=(u,v), u∈Bx(si,r), v /∈Bx(si,r)

ce(r − dx(si, u)),

Cx(si, r) =
∑

e=(u,v)∈δ(Bx(si,r))

ce.

Observation: Vx(si, r) is an increasing function of r. It is also piece-wise linear with possible discontinuity
at values of r when the ball includes a new vertex (see Figure 11.2 for an example of the discontinuity) and



11-6 Lecture 11-12: Multiway Cut (Continuation), Multi-Cut

differentiable between values r in which vertices are added to the ball.

Figure 11.2: An example of when the function Vx(si, r) of r is discontinuous. The value of Vx(si, r) can jump
when a ball is growing with a radius from r1 to r2 and there is an edge between u2 and v2 which have the same
distance (r2) to si, since we will also need to add the volume of pipe (u2, v2) at the moment when r reaches r2.

So, we have
dVx(si, r)

dr
= Cx(si, r).

Lemma 6 There is some r < 1
2 (and we can find it in polynomial time) such that Cx(si,r)

Vx(si,r)
≤ 2 ln(k + 1).

Lemma 6 implies the following theorem and we will prove the lemma later.

Theorem 5 Algorithm GVY is a 4 ln(k + 1)-approximation algorithm for the Multi-Cut problem.

Proof. When we cut a ball Bx(si, r), charging the cost of δ(Bx(si, r)) to the volume of Bx(si, r), by Lemma 6,
we have ∑

e∈C
ce =

k∑
i=1

∑
e∈Ci

ce ≤ 2 ln(k + 1)
∑

si,r selected

Vx(si, r)

≤ 2 ln(k + 1)(V ∗ + k · V
∗

k
)

= 4 ln(k + 1)V ∗.

Now we prove Lemma 6.

Proof. Say we choose r ∈ [0, 12 ) uniformly at random. Recall the mean-value theorem: for a function f(·)
continuous on an interval [a, b] and differentiable on (a, b), ∃c ∈ (a, b) such that f ′(c) = f(b)−f(a)

b−a (see Figure
11.3 for the proof).

Let f(r) = lnV (r), f ′(r) = d lnV (r)
dr = C(r)

V (r) , where V (r) = Vx(si, r), C(r) = Cx(si, r). Note that V ( 1
2 ) ≤ V ∗+ V ∗

k

and V (0) = V ∗

k . Thus, ∃r0 such that

f ′(r0) ≤
lnV ( 1

2 )− lnV (0)
1
2 − 0

≤ 2

(
ln(V ∗ +

V ∗

k
)− ln

V ∗

k

)
= 2

(
ln(V ∗ + V ∗

k )

ln V ∗

k

)
= 2 ln(k + 1).
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Figure 11.3: Mean-value theorem

Consider vertices based on their increasing distances from si: si = v1, v2, . . . , vp, 0 = r0 ≤ r1 ≤ · · · ≤ rp = 1
2 .

By contradiction, suppose for all r ∈ [rj , rj+1), C(r)
V (r) > 2 ln(k + 1). Then, we have

∫ r−j+1

rj

dV (r)

dr
· 1

V (r)
dx >

∫ r−j+1

rj

2 ln(k + 1)dr

⇒ lnV (r−j+1)− lnV (rj) > 2 ln(k + 1)(r−j+1 − rj).

For all j = 0, 1, . . . , p− 1, we have

lnV (r1)− lnV (r0) > 2 ln(k + 1)(r1 − r0),

...

lnV (rp)− lnV (rp−1) > 2 ln(k + 1)(rp − rp−1).

Sum over all j, we get

lnV (rp)− lnV (r0) > 2 ln(k + 1)(rp − r0)

⇒ lnV (
1

2
)− lnV (0) > 2 ln(k + 1)(

1

2
− 0)

⇒ lnV (
1

2
) > ln(k + 1) + ln

V ∗

k

= ln
(k + 1)V ∗

k

= ln(V ∗ +
V ∗

k
)

⇒ V (
1

2
) > V ∗ +

V ∗

k

which cannot happen. Therefore, there must be an r such that C(r)
V (r) ≤ 2 ln(k + 1).

To find such r, note that between rj and r−j+1, C(r) is constant while V (r) is non-decreasing. So, the minimum

value of C(r)
V (r) occurs when r = r−j+1. So, it is enough to check the ratio C(r)

V (r) for r = rj+1 − ε. So, we only need

to check p ≤ n vertices and their distances from si. Thus, we can find such r in polynomial time.

Therefore, algorithm GVY is an O(log k)-approximation algorithm for the Multi-Cut problem.
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