
Approximation Algorithms for Min-Sum k-Clustering and Balanced

k-Median

Babak Behsaz∗ Zachary Friggstad† Mohammad R. Salavatipour‡

Rohit Sivakumar§

Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2E8, Canada

Abstract

We consider two closely related fundamental clustering problems in this paper. In the min-
sum k-clustering one is given a metric space and has to partition the points into k clusters
while minimizing the sum of pairwise distances between the points within the clusters. In the
Balanced k-Median problem the instance is the same and one has to obtain a clustering into k
cluster C1, . . . , Ck, where each cluster Ci has a center ci, while minimizing the total assignment
costs for the points in the metric; here the cost of assigning a point j to a cluster Ci is equal to
|Ci| times the j, cj distance in the metric.

In this paper, we present an O(log n)-approximation for both these problems where n is
the number of points in the metric that are to be served. This is an improvement over the
O(ε−1 log1+ε n)-approximation (for any constant ε > 0) obtained by Bartal, Charikar, and Raz
[STOC ’01]. We also obtain a quasi-PTAS for Balanced k-Median in metrics with constant
doubling dimension.

As in the work of Bartal et al., our approximation for general metrics uses embeddings
into tree metrics. The main technical contribution in this paper is an O(1)-approximation for
Balanced k-Median in hierarchically separated trees (HSTs). Our improvement comes from a
more direct dynamic programming approach that heavily exploits properties of standard HSTs.
In this way, we avoid the reduction to special types of HSTs that were considered by Bartal et
al., thereby avoiding an additional O(ε−1 logε n) loss.

∗Email: behsaz@ualberta.ca.
†Email: zacharyf@cs.ualberta.ca.
‡Supported by NSERC. Email: mreza@cs.ualberta.ca.
§Email: rohit2@ualberta.ca.

1 Introduction

One of the most ubiquitous problems encountered in computing science is clustering. At a high level,
a clustering problem arises when we want to aggregate data points into groups of similar objects.
Often, there are underlying metric distances d(u, v) between data points u, v that quantify their
similarities. Ideally, we want to cluster the objects into few clusters while ensuring the distances
within a cluster are small.

In this paper we focus on two closely related problems, which are referred to in the literature as
Min-Sum k-clustering (MSkC) and Balanced k-Median (BkM). In both problems, we are given a
metric space over a set of n points V , which we assume is given as a graph G = (V,E) with metric
distances d(u, v) between any two u, v ∈ V . In the MSkC problem the goal is to partition points
V into k clusters C1, . . . , Ck to minimize the sum of pair-wise distances between points assigned to
the same cluster:

∑k
i=1

∑
{j,j′}⊆Ci

d(j, j′).
This problem (MSkC) was first introduced by Sahni and Gonzalez [14] and is the complement of

the Max k-Cut problem. Bartal et al. [4] gave an O(ε−1 logε n)-approximation for any constant ε >
0, for the case of Hierarchically Separated Trees (HSTs), which in turn (using the O(log n) bound for
approximating metrics using HSTs [8]), gives an O(ε−1 log1+ε n)-approximation for general metrics.
To do this, Bartal et al. introduced BkM, where the input is the same as MSkC and the goal is
to select k points c1, . . . , ck ∈ V as the centers of the clusters and partition the nodes V into
clusters C1, . . . , Ck to minimize

∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci). The multiplier |Ci| on the contribution of
d(v, ci) to the objective function penalizes clusters for being too large, hence the term balanced.
As observed in [4], it is easy to show that an α-approximation for either MSkC or BkM implies a
2α-approximation for the other problem in metric graphs. The O(ε−1 log1+ε n)-approximation of
[4] for MSkC was obtained by presenting such approximation for BkM.

1.1 Related Work

The facility location interpretation of the BkM leads to a natural generalization of the problem.
In this generalization, we are given a set of clients C ⊆ V and a set of facilities F ⊆ V . We need
to choose k facilities from F to open and the clients in C must be served by these k facilities. In
other words, the set of clients must be partitioned into k partitions and the center assigned to each
partition must be chosen from F . Note that C and F can have common vertices. The special case
that C = F = V is the original problem we defined. We often use the term “facility” to refer to the
center of a cluster in BkM and the points assigned to that center are the “clients” that get served
by that facility (or center).

The O(ε−1 log1+ε n)-approximation of [4] stands as the best known approximation for both
MSkC and BkM after 13 years. They also describe a bicriteria O(1)-approximation (for BkM) that
uses O(k) clusters. Fernandez de la Vega et al. [9] gave a (1 + ε)-approximation algorithm for

MSkC with running time of O(n3k2ε
−k2

).
BkM and MSkC have been further studied in more restricted settings. BkM can be solved in

time nO(k) by “guessing” the center locations and their capacities, and then finding a minimum-cost
assignment from the clients to these centers [10]. This yields a 2-approximation for MSkC when k
is regarded as a constant. Furthermore, Indyk gives a PTAS [11] for MSkC when k = 2.

The factor-2 reduction between BkM and MSkC fails to hold when the distances do not satisfy
the metric properties. Indeed, one can still solve non-metric instances of BkM in nO(k) time,
however no n2−ε-approximation is possible for non-metric MSkC for any constant ε > 0 and any
k ≥ 3 [12]. An O(

√
log n)-approximation for non-metric MSkC for k = 2 is known as this is just a

reformulation of the Minimum Uncut problem [1].

1

These problems have been studied in geometric spaces as well. For point sets in Rd and constant
k Schulman [15] gave an algorithm for MSkC that either outputs a (1 + ε)-approximation, or a
solution that agrees with the optimum clustering on (1 − ε)-fraction of the points but may have
a much larger than optimum cost. Finally, Czumaj and Sohler [7] have developed a (4 + ε)-
approximation algorithm for MSkC for the case when k = o(log n/ log logn) and constant ε.

Perhaps the most well studied related problem is the classical k-median where one has to find a
partition of the point set into k sets C1, . . . , Ck, each having a center ci while minimizing the total
sum of distances of the points to their respective center. There is a long line of research on this
problem. Some of the most recent results are [13, 5, 17], which bring down the approximation ratio
to 2.592 + ε. It is worth pointing out that both MSkC and BkM seem significantly more difficult
than the classical k-median. For instance, for the case of k-median if one is given the set of k
centers the clustring of the points is immediate as each point will be assigned to the nearest center
point; this has been used in a simple local search algorithm that is proved to have approximation
ratio 3 + ε [2]. However, for the case of BkM, even if one is given the location of k centers it is not
clear how to find the clustring of the points.

1.2 Results and Techniques

Our two primary results are an O(log n)-approximation for both BkM and MSkC, improving over
their previous O(ε−1 log1+ε n)-approximations for any constant ε > 0 [4], and a quasi-polynomial
time approximation scheme (QPTAS) for BkM in metrics with constant doubling dimension (a.k.a.
doubling metrics).

Similar to the approximation in [4], our improved O(log n)-approximation for general metrics
uses Hierarchically Separated Trees (HSTs), defined formally in Section 2. Specifically, we give
a deterministic constant-factor approximation for BkM on HSTs. As is well-known, an arbitrary
metric can be probabilistically embedded into an HST with the expected stretch of each edge being
O(log n) [8], thus our algorithm leads immediately to a randomized, polynomial time algorithm
that computes a solution with expected cost O(log n) times the optimum solution cost. To do
this, we heavily exploit the specific properties of HSTs in a dynamic programming algorithm. The
previous O(log1+ε n)-approximation only obtained an O(logε n)-approximation and did not rely on
the HST properties as strongly as our algorithm.

Our second result, which is a QPTAS for BkM, is essentially a dynamic programming algorithm
which builds on the hierarchical decomposition of a metric space with constant doubling dimensions.
We start this by presenting a QPTAS for BkM for the case of a tree metric and show how this can
be extended to metrics with constant doubling dimensions. This result strongly suggests that the
problem is not APX-hard and therefore should have a PTAS.

We also show (see Appendix C) that if the metric is a simple path then BkM can be solved ex-
actly by using some structural properties that we prove for the optimum solution on such instances.
While the result by itself seems very restricted since the metric seems very simple, the structural
properties we prove to derive this result hold in general metrics. Although we were not able to use
these structural results to obtain better results for general metrics or obtain improvements in other
specific setting settings (e.g. turning the QPTAS on doubling metrics into a PTAS) these might
be useful toward such goals.

As pointed out earlier, some of the standard methods used to obtain constant approximation
algorithms for classical k-median seem difficult to adapt for BkM. For instance, it is not clear how to
employ a local search method given that finding even an approximately optimal assignment of clients
if one is given the location of k centers, is difficult. We also tried to use LP relaxation for BkM with
the hope of obaining an O(1)-approximation for general metrics. The bicriteria approximation of

2

[4] relies on a correspondence between BkM and a variant of capacitated k-median on a semi-metric
space. They then used a Lagrangian relaxation and a primal-dual method to solve the capacitated
k-median; the end result though opens O(k) centers. Chuzhoy and Rabani [6] presented a better
approximation for capacitated k-median where there are at most k locations of centers while up to
O(1) centers may be open at each location. Adapting their algorithm to work for the semi-metric
space resulted from the work of [4] breaks down at a technical point. In particular, where one
has to combine two solutions obtained from the primal-dual method with k1 < k < k2 number of
centers. If one could overcome this technical difficulty then it could lead to a O(1)-approximation
for MSkC and BkM on general metrics.

For our algorithms we consider a version of the BkM problem in which each cluster has a type
based on rounding up the size of the cluster to the nearest factor of (1 + ε) for some constant ε > 0;
we call this the ε-Restricted Balanced k-median (RBkM) problem. Here each cluster has one of the
types 0, 1, . . . , dlog1+ε ne, where n denotes the number of clients, i.e., n = |C|. A cluster that is of
type i can serve at most (1 + ε)i clients and the cost of serving each client j in a type i cluster with
center (facility) c is (1 + ε)i · d(c, j) (regardless of how many clients are served by the facility). We
sometimes refer to (1 + ε)i as the capacity or the multiplier of the center (facility) of the cluster.
We also say that the center of the cluster and all the clients of that cluster are of type i. It is not
hard to see that an α-approximation algorithm for this version results in a ((1+ε)α)-approximation
algorithm for the BkM problem.

Section 2 outlines our approach for the general O(log n)-approximation, including specific def-
initions of the HSTs we use. The dynamic programming approach for HSTs is appears in Section
3. We present the QPTAS for BkM in doubling metrics in Section 4.

2 An O(log n)-Approximation for General BkM

As noted earlier, our O(log n)-approximation uses embeddings into tree metrics. In particular,
we use the fact that an arbitrary metric can be probabilistically approximated by Hierarchically
Seperated Trees with O(log n) distortion. We begin by lising some properties of µ-HST’s that we
use in our algorithm.

Definition 1 For µ > 1, a µ-Hierarchical Well Separated Tree (µ-HST) is a metric space defined
on the leaves of a rooted tree T . Let the level of an internal node in the tree be the number of edges
on the path to the root. Let ∆ denote the diameter of the resulting metric space. For a vertex
u ∈ T , let ∆(u) denote the diameter of the subtree rooted at u. Then the tree has the following
properties:

• All edges at a particular level have the same weight.

• All leaves are at the same level.

• For any internal node u at level i, ∆(u) = ∆ · µ−i.

By this definition, any two leaf nodes u, v with least common ancestor w are at distance exactly
∆(w) from each other. If T is a µ-HST then we let dT (u, v) denote the distance between u and v in
T . It follows from [8] that for any integer µ > 1, any metric can be probabilistically embedded into
µ-HSTs with stretch O(µ · logµ n). Furthermore, we can sample a µ-HST from this distribution in
polynomial time.

In an instance of BkM on µ-HSTs T , only the leaf nodes of T correspond to clients and all
the cluster centers must be leaf nodes of T . We use this in a standard way to get a randomized
O(log n)-approximation for BkM and MSkC.

3

Note: In fact, we can get PTAS for µ-HSTs for any constant µ, but it is enough to describe
a 2-approximation for BkM in 2-HSTs to get an O(log n)-approximation in general metrics. Thus,
we focus on this case for simplicity.

3 A Dynamic Programming Approach for BkM in 2-HSTs

Recall that in ε-RBkM, the capacity of each facility (or the size of each cluster) is rounded up to
the nearest power of 1 + ε. For ease of exposition, we focus on the 1-RBkM problem (i.e. where
all cluster sizes are powers of two) and present an exact algorithm for this problem on 2-HST’s.
Clearly, this implies a 2-approximation for the BkM problem on such graphs. In this section we
simply use RBkM to refer to 1-RBkM. We prove the following:

Theorem 1 RBkM instances in 2-HSTs can be solved exactly in polynomial time.

To solve RBkM exactly on 2-HSTs using Dynamic Programming, we start by demonstrating
the existence of an optimal solution with certain helpful properties. Let T = (V,E) denote the
2-HST rooted at a vertex r ∈ V . For any vertex v ∈ V , let Tv denote the subtree of T rooted at v.
It is obvious that Tv itself is a 2-HST. A client (or facility) is said to be located in the subtree Tv if
its corresponding vertex in the tree belongs to Tv. In the same vein, a client (or facility) is located
outside Tv if it is located in the subtree T\Tv.

We say that a facility at location vf serves a client at location vc if vc is part of the cluster with
center vf . We emphasize that only the leaf nodes of a 2-HST are clients and we can only open
facilities at leaf nodes. We say that a facility at vf is of type i if it is open with capacity 2i. Thus,
each client v being served by vf is being served with cost 2i · d(vf , v).

Lemma 1 In an optimal RBkM solution, every facility serves its collocated client.

Proof. Suppose there exists an optimal RBkM solution that opens a facility at location vf ∈ V
but vf does not serve the client located at vf . Let w be the deepest node such that vf ∈ Tw and
there is some client vc ∈ Tw served by vf . We close the facility at vf , open a facility at vc, and
have all the clients previously served by vf be served by this new facility at vc. The distance from
vc to its serving facility strictly decreases and the distance of all other clients served by this facility
remain the same by the properties of 2-HSTs, which contradicts optimality of the solution.

Lemma 2 In an optimal solution, for every vertex v of the tree there is at most one type of facility
in Tv which serves clients located outside of Tv. Furthermore, if a facility of type i in Tv serves
clients outside of Tv, then every open facility in Tv has type at least i.

Proof. Let v be a nonroot vertex of T and let pv be its parent node. Suppose there are two open
facilities f1, f2 ∈ Tv of types i1, i2 respectively. Furthermore, suppose f1 is serving a client c1 6∈ Tv.
Note by Lemma 1 that the facility f2 is serving its collocated client. Let u denote lca(f1, c1) and
note that u lies above v in the tree. Suppose, for the sake of contradiction, that i2 < i1. Consider
the modified solution that has f2 serving c1 and f1 serving the client collocated with f2 (and all
other client assignments stay the same). Note that both f1 and f2 serve the same number of clients.
The change in the solution cost is bounded as follows (see the figure):

2i1 ·∆(v) + 2i2 ·∆(u)− 2i1 ·∆(u) ≤ 2i1 ·∆(v)− 2i1−1 ·∆(u)

≤ 2i1−1 ·∆(u)− 2i1−1 ·∆(u) = 0.

4

The first inequality uses i2 < i1 and the second uses the fact that u is
at a strictly higher level than v so, by the property of 2-HSTs, ∆(v) ≤
∆(u)/2. Finally, since f2 is no longer serving its collocated client then
we get a strictly cheaper solution by moving f2 to its nearest client
(as in the proof of Lemma 1), contradicting optimality of the solution.
Therefore, any facility that is open in Tv has type at least i1. The same
reasoning also shows that if f2 is also serving a client c2 6∈ Tv then
i1 = i2. Otherwise, if, say, i2 > i1 then the new solution that has c2
served by f1 and the client collocated with f1 being served by f2 would
be strictly cheaper (after moving f1 to its next nearest client).

Observation 1 In an optimal solution to RBkM with two vertices u, v ∈ V such that Tu and Tv
are disjoint, there cannot exist two facilities fu and fv and clients cu and cv in the subtrees rooted
at u and v, respectively, such that fu serves cv and fv serves cu.

If this were not the case, we can reduce the cost by swapping the clients and having fu serving to
cu and fv serving to cv to yield a solution of strictly smaller cost.

Observation 2 For any feasible solution to RBkM and a vertex v in the tree, if u,w ∈ Tv are two
clients served by two facilites fu, fw 6∈ Tv then the cost of pairing u with fu and w with fw is the
same as the cost of pairing u with fw and w with fu.

This is because for every vertex v ∈ T , all clients and facilities in Tv are equidistant from v by
Definition 1.

Observation 3 For a facility with multiplier mf located at vf and a client located at vc, let vlca
denote their least common ancestor. Then the cost of serving vc at vf is 2 ·mf · d(vf , vlca).

This will be helpful in our dynamic programming algorithm because, in some sense, it only
keeps track of the distance between vf and vlca for a client vc served by vf . For an edge e between
vf and vlca, we call 2 ·mf · d(e) the actual cost of the edge e for the (vc, vf) pair, where d(e) is the
weight of e in the metric. Note that the sum of the actual costs of edges between vf and vlca is
precisely mf · d(vf , vc).

Definition 2 For a subtree Tv of T and any feasible solution to RBkM, we use costinTv to refer to
the sum of the actual costs of edges within Tv accrued due to all the facility-client pairs (vf , vc)
where vf ∈ Tv.

Thus, for any feasible solution to RBkM, costinTr is the cost of this solution.

Definition 3 In any partial assignment of some clients to facilities, we say that the slack of a
facility f with capacity 2t is the difference between 2t and the number of clients that are being
served by f . Moreover, for a vertex v in the 2-HST, the slack of subtree Tv denotes the total slack
of the facilities located in Tv.

We first present our dynamic programming algorithm under the assumption that the 2-HST is
a full binary tree. This cannot be assumed in general, but we present this first because it is simpler
than the general case and still introduces the key ideas behind our algorithm. The general case is
more technical and requires two levels of DP; the details appear in Appendix A.

5

3.1 The Special Case of Full Binary Trees

For ease of understanding, this section provides an overview of the dynamic program for full binary
2-HSTs. Although the 2-HSTs we obtain by metric embedding are not guaranteed to be binary the
idea of the DP is easier to describe for these special cases and we show in the next section, a way to
extend the DP to general 2-HSTs. To define a subproblem for the DP, let us consider an arbitrary
feasible solution and focus on a subtree Tv, for v ∈ T . We start by defining a few parameters:

• kv is the number of facilities opened in the subtree Tv.

• tv denotes the type of the facility, if any, in Tv which serves clients located outside Tv (c.f.
Lemma 2). We assign a value of −1 to tv if no client in T\Tv is served by a facility in Tv.

• uv is the number of clients in T\Tv that are served by facilities in Tv.

• dv is the number of clients in Tv that are served by facilities in T\Tv (and)

• o is the slack of Tv.

Each entry in our table is of the form: A[v, kv, tv, uv, dv, o]. For a vertex v ∈ V , the value stored
in this table entry is the minimum of costinTv over all possible feasible solutions with parameters
kv, tv, uv, dv, o if the cell denotes a non-pessimal state (defined below).

Observation 3 in the previous section provide insight on why it is sufficient to keep track of the dv
values without caring about the type or the location of the facilities outside of Tv for calculating the
cost of the solution. Our algorithm for RBkM fills the table for all permissible values of parameters
v, kv, tv, uv, dv and o in the decreasing order of the level of the vertex v (from leaf to root). For
vertices in the same level, ties are broken arbitrarily.

3.1.1 Pessimal States and Base Cases

An entry of the dynamic programming table is said to be trivially suboptimal if it is forced to
contain a facility that does not cover its collocated client and is said to be infeasible when either
the number of clients to be covered or the number of facilities to be opened within a subtree is
greater than the total number of nodes in the subtree. We call an entry of the table pessimal when
it is either infeasible or trivially suboptimal. It is easy to determine the pessimal states in the DP
table at the leaf level of the tree. For other subproblems, a cell in the table is pessimal if and only
if all its subproblems are pessimal states. For the ease of execution of our DP, we assign a value of
∞ to these cells in our table.

Notice that, at the leaf level of a 2-HST, all the vertices are client nodes. But some of these
nodes may also have a collocated facility opened. At this stage, the only non-pessimal subproblems
are the following:

(a) Facility nodes that correspond to subproblems of the kind A[v, 1, tv, uv, 0, o] satisfying the
capacity constraint that uv + o+ 1 = 2tv , where the number 1 indicates the facility’s collocated
client from Lemma 1 (and)

(b) Client nodes which have subproblems of the form A[v, 0,−1, 0, 1, 0].

The value stored in these entries are zero.

6

3.1.2 The Recurrence

If the vertex v has two children v1 and v2 and the values for the dynamic program are already
computed for all subproblems of Tv1 and Tv2 , then the recurrence we use is given as follows:

A[v, kv, tv, uv, dv, o] = min
k′,k′′,t∗1,t

∗
2,u
∗
1,u
∗
2,d
∗
1,d
∗
2,o1,o2

(A[v1, k
′, t∗1, u

∗
1, d
∗
1, o1]

+A[v2, k
′′, t∗2, u

∗
2, d
∗
2, o2]

+ 2
∑

i={1,2},t∗i≥0

2t
∗
i · u∗i · d(v, vi)), (1)

where the subproblems in the above equation satisfy the following “consistency constraints”:

1. Type consistency: We consider two cases for tv assuming that uv > 0. If uv = 0, the
problem boils down to the case where tv = −1.

(a) If tv = −1, then no facility in Tv serves clients located in T\Tv. Therefore, all the
clients served by facilities in Tv1 are located within Tv1 or in Tv2 . Similarly, for the
subtree Tv2 , every client served by a facility in Tv2 is either located in Tv1 or in Tv2 . But
it is clear from Observation 1 that an optimal solution cannot simultaneously have a
facility in Tv1 serving a client in Tv2 and a facility in Tv2 serving a client in Tv1 . Hence,
min(tv1 , tv2) = tv = −1.

(b) If tv ≥ 0, then there exists at least one client in T\Tv that will be served by a facility in
Tv. Without loss of generality, if one of the two subtrees, say Tv1 has tv1 = −1, then the
type of the other subtree tv2 must be equal to the type of the facility leaving its parent,
tv. Otherwise, if both the values tv1 and tv2 are non-negative, Lemma 2 implies that
min(tv1 , tv2) = tv.

2. Slack consistency: The slack of Tv comes from the combined slack of facilities in both its
subtrees, Tv1 and Tv2 . Therefore, o = o1 + o2.

3. Consistency in the number of facilities : kv is the number of facilities opened in Tv.
Since these facilities come from the subtrees Tv1 and Tv2 , we have that kv = k′ + k′′.

4. Flow consistency: u∗1+u∗2+dv = d∗1+d∗2+uv. This constraint ensures that the subproblems
we are looking at are consistent with the uv and dv values in hand. More specifically, note
that u∗1 is the number of clients in T\Tv1 served by facilities in Tv1 and that these u∗1 clients
can either be located in Tv2 or in the subtree T\Tv. Let us denote by u∗1a, the number of such
clients in T\Tv and by u∗1b, the number of clients in Tv2 served by facilities in Tv1 . Likewise,
let u∗2a be the number of clients in T\Tv and u∗2b, the number of clients in Tv1 which are served
by facilities in Tv2 . It is easy to see that u∗1a + u∗1b = u∗1 and u∗2a + u∗2b = u∗2. Additionally, by
accounting for the clients in T\Tv served by facilities in Tv, we have

uv = u∗1a + u∗2a (2)

Now, out of the d∗1 clients in Tv1 and d∗2 clients in Tv2 which are served by facilities located
outside their respective subtrees, dv of these clients are served by facilities in T\Tv, while the
remaining clients d∗1 + d∗2 − dv must either be served by the u∗1b facilities situated in Tv1 and
u∗2b situated in Tv2 . Hence,

7

d∗1 + d∗2 = dv + u∗1b + u∗2b (3)

Summing up the Equations (2) and (3) and from the observation that u∗1a + u∗1b = u∗1 and
u∗2a + u∗2b = u∗2, the get the flow constraint stated above.

The last term in Equation (1) gives the sum of actual costs of the edges between v and its
children for the client-facility pairs where the facility is inside one of the two subtrees Tv1 or Tv2 .
From Definition 2, this value is equal to the difference, costinTv − (costinTv1

+ costinTv2
).

The optimal RBkM solution is the minimum value from amongst the entries A[r, k,−1, 0, 0, o]
for all values of o. Note that o can take a value of at most n− 1 in any optimal solution where n
is the number of leaf nodes in T as the slack of any facility is strictly smaller than half its capacity
(otherwise we can reduce the type of this facility), which is ideally the number of values we permit
in our table.

Note that the number of different values each parameter can take is bounded by the number
of nodes in the tree (we assume k is at most the number of leaves, or else the problem is trivial)
and the number of recursive calls made to compute a single entry is also polynomially-bounded, so
these values can be computed in polynomial time using dynamic programming.

4 QPTAS for Doubling Metrics

In this section we consider the generalization of BkM where C and F are not necessarily equal and
present a QPTAS for it when the input metric has constant doubling dimension. We also assume
that ε > 0 is a fixed constant (error parameter) and present an exact algorithm for ε-RBkM which
clearly implies a (1+ ε)-approximation for BkM. For the simplicity of explanation, we first describe
a QPTAS for tree metrics and show (see Appendix B) how it extends to doubling metrics.

4.1 A QPTAS for Tree Metrics

In this section, we present an exact quasi-polynomial time algorithm for the ε-RBkM problem
on trees. We make some modifications to an instance of the ε-RBkM problem. Without loss of
generality, we assume the tree is rooted at an arbitrary vertex r. We repeatedly remove leaves
with no client or facility until there is no such leaf in the tree. We also repeatedly remove internal
vertices of degree two with no client or facility by consolidating their incident edges into one edge
of the total length. Also, it is not hard to see that by introducing dummy vertices and zero length
edges, we can convert this modified rooted tree into an equivalent binary tree1 in which the clients
and facilities are only located on distinct leaves. In other words, each leaf has either a client or
a facility. The number of vertices and edges in this binary tree remains linear in the size of the
original instance.

Let p = dlog1+ε ne. In a solution for the ε-RBkM problem, we say a client or facility has type
i if it belongs to a type i cluster for some 0 ≤ i ≤ p. We first observe a structural property in
an optimal solution of an instance of ε-RBkM. We think of the clients get connected to facilities
(the center of the cluster) to get some service. Having said this, we prove that there is an optimal
solution in which type i clients either enter or leave a subtree but not both. In other words, in
this solution, there are not two clients of the same type such that one enters the subtree to get

1A tree in which every node other than the leaves has two children

8

connected to a facility and one leaves the subtree to get connected to a facility. To see this, let Tv
be the subtree rooted at an arbitrary vertex v, and assume clients j1 and j2 have the same type,
j1 is not in Tv but enters this subtree to be served by facility i1, and client j2 is in Tv but leaves
this subtree to be served by a facility i2. Then, it is not hard to see that because j1 and j2 have
the same type, if we send j1 to i2 and j2 to i1, we get another feasible clustering with no more
cost. Therefore, starting from an optimal solution, one can transform it to a new optimal solution
satisfying the above property. We now present a dynamic programming to compute the optimal
solution for the given instance of ε-RBkM in quasi-polynomial time.

4.1.1 The Table

The table in our dynamic programming algorithm captures “snapshots” of solutions in a particular
subtree which includes the information of how many clients of each type either enter or leave this
subtree. The subproblems have the form (v, k′,Q), where v is a vertex of the tree, k′ ≤ k, and Q
is a vector of length p + 1 of integers; we describe these parameters below. We want to find the
minimum cost solution to cover all the clients in Tv, the subtree rooted at v, such that:

1. There are at most 0 ≤ k′ ≤ k open facilities in Tv. These facilities serve clients inside or
outside Tv.

2. The clients in Tv are covered by the facilities inside Tv or outside Tv.

3. Q is a p+ 1 dimensional vector. The ith component of this vector qi determines the number
of type i clients that enter or leave Tv. When 0 ≤ qi ≤ n, qi is the number of type i clients
that enter Tv and when −n ≤ qi ≤ 0, |qi| is the number of type i clients that leave Tv.

In a partial solution for the subproblem, the types of clients in Tv and the at most k′ facilities to
be opened in Tv must be determined. Each client must be assigned to an open facility of the same
type in Tv or sent to v to be serviced outside, and each client shipped from outside to v must be
assigned to a facility of its type inside Tv. The cost of a partial solution accounts for the cost of
sending a client in Tv to a facility inside or to v (i.e., distance to the facility of v times (1 + ε)i

where i is the type client) plus, for the clients shipped from outside of Tv to v, the cost of sending
them from v to their designated facility in Tv (i.e. the distance from v to the facility times (1 + ε)i

where i is the type client). We keep the value of a minimum cost partial solution in table entry
A[v, k′,Q]. After filling this table, the final answer will be in the entry A[r, k,0] where 0 is a vector
with p+ 1 zero components.

4.1.2 The Recurrence

Base Case. In a base case, v is a leaf node. There are two subcases:
Case 1: There is a client on v. Then, for each 0 ≤ j ≤ p, we do as follows. We form a vector

Q with p + 1 components such that the ith component qi = 0 for all i 6= j and qi = −1 for i = j.
Then, we set A[v, 0,Q] = 0. We set all other entries of the form A[v, ., .] to infinity.

Case 2: There is a facility on v. Then, for each type 0 ≤ j ≤ p and for each integer (1+ε)j−1 <
t ≤ (1+ε)j , we do as follows. We form a vector Q with p+1 components such that the ith component
qi = 0 for all i 6= j and qi = t for i = j. Then we set A[v, 1,Q] = 0. We set all other entries of the
form A[v, ., .] to infinity.
Recursive Case. Consider a subtree rooted at a vertex v with two children v1 and v2. We say the
subproblem corresponding (v, k′,Q) is consistent with subproblems (v1, k

′
1,Q1) and (v2, k

′
2,Q2) if:

1. k′1 + k′2 ≤ k′;

9

2. Q1 + Q2 = Q.

To find the value of a subproblem (v, k′,Q), we initialize A[v, k′,Q] = ∞ and enumerate over
all subproblems for its children v1 and v2. For each pair of consitent subproblems (v1, k

′
1,Q1) and

(v2, k
′
2,Q2), we update the entry to the minimum of its current value and:

2∑
i=1

A[vi, k
′
i,Qi] +

p∑
j=0

|q(i)j | · (1 + ε)j · d(vi, v)

 ,

where q
(i)
j is the jth component of Qi.

Note that the size of the DP table is O(np+3) and we can compute each entry in time nO(p),
therefore:

Theorem 2 There is a QPTAS for the BkM problem on tree metrics.

4.2 Extension to doubling metrics

The extension of the above algorithm to doubling metrics relies on the decomposition tree of a
metric space of constant doubling dimension as done in [16] and the DP works on that tree. The
details of how the DP works appears in Appendix B

5 Conclusion

In this paper we have given an O(log n)-approximation for BkM and MSkC in general metrics and
also a quasi-PTAS for BkM in doubling metrics. Of course, the most natural open problem is
to determine if either of these problems admits a true constant-factor approximation in arbitrary
metric spaces. A PTAS for BkM in doubling dimension metrics or even Euclidean metrics seems
quite plausible but even obtaining a constant-factor approximation in such cases is an interesting
open problem. Perhaps one direction of attack would be to consider LP relaxation for the problem.
It can be shown that the most natural configuration based LP (where we would have a variable
xi,C for every possible facility location i and a set C of clients assigned to it) is equivalent to the
natural LP relaxation. One of the difficulties of using LP for BkM is that most of the standard
rounding techniques that have been used successfully for facility location or the k-median problem
(such as filtering, clustering, etc) do not seem to work for the BkM due to the multiplier of cluster
sizes. It would be interesting to see if the standard LP relaxation has a constant integrality gap.

References

[1] S. Arora, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n)-approximation algo-
rithms for Min UnCut, Min-2CNF Deletion, and directed cut problems. In Proceedings of
STOC, 2005.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, V. Pandit. Local Search Heuris-
tics for k-Median and Facility Location Problem. SIAM Journal on Computing, 33:544-562,
2004

[3] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic application. In
Proceedings of FOCS, 1996.

10

[4] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-Clustering in metric spaces.
In Proceedings of STOC, 2001.

[5] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An Improved Approximation
for k-median, and Positive Correlation in Budgeted Optimization. To appear in Proceedings
of SODA 2015.

[6] J. Chuzhoy and Y. Rabani. Approximating k-median with non-uniform capacities In Proceed-
ings of SODA 2005.

[7] A. Czumaj and C. Sohler. Small space representations for metric min-sum k-clustering and
their applications. In Proceedings STACS 2007.

[8] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In Proceedings of STOC, 2003.

[9] W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Yuval Rabani. Approximation schemes
for clustering problems. In In Proceedings STOC 2003.

[10] N. Guttman-Beck and R. Hassin. Approximation algorithms for min-sum p-clustering. Discrete
Applied Mathematics, 89:125–142, 1998.

[11] P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In Proceed-
ings of FOCS, 1999.

[12] V. Kann, S. Khanna, J. Lagergren, and A. Panconessi. On the hardness of max k-cut and its
dual. In Israeli Symposium on Theoretical Computer Science, 1996.

[13] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of STOC 2013.

[14] S. Sahni and T. Gonzalez, P -Complete Approximation Problems, J. of the ACM (JACM),
v.23 n.3, p.555-565, July 1976

[15] L.J. Schulman. Clustering for edge-cost minimization. In Proceedings of STOC 2000.

[16] K. Talwar, Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings
of STOC 2004.

[17] C. Wu, D. Xu, D. Du, and Y. Wang. An improved approximation algorithm for k-median
problem using a new factor-revealing LP http://arxiv.org/abs/1410.4161

A A Generalized Dynamic Programming Solution for 2-HSTs

In this section, we extend the dynamic program to accommodate generalized 2-HSTs. For a vertex
v ∈ T with `(v) children, we maintain an arbitrary total order of these and denote them as
v1, v2, · · · , v`(v). For 1 ≤ i ≤ `(v), let Tv,i represent the subtree of T induced by the vertices in
{v} ∪ Tv1 ∪ Tv2 ∪ · · · ∪ Tvi . In addition, let Tv,0 denote the trivial tree containing the singleton
vertex {v}. In order to define the subproblems of our DP, consider an arbitrary feasible solution
and consider an arbitrary v, i and focus on Tv,i. The following parameters are used to define our
subproblems.

• kv : is the number of facilities open in the subtree Tv,i.

11

• tv : is the type of facility in the subtree Tv,i, if any, that serves clients located outside Tv. If
there is no such facility, tv is equal to −1. By Lemma 2, the tv values are unique for every
subtree Tv.

• uv : is the number of clients outside the subtree Tv that are covered by type tv facilities
located in Tv,i.

• dv : Much like the uv values above, the dv value represents the number of clients in Tv,i that
are served by facilities located outside Tv.

• rv : is the number of clients in the subtree Tv\Tv,i that are served by facilities located in Tv,i.

• lv : is the number of clients in the subtree Tv,i that are served by facilities located in Tv\Tv,i.

• o : is the slack of Tv,i.

Each entry in our table is of the form:

DP[v, i, kv, tv, uv, dv, rv, lv, o] (4)

For a vertex v ∈ V with `(v) > 0 children, and any 1 ≤ i ≤ `(v), the value stored in this table entry
is the minimum of costinTv,i , over all possible feasible solutions with parameters kv, tv, uv, dv, rv, lv, o

if the subproblem denotes a non-pessimal state. For a leaf vertex v ∈ V with `(v) = 0, the
cell DP[v, 0, kv, tv, uv, dv, rv, lv, o] stores a value of 0 (which is equal to costinTv,0) if the parameters
correspond to a non-pessimal state and ∞ otherwise. We discuss this case in detail, later in this
section.

A.1 High Level Overview

Our algorithm for RBkM populates the table for each subtree Tv,i for every possible value of
kv, tv, uv, dv, rv, lv and o in the decreasing order of the levels of the nodes across levels (from leaf to
root) and in the increasing order of the ordering of the children of v for vertices in the same level
that share the same parent node. For two vertices in the same level that do not share a common
parent, ties are broken arbitrarily. Let the vertex v have `(v) children, named as per the total
ordering as v1, v2, · · · , v`(v).

Note that the number of facilities and clients that are reaching in and out of the tree Tv,i will
be split across the subtrees Tv,i−1 and Tvi . Additionally, the only feasible states we will need to
look for in the subtree Tv,`(v) will be the ones with rv and lv values of 0.

Pessimal states in the execution of the DP are either infeasible states or trivially suboptimal
states, as defined in the case of binary 2-HSTs. These states are dealt with by setting a value of
∞ to the respective cells in our table, in the same vein as our algorithm for the binary case.

If we denote the root of T by vr, it is clear that in any feasible solution to RBkM on T , all
the clients in T are covered by facilities within T . However, since we have discretized the values
of the multipliers on the facilities into O(log n) buckets, there can be facilities in T which are
assigned to fewer clients in T , as compared to the value of their multiplier. Therefore, the final
solution to RBkM would entail picking the minimum-cost solution from among the values stored
in DP[vr, `(vr), k,−1, 0, 0, 0, 0, o] for all possible values of o. Again, the value of o is at most n− 1
because the slack of every facility in any optimal solution is strictly less than half its capacity.

12

A.2 Base Cases

At the leaf level of a 2-HST, all the vertices are client nodes, although some of the clients are also
locations where collocated facilities are opened. At this stage, the only sub-problems capable of
being a part of an optimal solution are:

(a) Facility nodes that correspond to subproblems of the kind DP[v, 0, 1, tv, uv, 0, 0, 0, o] satisfying
the multiplicity constraint that uv + o + 1 = 2tv , where the number 1 indicates the facility’s
collocated client from Lemma 1 (and)

(b) Client nodes which have subproblems of the form DP[v, 0, 0,−1, 0, 1, 0, 0, 0].

These base cases have value zero. Subproblems at the leaf level which do not belong to the above
categories are pessimal states.

A.3 Computing Table Entries

Assume that we are now considering the subproblem Tv,i with appropriate values of the other
parameters. i.e we want to determine the value of DP[v, i, kv, tv, uv, dv, rv, lv, o], where 1 ≤ i ≤ `(v),
given that the minimum cost incurred in each of the assignments for all sub-problems within Tvi
and for various instances of Tv,i−1 (if i ≥ 2) are precomputed. We analyze the recursive structure
of the dynamic program as two separate cases.

1. If i = 1 :

When i equals 1, we are looking at the subtree of T induced by the vertices in Tv1 ∪ {v}. As
v1 is the first vertex in the total order of the children of v, the facilities and clients in any
feasible solution to the subproblem must come from Tv1 . Therefore,

DP[v, 1, kv, tv, uv, dv, rv, lv, o] =DP[v1, `(v1), kv, t
∗, u∗, d∗, 0, 0, o]

+ Ec1 ,

where Ec1 =

{
2 · 2t∗ · u∗ · d(v, v1) if t∗ ≥ 0

0 if t∗ = −1

where t∗ denotes the type of the facility in the subtree rooted at v1 having clients outside this
subtree, u∗ is the number of clients outside Tv1 served by a facility inside Tv1 and d∗ is the
number of clients in Tvi served by facilities located outside this subtree. Moreover, the value
of t∗, u∗ and d∗ can be determined from the following consistency constraints:

(a) Facilities located outside Tv1 : Consider the set of d∗ clients in Tv1 which are served
by facilities located outside this subtree. These facilities can be situated either in the
subtree T\Tv or in the subtree Tv\Tv1 . From the table entry in consideration, we know
that there are a total of dv clients of the former category and lv clients of the latter.
Therefore, d∗ = dv + lv.

(b) Clients located outside Tv1 :

13

• Case (i): Suppose tv 6= −1. Then, there must exist uv clients outside Tv, served
by facilities of type tv located in Tv1 . From Lemma 2, there exists a unique type
of facility in Tv1 serving clients outside this subtree. Also, these facilities serve uv
clients from T\Tv and rv clients from Tv\Tv1 . Therefore, t∗ = tv and u∗ = uv + rv.

• Case (ii) : If tv = −1, then every client served by a facility in Tv1 is either located
within this subtree or is located in the subtree Tv\Tv1 . Hence, u∗ = rv.

The last term in the DP recurrence, Ec1 captures the actual cost of the edge (v, v1) in the
feasible solution obtained. This value is equal to costinTv,1 − cost

in
Tv1

.

2. If 2 ≤ i ≤ `(v) :

If i ≥ 2, a feasible solution to the subproblem on Tv,i is obtained from feasible solutions to
problems on subtrees Tv,i−1 and Tvi , for varying values on the other parameters kv, tv, uv, dv, rv, lv
and o. The recurrence, in this case is as follows:

DP[v, i, kv, tv, uv, dv, rv, lv, o] = min
k′,k′′,t∗,u′v ,u

∗,d′v ,d
∗,r′v ,l

′
v ,o1,o2

(

DP[v, i− 1, k′, tv, u
′
v, d
′
v, r
′
v, l
′
v, o1]

+DP[vi, `(vi), k
′′, t∗, u∗, d∗, 0, 0, o2]

+ Ec2),

where Ec2 =

{
2 · 2t∗ · u∗ · d(v, vi) if t∗ ≥ 0

0 if t∗ = −1

where the k′ is the number of open facilities in Tv,i−1 and k′′ is the number of open facilities
in the subtree Tvi subject to the constraint that k′ + k′′ = kv, t

∗ denotes the type (can also
be -1) of the facility in the subtree rooted at vi having clients outside this subtree, u∗ is the
number of clients outside Tvi served by a facility inside Tvi , d

∗ is the number of clients in
Tvi served by facilities located outside this subtree, o1 and o2 are the slacks of Tv,i−1 and Tvi
respectively, satisfying o1 +o2 = o. The other variables in the recurrence statement, u′v, d

′
v, r
′
v

and l′v conform to the following consistency constraints:

(a) Clients located outside Tv : We break the u∗ clients outside Tvi that are served by
a facility in the subtree into two groups: let u∗2 be the number of clients in Tv\Tvi that
are served by a facility inside Tvi and u∗1 = u∗ − u∗2 be the rest (which are the clients
outside Tv that are served by a facility inside Tvi). Then constraint u′v = uv−u∗1 ensures
consistency in the number of facilities leaving Tv to serve the associated clients.

(b) Facilities located outside Tv : As in the above constraint, if we split d∗ into d∗1 and
d∗2 where d∗2 refers to the number of clients of Tvi served by a facility in Tv\Tv,i and d∗1 is
the number of the clients of Tvi that are served by a facility outside Tv. Similar to the
above constraints, d′v = dv − d∗1 is a necessary and sufficient consistency constraint for
the facilities located outside Tv,i serving clients within the sub-tree.

(c) Type Constraint for Tvi : We know from Lemma 2 that every facility in Tv that
serves clients in T\Tv is of the same type. Therefore, u∗1 can be greater than zero only
when t∗ = tv. If t∗ 6= tv, then u∗1 = 0.

14

(d) Flow consistency for the subtree Tv : Consider the total number of facility and client
pairs in the trees rooted at the children of v. The condition r′v + u∗2 + lv = l′v + d∗2 + rv
should be met for any feasible solution to RBkM. The proof to this statement is similar
to the proof of the flow consistency constraint in the case of binary 2-HSTs.

The last term in the recurrence, Ec2 gives the sum of actual costs of the edge (v, vi). From
Definition 2, this value is equal to the difference, costinTvi

− (costinTvi−1
+ costinTvi

).

As with the full binary case, the number of possible values each parameter in the recurrence
can take is bounded by the number of leaves in the tree. Furthermore, the recurrence makes
a polynomial number of recursive calls to smaller subproblems (with either a smaller i or being
rooted at a child vertex), so we can compute the optimal solution in polynomial time using dynamic
programming.

B QPTAS for BkM on Doubling Metrics

In this section, we extend the same ideas presented in the QPTAS for trees to give a QPTAS for
BkM doubling metrics by presenting a (1 + ε)-approximation for ε-RBkM. Consider a metric (V, d)
defined on a set of vertices V along with distance function d between vertices. Let B(v, r) be the
ball of radius r around v, i.e., B(v, r) = {u : d(v, u) ≤ r}. The doubling dimension of (V, d) is the
smallest κ such that any B(v, 2r) is contained in the union of at most 2κ balls of radius r. A metric
is called a doubling metric if κ is a constant. For example, a constant dimensional Euclidean metric
is a doubling metric.

We need to do some preprocessing steps before running our algorithm. First, we need to bound
the aspect ratio of the metric. The aspect ratio of a metric, ∆, is the ratio of the largest distance

to the smallest non-zero distance, i.e. ∆ =
maxu,v∈V d(u,v)

minu,v∈V,u6=v d(u,v)
. We use a standard scaling technique

to bound the aspect ratio. Let opt be the optimum value of the given instance. We can guess an
approximate value λ for opt such that opt ≤ λ ≤ (1 + ε′)opt (for an appropriate ε′ that depends
on ε). We remove all the edges heavier than λ because they are not part of any optimal solution
and find the minimum cost clustering for each connected component for all values of k′ ≤ k. With
a standard dynamic programming approach the solution of these connected components can be
merged into a solution for the instance of ε-RBkM at hand.

We show that at a small increase in approximation ratio, the instance defined on each connected
component can be transformed to an instance with polynomially bounded aspect ratio. Remember
that the distance function d is the shortest path distance in the input graph G between vertices.
Let w(u, v) be the weight on an edge between vertices u and v. We change the weights as follows:

w′(u, v) = bw(u,v)
ελ/n3 c. Since w(u, v) ≤ λ, we have ∆ ≤ n4/ε. We define the metric based on these new

weights and find an approximate solution for it. If we use the original weights w(u, v), the distance
of each client to its facility in the approximate solution increases by at most n · ελ/n3 and because
the facility multiplier is at most n, the total increase in cost of a client is n · ελ/n2. Therefore, the
cost of this approximate solution increases by at most ελ and we only lose a (1 + ε) factor by using
w′.

Also, we reduce the metric to vertices having a facility or a client located at them. In other
words, we remove vertices with no facility or client on them. Then, if a vertex has more than one
facility or client located at it, we add some new vertices and zero length edges such that each vertex
has either a client or a facility located at it. The above properties help us to simplify the dynamic
programming stage of our algorithm.

15

After these preprocessing steps, we can assume the metric (V, d) is a doubling metric with con-
stant dimension κ and polynomially bounded aspect ratio ∆. We employ the hierarchical decom-
position of metric spaces by means of probabilistic partitioning. The decomposition is essentially
the one introduced by Bartal [3], and subsequently used by others, most notably in [8], and most
relevantly, for TSP and other problems in doubling metrics, in [16].

The hierarchical decomposition of V is a sequence of partitions of V , where each partition is
finer than the previous one. The decomposition can be represented as a tree T (called the split-tree),
where each node A of T corresponds to a subset of V . The root node corresponds to the single set
{V } and the leaf nodes correspond to singleton sets {{v}}v∈V . The children of each node A of T
correspond to the parts that give a finer partition of the set corresponding to A. The union of all
subsets corresponding to the vertices at each level in this split-tree constitutes a partition of V .

We give a dynamic programming algorithm that solves subproblems restricted to the points in
each set corresponding to a node of T by combining the solutions to the sets corresponding to its
children in the split tree. In doing so, we represent a subset of points in each set as portals and
require the solution to cross each set of nodes through its portals. This goes along the lines of [16].
More specifically, for two sets Si and Sj (corresponding to two nodes of T) and two vertices u ∈ Si
and v ∈ Sj , if a client located at u is assigned to a facility location at v in the solution then we
break this into a path which goes from u to a portal of Si, then to a portal of Sj , and then to v.
The approximation scheme follows by showing that: 1) The objective function deteriorates by a
factor of at most 1 + ε, if we require the solution to be portal-respecting, and 2) that the dynamic
program can be performed in quasi-polynomial time to find the best portal-respecting solution for
an instance of ε-RBkM problem.

We use the following theorem on the hierarchical decomposition of doubling metrics:

Theorem 3 ([16]) There is a hierarchical decomposition of V , i.e. a sequence of partitions P0,
P1, . . . ,Ph, where Pi−1 is a refinement of Pi, Ph = {V }, and P0 = {{v}}v∈V . The decomposition
has the following properties:

1. P0 corresponds to the leaves and Ph corresponds to the root of the split-tree T , and height of
T is h = δ + 2, where δ = log ∆ and ∆ is the aspect ratio of metric.

2. Each set of nodes S corresponding to a node of T at level i, S ∈ Pi, has diameter at most
2i+1.

3. The branching factor b of T is at most 2O(κ).

4. For any u, v ∈ V , the probability that they are in different sets corresponding to nodes in level
i of T is at most O(κ) · d(u,v)

2i
.

For each set of nodes S, we introduce a subset P (S) ⊆ S of portals, and require edges to go
through the portals to enter and exit S. Talwar [16] shows how one can choose m = (4κδ/ε)κ

portals for each set S such that the expected cost of a portal respecting path between two vertices
u and v is at most (1 + ε)d(u, v). In other words, if we use these portals, the expected cost of the
best portal respecting solution is within (1 + ε) factor of optimum. For a constant κ and ε, because
∆ is polynomially bounded, the number of portals, m, is polylogarithmic which enables us to devise
a quasi-polynomial time dynamic programming for finding the best portal respecting solution.

B.0.1 Dynamic Programming

The dynamic programming is similar to the dynamic programming for trees. We define the sub-
problems on the subtrees rooted at nodes of the split-tree. The table in our dynamic programming

16

algorithm captures “snapshots” of solutions in a particular subtree of T which includes the infor-
mation of how many clients of each type either enter or leave the portals of this subtree. The
subproblems have the form (U, k′,Q1,Q2, . . . ,Qm) where U is a set (of the partition) in some Pi.
We want to find the minimum cost solution to cover all the clients in U such that there are at most
0 ≤ k′ ≤ k open facilities in U and all clients in U are covered, and Qi is a p+ 1 dimensional vector
that keeps the information of how many of each client type enter or leave the ith portal of U for
1 ≤ i ≤ m. The components of each Qi have the same meaning as in the case of tree.

In a partial solution for a subproblem, the types of clients in U and the at most k′ facilities to
be opened in U must be determined. Each client must be assigned to an open facility of the same
type in U or to a portal of U to be shipped outside, and each client shipped from outside to a portal
of U must be assigned to a facility of its type inside. The cost of a partial solution accounts for the
cost of sending a client in U to a facility inside or to a portal of U plus the cost of sending clients
shipped from outside of U from the portal of U they have arrived to to their designated facility in
U . We keep the value of a minimum cost partial solution in table entry A[v, k′,Q1,Q2, . . . ,Qm].
After filling this table, the final answer will be in the entry A[V, k,0, . . . ,0] where 0 is a vector with
p+ 1 zero components.

Base case: In the base case, we have a singleton in a leaf of the split-tree. For a singleton, the
corresponding set has only one portal and we only need to set Q1 and we can set the remaining Qi

to 0. Because each singleton has either a facility or client, filling A for base case is almost identical
to the case of trees.

Recurrence: For the recursive case, consider the children of a node U and let them be
U1, . . . , Ub where b is at most 2O(κ), which is a constant. We say the subproblem correspond-
ing (U, k′,Q1,Q2, . . . ,Qm) is consistent with subproblems

(U1, k
′
1,Q

(1)
1 ,Q

(1)
2 , . . . ,Q

(1)
m), . . . , (Ub, k

′
b,Q

(b)
1 ,Q

(b)
2 , . . . ,Q

(b)
m) if:

1. k′1 + · · ·+ k′b ≤ k′;

2.
∑m

i=1

∑b
j=1 Q

(j)
i =

∑m
i=1 Qi.

To find the value of a subproblem (U, k′,Q1,Q2, . . . ,Qm), we initialize it with infinity and enu-
merate all consistent subproblems for its children U1, . . . , Ub. For each set of consitent subproblems,
we update the entry to the minimum of its current value and the minimum value corresponding to
this particular set of subproblems. In case of tree, we could compute this value with a closed form
expression, but here finding this value is more complicated.

We want to find the value of a consistent set of subproblems of U1, . . . , Ub with (U, k′,Q1,Q2, . . . ,Qm).
This value is the sum of two main contributors: the total value of subproblems of U1, . . . , Ub that
can be extracted from table A, and the cost of moving clients between portals of U1, . . . , Ub and U .
Since clients of type i do not interact with clients of other types, we can find the minimum value
for moving clients of each type separately and we use a minimum cost perfect matching algorithm
to do that. Consider a particular type i. Create a bipartite graph with bipartitions XE and XL. If
a portal u has t clients entering it, create t vertices in XE and if t clients leave this portal, create
t vertices in XL. Set the cost of an edge between two portals u and v to their distance d(u, v). By
the second requirement of consistency, the number of type i clients leaving the portals is equal to
the number of type i clients that enter the portals. Therefore, the size of XE is equal to size of XL

and there is a perfect matching between them. If we find the minimum cost perfect matching in
this graph, it gives the best way to move the type i clients between portals of U1, . . . , Ub and U .

Analysis: Since the aspect ration ∆ is polynomially bounded and δ = log ∆, the number of
portals m = (4κδ/ε)κ is polylogarithmically bounded for any fixed κ. Therefore, the size of the
DP table is quasi-polynomial. Also to compute each entry we have to consider quasi-polynomially

17

many other subproblems. Therefore, the whole algorithm runs in quasi-polynomial. Given that
we only loose a small factor in our preprocessing, this gives a (1 + ε)-approximation for ε-RBkM.
Combined with the reduction from BkM to ε-RBkM it implies:

Theorem 4 There is a QPTAS for the BkM problem on doubling metrics.

C Exact Algorithm for Line Metrics

In this section we present a polynomial time algorithm for BkM when the metric is a simple path
(or a line). Recall that V is the set of vertices. A line distance function is a distance function
d : V × V → Q≥0 such that d(vi, vj) =

∑j−1
`=i d(v`, v`+1) for all 1 ≤ i ≤ j ≤ n. A set of vertices V

together with a line distance function defines a line metric. Without loss of generality, assume that
the points v1, v2, . . . , vn are ordered from left to right. We give an exact dynamic programming
algorithm for the line metrics. We first need to prove some structural properties.

Assume that the cost of connections (which includes the size multipliers) to facilities is charged
to clients. Assume i and i′ are two facilities and consider all solutions that they serve fixed numbers
ni and ni′ clients, respectively. Consider two of these solutions such that in one a client j is served

by i and in the other one it is served by i′. Let gi,i
′

j be the gain of client j if we consider the solution
in which it is served by facility i′ comparing to the solution in which it is served by facility i. In

other words, gi,i
′

j = ni ·d(i, j)−ni′ ·d(i′, j). Note that in this definition, we only see the cost change
from the point of view of client j.

We have the following lemmas about g-values in general metrics:

Lemma 3 Consider an optimal solution for an instance of the BkM problem in general metrics.
Let i and i′ be two facilities opened in this solution serving a set of clients Ci and Ci′, respectively.

Then, for any two clients j ∈ Ci and j′ ∈ Ci′, we have gi,i
′

j ≤ g
i,i′

j′ .

Proof. The contribution of these two clusters two the optimal value is∑
j∈Ci

|Ci|d(i, j) +
∑
j′∈Ci′

|Ci′ |d(i′, j′).

We add and subtract the term
∑

j′∈Ci′
|Ci|d(i, j′) to this contribution:∑

j∈Ci∪Ci′

|Ci|d(i, j)−
∑
j′∈Ci′

(|Ci|d(i, j′)− |Ci′ |d(i′, j′)) =
∑

j∈Ci∪Ci′

|Ci|d(i, j)−
∑
j′∈C′

gi,i
′

j′ .

Note that the first term only depends on clients in Ci ∪ Ci′ and it is independent of how these

clients are assigned to i and i′. If for two clients j ∈ Ci and j′ ∈ Ci′ gi,i
′

j > gi,i
′

j′ , we can swap the
assignment of j and j′ to decrease the second term which is a contradiction.

Lemma 4 Consider a solution for an instance of the BkM problem in general metrics. Let i and i′

be two facilities opened in this solution serving ni and ni′ clients respectively such that ni ≥ ni′. If

j and j′ are two arbitrary clients such that j lies on the shortest path of j′ from i, then gi,i
′

j ≤ g
i,i′

j′ .

Proof. Let d(i, j′)− d(i, j) = `. Because j is on the shortest path of j′ from i, we have ` ≥ 0 and
d(j, j′) = `. By the triangle inequality, |d(i′, j) − d(i′, j′)| ≤ d(j, j′) = ` where |.| is absolute value

18

function. We show that gi,i
′

j − g
i,i′

j′ ≤ 0.

gi,i
′

j − g
i,i′

j′ = nid(i, j)− ni′d(i′, j)− (nid(i, j′)− ni′d(i′, j′))

= ni(d(i, j)− d(i, j′))− ni′(d(i′, j)− d(i′, j′))

≤ −ni − `+ ni′ |d(i′, j)− d(i′, j′)| ≤ (ni′ − ni)` ≤ 0,

where we used the fact that ` ≥ 0 and ni ≥ ni′ .

Corollary 1 For any two facilities i and i′ in a solution of the BkM problem in tree metrics, the
gi,i
′

values do not decrease along a simple path started from i.

The above corollary together with Lemma 3 result in an interesting structural property in line
metrics. We call the segment that connects a client to its facility an arm. Let ` and r be the
indices of the leftmost and the rightmost clients served by a facility, respectively. We call the set
{v`, v`+1, . . . , vr} the span of this facility.

Lemma 5 There is an optimal solution for any instance of the BkM problem on line metric in
which for any two facilities i and i′, if the number of clients served by i, ni, is greater than or equal
to the number of clients served by i′, ni′, then facility i′ does not serve any client in span of i.

Proof. Consider an arbitrary optimal solution. Order the open facilities in this optimal solution
as follows. A facility serving more clients than another facility precedes it. If two facilities serve
the same number of clients, the facility with lower index precedes the other facility. These two
rules define a unique order. Assume facility i precedes facility i′ in this order. By Lemma 3, facility
i must serve clients with ni smallest gi,i

′
-values among the clients served by i and i′. Among all

optimal solutions having the same set of open facilities and same number of clients served by each
one of these facilities, pick the one in which whenever there is a choice between two clients having
the same gi,i

′
-value, the one with smaller index is assigned to i. We claim this solution has the

desired property.
Consider two arbitrary facilities i and i′ such that ni ≥ ni′ . There are two cases: either ni > ni′

or ni = ni′ . Assume that ni > ni′ . By Corollary 1, the gi,i
′
-values does not decrease as we move

away from i in either left or right direction. Therefore, facility i′ does not serve any client in span
of i, because otherwise, facility i serves a client with gi,i

′
-value less than or equal to a client with

greater index served by i, which is a contradiction to the way we picked the optimal solution. Now
assume that ni = ni′ and without loss of generality, assume i has a smaller index than i′. In this
case , the ni clients assigned to i are the clients with ni smallest index among the clients served by
i and i′ (because they have the ni smallest gi,i

′
-values) and hence, the spans of these facilities are

disjoint.
Using a dynamic programming algorithm, we can find an optimal solution having the property

of Lemma 5. Let A(k′, i, j, f, nf , `) be the minimum cost to serve {vi, vi+1, . . . , vj} by opening k′

new facilities such that f = ⊥ or f is a facility. If f = ⊥, we have nf = ` = 0. If f is a facility and
ell > 0, among all facilities that their spans contain {vi, vi+1, . . . , vj}, f must have the smallest size
span such that

1. f serves nf clients;

2. f serves ` clients in {vi, vi+1, . . . , vj}.

19

The optimum value can be found in A[k, 1, n,⊥, 0, 0]. We use the following recurrence to fill
A. In what follows, by guessing a parameter, we mean that we try all polynomially many possible
values of that parameter and if one of them results in a feasible solution, we update the value of
the current subproblem (i.e. , take the minimum of the current value and the newly found value).
Base Case. Set A(k′, i, i, f, nf , `) = nf · d(f, i) and A(k′, i, i, f, nf , 0) = ∞ for all k′, i, f, nf , and
` > 0.
Recursive Case. To find A(k′, i, j, f, nf , `), there are two cases. Guess whether f covers i or not.
If f covers i, we must have f 6= ⊥, ` > 0, and:

A(k′, i, j, f, nf , `) = nf · d(f, i) +A[k′, i+ 1, j, f, nf , `− 1].

If f does not cover i, guess the facility f ′ that covers i, guess nf ′ the number of clients f ′ serves,
guess j′ the rightmost vertex f ′ serves and guess k′′ the number of facilities that only serve clients
in {vi, vi+1, . . . , vj′}. We have

A(k′, i, j, f, nf , `) = A[k′′, i, j′, f ′, nf ′ , nf ′] +A[k′ − k′′ − 1, j′ + 1, j, f, nf , `],

where we assume j′ < j. If j′ = j, we must have ` = 0 and the second term must be omitted.
It is not hard to see that we should fill the elements of A in order of increasing j − i. After

filling the table A, an optimal solution can be constructed in the standard way from the values in
these tables. This results in the following theorem:

Theorem 5 There is an exact algorithm for the BkM problem on line metrics.

20

