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We consider the unsplittable flow problem on a line. In this problem, we are given a set of n tasks, each
specified by a start time si, an end time ti, a demand di > 0, and a profit pi > 0. A task, if accepted, requires
di units of “bandwidth” from time si to ti and accrues a profit of pi. For every time t, we are also specified
the available bandwidth ct, and the goal is to find a subset of tasks with maximum profit subject to the
bandwidth constraints.

We present the first polynomial-time O(logn)-approximation algorithm for this problem. This signifi-
cantly advances the state-of-the-art, as no polynomial-time o(n)-approximation was known previously. Pre-
vious results for this problem were known only in more restrictive settings, in particular, either the instance
satisfies the so-called “no-bottleneck” assumption: maxi di ≤ mint ct, or the ratio of both maximum to min-
imum demands and maximum to minimum capacities are polynomially (or quasi-polynomially) bounded in
n. Our result, on the other hand, does not require these assumptions.

Our algorithm is based on a combination of dynamic programming and rounding a natural linear pro-
gramming relaxation for the problem. While there is an Ω(n) integrality gap known for this LP relaxation,
our key idea is to exploit certain structural properties of the problem to show that instances that are bad for
the LP can in fact be handled using dynamic programming.
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1. INTRODUCTION

In the Unsplittable Flow Problem (UFP), we are given an undirected graph G = (V,E)
with edge capacities {ce}e∈E , a set of demand pairs T = {(si, ti)}1≤i≤n where each pair
si, ti ∈ V has a demand value di > 0 and profit pi > 0. We obtain a profit of pi if we
can route the total demand di of the pair from si to ti along a single path. A subset
S ⊆ {1, . . . , n} of the demands is called feasible if all the demands in S can be routed
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simultaneously without violating any edge capacity, i.e., the total demand routed on
any edge e is at most ce. The goal is to find a feasible set of demand pairs and paths
to route the corresponding demands while maximizing the total profit obtained from
the demand pairs that are fully routed. The UFP is NP-hard even when restricted
to very special cases. For instance, if the entire graph G is a single edge, the UFP
specializes to the KNAPSACK problem. When all the edge capacities as well as all the
demands and profits are 1, the UFP specializes to the well-studied maximum edge-
disjoint paths problem (EDP) which is NP-hard even for restricted classes of graphs,
like planar graphs.
There is a large amount of research focused on the study of UFP on line networks.

In such an instance, the input graph G is an undirected path (line). The study of
UFP on line graphs1 is motivated by several applications such as bandwidth alloca-
tion of sessions on a shared communication link, job scheduling with known machine
requirements and time windows, the general caching problem with varying page sizes
and available memory and so on. In fact, UFP on lines is equivalent to the follow-
ing scheduling problem called Resource Allocation Problem (or RAP for short). In this
problem, we are given n tasks, each specified by a start time si, end time ti, demand
di, and profit pi. The task i, if scheduled, requires di units of a resource in the time
interval [si, ti), called span of i, and is assumed to accrue a profit of pi. The resource
(e.g. CPU), which is shared among scheduled tasks, is present to an extent ct at time
t. We refer to ct as the capacity at time t. The problem is to find a subset S of the tasks
such that

∑

i∈S pi is maximized while satisfying the resource capacity constraints at
all times. It is easy to see the correspondence between the tasks in RAP and demand
pairs in UFP on lines.
UFP continues to be a difficult problem even when restricted to lines and obtaining

a reasonable approximation for it has resisted several attempts. One difficulty is that
the natural LP relaxation for this problem has an integrality gap of Ω(n) and obtain-
ing an approximation algorithm with performance ratio o(n) has been an interesting
open question. As we discuss below, all previous results require extra assumptions.
The most widely used assumption is the so called no-bottleneck assumption which
states that dmax ≤ cmin where dmax = maxi di and cmin = mint ct. Note that this re-
quires that demand of every task be no more than the capacity of every edge (and not
just those edges that this task spans). The no-bottleneck assumption imposes a rather
strong restriction on the instances, and seems to exclude the truly hard cases of the
problem. For example, the integrality gap instance mentioned above does not satisfy
this assumption.

1.1. Previous work

As stated above, when all the demands, capacities, and profits are one, we obtain
the problem of EDP which is very well-studied. This problem is NP-hard in general
graphs (with non-constant number of terminal-pairs), and NP-hard even with only
two terminal-pairs in directed graphs (see [Fortune et al. 1978]). The first approxima-
tion algorithm for EDP was an O(

√

|E|) approximation [Kleinberg 1996] that was later
generalized to UFP under the so-called “no-bottleneck” assumption: maxi di ≤ mine ce
[Srinivasan 1997; Baveja and Srinivasan 2000]. More recently, this was improved
these to an O(

√

|V |)-approximation [Chekuri et al. 2006] . On the other hand, it is

known that EDP on directed graphs is NP-hard to approximate within Ω(|E|
1

2
−ǫ) for

1We use the term “line graphs” or “line networks” to refer to graphs that consist of a simple path, as done
in the previous works on UFP. Our usage of term line graphs should not be confused with a more standard
notion of line graphs in graph theory, i.e., a graph obtained from another graph by replacing edges by vertices
and making two vertices adjacent if the corresponding edges are incident.
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any constant ǫ > 0 [Guruswami et al. 2003] . In the undirected setting EDP is quasi-

NP-hard to approximate within Ω(log
1

2
−ǫ |E|) for any ǫ > 0 [Andrews and Zhang 2006;

Andrews et al. 2005] . All these results give the same hardness for UFP even with
the no-bottleneck assumption in the corresponding model. Without the no-bottleneck
assumption, UFP is NP-hard to approximate within Ω(|E|1−ǫ) [Azar and Regev 2001].
For the case of trees, UFP is known to be APX-hard [Garg et al. 1997].
Several papers have studied UFP and EDP on graphs with high expansion, we name

a few here. For instance, in (large) constant-degree regular expanders with sufficiently
high expansion, there is a constant c such that any cn/ logn pairs for which no ver-
tex appears in more than O(1) pairs, can be connected via edge-disjoint paths [Frieze
2000]. This implies an O(log n)-approximation for EDP on such expanders. Using ear-
lier works by [Kleinberg and Rubinfeld 1996], [Srinivasan 1997] gave an O(log3 n)-
approximation for uniform capacity UFP (referred to as UCUFP) on expanders. Some
improvements were obtained by [Kolman and Scheideler 2006] and [Chakrabarti et al.
2002].
The special case of the EDP problem on line networks corresponds to maximum

independent set on interval graphs, which can be solved in polynomial time. If we
have uniform capacities (i.e. UCUFP) then the problem is NP-hard even on lines. This
problem is equivalent to a resource allocation problem that has been studied by [Bar-
Noy et al. 2001] and [Phillips et al. 2000]. The first constant approximation algorithm
for UCUFP on lines was provided by [Phillips et al. 2000]. The approximation ratio of
the problem was later improved in a series of papers [Bar-Noy et al. 2001; Calinescu
et al. 2011] to (2 + ǫ).
For the general UFP on lines, as mentioned earlier, the problem has not been easy

to approximate. Therefore, most of the previous works have made some extra assump-
tions in order to get a reasonable approximation. A typical extra assumption has been
to consider instances of UFP on lines with the no-bottleneck assumption. For UFP on
line graphs, with the no-bottleneck assumption, [Chakrabarti et al. 2002] presented
the first constant approximation which was later improved by [Chekuri et al. 2007]
to a (2 + ǫ)-approximation (again under the no-bottleneck assumption). Without the
no-bottleneck assumption, if all the demands, edge capacities, and profits are quasi-
polynomial in the number of pairs, i.e., at most O(2polylog(n)), then there is a (1 + ǫ)-
approximation algorithm that runs in quasi-polynomial time [Bansal et al. 2006]. Fi-
nally, for instances of UFP with bounded “aspect ratio” dmax/dmin, the integrality gap
of the natural LP relaxation for UFP on line graphs is Ω(log(dmax/dmin)) [Chakrabarti
et al. 2002]. They also gave an example where this can be as bad as Ω(n).

1.2. Our result and techniques

In this paper we study the UFP on lines, or equivalently, the Resource Allocation Prob-
lem (RAP) defined earlier. We present an O(log n)-approximation for RAP (i.e. the UFP
on lines) without any extra assumptions, thus beating the integrality gap for the nat-
ural LP relaxation. This also implies an O(log n)-approximation for UFP when the
underlying graph is a cycle, also called ring networks.
The following is a natural LP relaxation of the problem. We associate a variable xi

to denote if task i is picked in the solution.

(LP) max
∑

i pixi

s.t.
∑

i:t∈[si,ti)
dixi ≤ ct, 1 ≤ t ≤ T

xi ∈ [0, 1], 1 ≤ i ≤ n

It is instructive to consider the following Ω(n) integrality gap example, that we
refer to as the staircase instance. This example first seems to have been observed

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:4 N. Bansal et al.

. .
 .

. . .
d

n
= 2

−n

d3 = 2
−3

d2 = 2
−2

d1 = 2
−1

c
n

= 2
−n

c1 = 2
−1

c2 = 2
−2

c3 = 2
−3

Fig. 1. The example showing an integrality gap of Ω(n). The demands are not drawn to scale as they
decrease exponentially.

by [Chakrabarti et al. 2002]. We have n tasks and task i has start time si = 0 and
finish time ti = i, i.e. span [0, i), and di = 1/2i. All the tasks have profit 1 and the
capacity ct during interval [t, t+ 1) is equal to 1/2t+1, for 0 ≤ t ≤ n− 1 (see Figure 1).
Now consider the fractional solution in which xi = 1/2 for all tasks i. It is easy to

see that it is feasible for the LP and accrues a profit of n/2 = Ω(n). On the other hand,
we claim that any integral solution can have profit of at most 1. To see this, let dj∗
be the demand (task) with the smallest index that is selected in the solution. Then
this demand saturates time j∗ − 1 (recall that dj∗ = 1/2j

∗

= cj∗−1). So no other task
with index j′ > j∗ can be selected. Note that this example does not satisfy the no-
bottleneck property that maxi di ≤ mint ct and that the demands (and capacities) are
exponentially large in n. Therefore, in a sense, the extra assumptions used in earlier
works [Chakrabarti et al. 2002; Chekuri et al. 2007; Bansal et al. 2006] to obtain a
constant ratio approximation for UFP on lines may actually be excluding the truly
hard cases of the problem.
The starting point for our results is the observation that even though the staircase-

like instances described above are bad for the LP, they can be well approximated using
dynamic programming. In particular, we show that any instance can essentially be
decomposed into two parts. The first, can be solved well using LP relaxation, and the
second can be solved well using dynamic programming. The overall algorithm simply
chooses the best of these two solutions. The second part requires us to identify some
key structural properties such as being “intersecting” and “nested”, that make the
instance amenable to dynamic programming.
More precisely, our algorithm has the following steps: First, we show (by a simple

argument) that at the loss of an O(log n) factor, the problem can be reduced to in-
stances where all requests intersect at some common time. We then describe an O(1)-
approximation for such intersecting instances. To do this, we partition the tasks into
slack tasks and tight tasks. Slacks tasks are those whose demands are a small fraction
of the minimum capacity available during their respective spans. The rest of the tasks
are tight tasks. It is known that if all the tasks are slack and intersecting, then there
is a randomized rounding based O(1)-approximation for the problem (see [Chakrabarti
et al. 2002; Chekuri et al. 2007; Bansal et al. 2009]). For tight task instances, we show
that requiring that each task be tight and the instance be intersecting imposes a lot of
structure on the instance. Handling tight task instances is perhaps the most interest-
ing contribution of this paper. These instances seem to capture most of the inherent
hardness of the problem. For example, note that the staircase instance above satisfies
both the intersecting property and that each task is tight.
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Recent developments: Since the initial announcement of this work [Bansal et al.
2009], a stronger LP relaxation for UFP has been studied by [Chekuri et al. 2009].
Specifically, they devise a different LP relaxation that can be solved approximately
within a constant factor (they give an approximate separation oracle) and bound the
integrality gap of this new LP by O(log2 n) for UFP on paths. Additionally, they also
present a combinatorial O(log2 n)-approximation algorithm for UFP on trees.
Even more recently, a polynomial-time (7+ǫ)-approximation has been demonstrated

for any constant ǫ > 0 [Bonsma et al. 2011]. They also demonstrate that UFP on line
graphs is strongly NP-hard even when the edge capacities are uniform. Before their
result, the only known hardness for UFP was the weak NP-hardness it inherits from
the Knapsack problem.

2. REDUCTION TO INTERSECTING CASES

We use span(i) to denote the interval [si, ti). Also define the length of task i by
length(i) = ti − si. It is easy to see we may assume that si and ti are positive integers
for each task i. Furthermore, we may assume 1 ≤ si < ti ≤ 2n for the following reason.
If t is a time that is not the start or end of any task, then we simply subtract one from
each si and ti that is greater than t and set the capacity of ct−1 to the minimum of the
original values ct−1 and ct. There is a clear correspondence between feasible solutions
before and after such an update. This also means we may assume 1 ≤ length(i) < 2n
for each task i.
Tasks i and j are said to intersect if they share a common time. That is, i and j

intersect if span(i) ∩ span(j) 6= ∅. Say a collection of tasks is intersecting if all of the
tasks share a common time; this is equivalent to the property that the tasks in the
collection pairwise intersect. Finally, say that a collection of tasks C is feasible if, for
all times t we have

∑

i∈C:t∈span(i) di ≤ ct.

We may assume that each task is admissible by itself. This means we can trivially
obtain a profit of pmax = maxi pi. Now, we perform a preprocessing step via a standard
adjustment to the input (e.g. see [Vazirani 2003]). Fix a constant 0 < ǫ′ < 1 and adjust
each profit pi to p′i := ⌊ npi

ǫ′pmax

⌋. Notice the modified profits are integers between 0 and

⌊n/ǫ′⌋. Let OPT and OPT ′ respectively denote the maximum total profit of a feasible
set of tasks before and after adjusting the profits. It is easy to see that a subset of tasks
with profit at least αOPT ′ under the new profits has total profit at least (1− ǫ′)αOPT
under the old profits. Therefore:
Assumption:At a loss of (1−ǫ′) in the approximation factor, from now on we assume

that all pi values are integers between 0 and ⌊n/ǫ′⌋.
We now describe a reduction procedure which allows us to focus only on a subset of

tasks which is intersecting while losing a factor of only O(log n) in the approximation
guarantee.

LEMMA 2.1. If there is a ρ-approximation for instances of UFP on a line where all
tasks intersect, then there is an O(ρ log n)-approximation for the general instance of
UFP on a line.

PROOF. Consider a general instance of UFP on a line. We first group the tasks
according to their lengths. Say a task i belongs to group Gr if 2r ≤ length(i) < 2r+1.
Since we have length(i) < 2n for all tasks i, then r ∈ {0, 1, . . . , ⌈log2 2n⌉ − 1}. Focus on
an optimum set of feasible tasks T with profit OPT . Note that one of the groups Gr

must have at least a 1
⌈log

2
2n⌉ -fraction of the total profit of T . That is, if OPTr is the

optimum profit over all feasible subsets of tasks in group Gr, then OPTr ≥ OPT
⌈log

2
2n⌉ for

some r.
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Fig. 2. Grouping the tasks according to the left-most point of the form k2r for some integer k.

Consider a group Gr, each task i ∈ Gr must have k2r ∈ span(i) for some integer k.
Create groups Hr,k for k ∈ Z and place i ∈ Gr in group Hr,k if k is the least integer
for which k2r ∈ span(i). One sees that Hr,k is an intersecting collection of tasks (figure
2 helps illustrate this). Observe that for tasks i ∈ Hr,k and j ∈ Hr,l with k + 3 ≤ l
we have span(i) ∩ span(j) = ∅. This follows since length(i) < 2r+1 and si ≤ k2r imply
ti < (k + 2)2r. Furthermore, since l is the least integer for which sj ≤ l2r then sj ≥
(k + 2)2r > ti.
Now, apply the ρ-approximation to each Hr,k and let Cr,k denote the collection of

tasks chosen by the algorithm. For each l = 0, 1, 2, let C′
r,l be the union of all Cr,l′ with

l′ ≡ l (mod 3). By arguments in the previous paragraph, none of the tasks in Cr,k can
intersect any task in Cr,l if k + 3 ≤ l so C′

r,l is a feasible collection of tasks for each
l = 0, 1, 2. Furthermore, by looking at the restriction of the optimum solution OPTr for
group Gr to the subgroups Hr,k, we see that at least one of the three groups C′

r,l has

profit at least ρOPTr

3 . Thus, for some r ∈ {0, 1, . . . , ⌈log2 2n⌉ − 1} and some l ∈ {0, 1, 2}
we have the total profit of tasks in C′

r,l is at least
ρ

3⌈log
2
2n⌉ ·OPT .

In the next section, we will develop a constant-factor approximation for instances of
UFP on a line where all tasks are intersecting. Combined with the preceding lemma,
this yields the following:

THEOREM 2.2. There is an O(log n)-approximation for UFP on lines.

3. INTERSECTING CASES

Consider an instance of UFP where all tasks share a time t. Let 0 < ǫ ≤ 1/2 be some
constant. We say time k is a bottleneck for task i if k ∈ span(i) and di ≥ ǫck. We classify
each task i accordingly:

— if no time is a bottleneck for i then say i is slack
— if k ≤ t for all bottlenecks k for i then say i is left-tight
— if k > t for all bottlenecks k for i then say i is right-tight
— if i has bottlenecks on both sides of t then simply say i is tight

Partition the tasks into four groups according to the classification above. We de-
scribe a constant-factor approximation for each such group. The maximum total profit
of these four approximate solutions is then within a constant factor of the optimum so-
lution (since one of these groups has a solution consisting of at least 1/4 of the optimum
profit).
There is one further simplification we apply. If all tasks share a common point t,

then we may assume the following structure on the capacities. For each i < j ≤ t, we
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Fig. 3. Illustrating why we may assume the capacity profile is unimodal.

have ci ≤ cj and for each t ≥ j > i we have cj ≥ ci. That is, the capacities increase as
we move from the left to t and decrease as we move from t to the right. The reason is
this: in any feasible collection of tasks T and any for i < j ≤ t we have that the total
demand in T at time j is at least the total demand in T at time i. By this reasoning, we
may reduce the value ci to cj and not worry about affecting feasibility of any solution.
If the capacities satisfy this, then we say the capacity profile is unimodal. See Figure
3 for an illustration.

3.1. Slack Tasks

For the case of slack tasks, [Chakrabarti et al. 2002] present an LP randomized round-
ing algorithm that finds a feasible subset of tasks of total profit within a constant factor
of the LP optimum for instances satisfying the no bottleneck assumption. Though the
slack tasks in our case may not satisfy this assumption, essentially the same rounding
algorithm can be seen to provide a constant factor approximation for intersecting cases
of slack tasks. For the sake of completeness, we present the full algorithm and proof
in the case of intersecting slack tasks. The analysis is simpler in our case because the
tasks are intersecting.
We recall the standard LP for UFP.

(LP) max
∑

i pixi

s.t.
∑

i:t∈[si,ti)
dixi ≤ ct, 1 ≤ t ≤ T

xi ∈ [0, 1], 1 ≤ i ≤ n

Though it has an Ω(n) integrality gap in general cases, we will prove it has an O(1)-
integrality gap for intersecting cases of slack tasks when ǫ is regarded as a constant.
From now on, let x∗ denote an optimum solution to the above LP.
Consider the following algorithm. Since the capacity profile is unimodal, the mini-

mum capacity of all times spanned by a task i is at either si or ti − 1. Let C≤ be the
set of tasks with csi ≤ cti−1 and let C> be the set of tasks with csi > cti−1. That is, C≤

is the collection of tasks whose most constrained time is the start time and C> is the
collection of tasks whose most constrained time is the end time.
The rounding algorithm proceeds as follows. We first ignore the tasks in C> and

focus only on tasks in C≤. The algorithm for rounding tasks in C> is similar to what
follows so it is omitted. Next, order the tasks in C≤ in the increasing order of their
starting times. We choose each task i ∈ C≤ independently with probability x∗

i (1− ǫ)/2.
Let R denote the set of chosen tasks and say these tasks are i1 < i2 < · · · < i|R|. We
construct a sequence of sets ∅ = S0, S1, . . . , as follows: let Sr = Sr−1 ∪ {ir} if Sr−1 ∪ {ir}
is admissible; or let Sr = Sr−1 otherwise. The algorithm outputs the set S = S|R|.
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Note that S is a random set, and the decision whether task i lies in S or not is
correlated to whether other tasks lie in S or not. We will show that:

THEOREM 3.1. Any request i ∈ C≤ lies in S with probability at least x∗
i (1− ǫ)/4.

PROOF. Define the following random variables: for i ∈ C≤, let Xi = 1 if i ∈ R, and 0
otherwise; and let Yi = 1 if i ∈ S, and 0 otherwise. Note that Xi’s are independent, but
Yi’s are not.
Fix 1 ≤ r ≤ |R| and consider the task i = ir. We are interested in E[Yi]. Since S ⊆ R,

we have Yi ≤ Xi and hence E[Yi] ≤ E[Xi]. Consider the event Er that [Yi = 0 | Xi = 1].
If Er happens, then it must be the case that Sr−1 ∪ {i} is not admissible. The lemma
below characterizes the reason Er happens.

LEMMA 3.2. The event Er holds if and only if the capacity constraint at the start
time si of task i is violated by the set of tasks Sr−1 ∪ {i}.

PROOF. The proof is based on the fact that the capacity profile is unimodal with the
maximum capacity at time t and defining property of the tasks in C≤. By definition,
Er happens if and only if the capacity constraint at some time t′ ∈ [si, ti) is violated
by Sr−1 ∪ {i}. If t′ ≤ t, then from the assumption that capacity profile is unimodal, we
have csi ≤ ct′ . If t

′ > t, then since i ∈ C≤, we have csi ≤ cti−1 ≤ ct′ . Since all the tasks
in Sr−1 ∪ {ir} cross si and may or may not cross t, we get that that Sr−1 ∪ {ir} must
violate the capacity constraint at si.

Thus, forEr to hold, the total demand of tasks in R∩{1, . . . , i−1}must exceed csi−di.
For j = 1, . . . , i − 1, consider a random variable Dj = dj if j ∈ R, and 0 otherwise. Let

D =
∑i−1

j=1 Dj .

LEMMA 3.3. Pr[Er ] ≤ 1/2

PROOF. We know that Pr[Er ] ≤ Pr[D ≥ csi − di] ≤ Pr[D ≥ csi − ǫcsi ]. The second
step follows as all tasks are slack.

We have E[D] =
∑i−1

j=1 E[Dj ] =
∑i−1

j=1 x
∗
j (1 − ǫ)/2 ≤ csi(1 − ǫ)/2. The last inequality

holds since the fractional solution x∗ satisfies the capacity constraint at time si. Thus,
by Markov’s inequality, Pr[D ≥ csi(1 − ǫ)] ≤ 1/2.

Now,

E[Yi] = Pr[Yi = 1 | Xi = 1] · Pr[Xi = 1] + Pr[Yi = 1 | Xi = 0] · Pr[Xi = 0]

= Pr[Yi = 1 | Xi = 1] · Pr[Xi = 1]

= (1− Pr[Er ]) · x
∗
i (1− ǫ)/2

≥ x∗
i (1 − ǫ)/4

as claimed.

Say that S≤ and S> are, respectively, the subsets of C≤ and C> found through the
above rounding algorithm. If z∗ is the value of the LP solution for the slack tasks, using
Theorem 3.1 and returning the most profitable of S≤ and S>, the expected value of the
solution obtained is at least 1−ǫ

8 z∗.

3.2. Tight Tasks

As a warm-up, consider the special case where the tasks form a sequence of nested
intervals, called a nested instance. That is, say the tasks can be ordered such that
si ≤ sj ≤ tj ≤ ti for all i ≤ j. The following notation will be useful in all cases. For a
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task i, let cap(i) = mink∈span(i) ck denote the minimum capacity over all times in the
span of i.

THEOREM 3.4. There is an FPTAS for nested and tight instances.

PROOF. The algorithm is based on dynamic programming similar to the one used for
knapsack problems. For integers i, p, let f(i, p) be the minimum total demand among
feasible subsets S ⊆ {1, . . . , i} that achieve profit exactly p. If it is not possible to obtain
profit exactly p using the first i tasks then say f(i, p) = ∞. That values of f(i, p) are
computed in the order of increasing i. Clearly f(0, 0) = 0 and f(0, p) = ∞ for p > 0. We
claim the following recurrence is satisfied by the values f(i, p) for i > 0:

f(i, p) =

{

min{f(i− 1, p), f(i− 1, p− pi) + di} if pi ≤ p and f(i− 1, p− pi) + di ≤ cap(i)
f(i− 1, p) otherwise

To see this, consider some i > 0 and profit p. If f(i, p) = ∞ then surely f(i − 1, p) = ∞.
Furthermore, if pi ≤ p and f(i− 1, p− pi) < ∞ then we claim that f(i− 1, p− pi) + di >
cap(i). If this were not so, then consider some feasible set S′ of the first i− 1 tasks with
minimum possible demand with profit exactly p− pi. By definition, all t ∈ span(i) have
ct ≥ cap(i). Thus, if f(i− 1, p− pi) + di ≤ cap(i) then S′ ∪ {i} is a feasible subset of the
first i tasks obtaining profit p which contradicts f(i, p) = ∞. Therefore, the recurrence
is satisfied for those (i, p), i > 0 for which f(i, p) = ∞.
On the other hand, suppose f(i, p) < ∞. Consider some set S of the first i tasks with

minimum possible demand that obtains profit exactly p (i.e. the demand of S is f(i, p)).
If i 6∈ S then f(i− 1, p) ≤ f(i, p) since S is also a feasible set of the first i− 1 tasks. We
also have f(i − 1, p) ≥ f(i, p) since any subset of the first i − 1 tasks is also a subset of
the first i tasks. Combining these inequalities shows f(i − 1, p) = f(i, p). If i ∈ S then
S \ {i} is a feasible subset of the first i − 1 demands so f(i − 1, p − pi) ≤ f(i, p) − di.
If f(i − 1, p− pi) < f(i, p) − di, then by reasoning in a manner similar to the previous
paragraph, any feasible set S′ of profit p − pi of the first i − 1 tasks with demand
f(i − 1, p − pi) can be extended to a feasible set S′ ∪ {i} of the first i elements with
profit p and demand f(i − 1, p − pi) + d < f(i, p) which is a contradiction. Therefore,
f(i− 1, p− pi) + di = f(i, p). In either case of i ∈ S or i 6∈ S, the recurrence is satisfied.
The value of the optimum solution is then the largest value p for which f(n, p) < ∞.

By the simplifications made in Section 2, the only values of p which may be finite are
integers in the range [0, npmax]. Since pmax ≤ ⌊n/ǫ′⌋ for some given constant ǫ′ > 0
and i ranges from 0 to n (based on the assumption made in Section 2), then the above
recurrence can be computed with dynamic programming in time O(n3/ǫ′).

Now we go back to the more general case. A collection of tight tasks can be made to
look something like a sequence of nested intervals. Assume, by scaling the demands
and capacities, that all demands are at least 1. Create groups of demands Dk where
i ∈ Dk if ǫ−k ≤ di < ǫ−k−1. We have the following structure between groupsDk’s which
says if task i has much less demand than task j then task j is nested in task i. The
basic idea is that task j, being feasible on its own, cannot cross any bottleneck time for
task i since the demand for j is much higher than the demand of i while any bottleneck
time for i has capacity close to the demand of i.

LEMMA 3.5. If i ∈ Dk and j ∈ Dl with k + 2 ≤ l then si < sj and ti > tj (i.e.
span(j) ⊆ span(i)).

PROOF. Assume, by way of contradiction, that si ≥ sj . Since di < ǫ−k−1 and ǫ−l ≤ dj ,
then di < ǫdj (by k + 2 ≤ l). Also, since i is tight and the capacity profile is unimodal,
then di > ǫcsi which shows dj > csi . However, since si ≥ sj and tasks i and j intersect,
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then si ∈ span(j). This contradicts the fact that task j is feasible by itself. A similar
argument shows ti > tj .

Let D′
0 = D0 ∪D2 ∪D4 ∪ . . . and D′

1 = D1 ∪D3 ∪D5 ∪ . . . and notice that the entire
collection of intersecting tight tasks are partitioned between D′

0 and D′
1. We also have

the following observation that bounds the size of a feasible subset of any Dk. Suppose
time j is a bottleneck for some task i ∈ Dk. Then since cj is close to di and di′ is close
to di for all i

′ ∈ Dk, then only a few task in Dk can fit across j in any feasible solution.
Finally, since the tasks in Dk are intersecting and since each has a bottleneck time on
either side of the common time t, then in any collection of tasks in Dk there is a task
that has one of its bottleneck times spanned by all other tasks. Formally:

LEMMA 3.6. Let Bk be any feasible subset of Dk. Then |Bk| ≤ ǫ−2.

PROOF. Let i ∈ Bk be such that si ≥ sj for all j ∈ Bk. Notice that si ∈ span(j) for
all j ∈ Bk. Now, by definition of Dk we have dj ≥ ǫdi for all j ∈ Bk. Furthermore, since
i is tight we have di ≥ ǫcsi . Therefore, the total demand in Bk at time si is at least
|Bk|ǫ2csi . Since Bk is feasible, then the total demand crossing si must be at most csi .
Therefore, |Bk| ≤ ǫ−2.

Lemmas 3.5 and 3.6 lead to a dynamic programming solution. For each i ∈ {0, 1}
we will find an optimum feasible collection of tasks in D′

i in the following manner.
We build a table f(k, p) that is the minimum total demand using only tasks in groups
Dk, Dk−2, Dk−4, . . . to obtain profit exactly p. To build the f(k + 2, p) values from the
f(k, p) values, we will try adding subsets of Dk of size at most ǫ−2. By Lemma 3.5,
each tasks in Dk+2 is contained in the span of every task in Dk which resembles the
property that the tasks form a nested sequence of intervals. To simplify notation, for a
set of tasks S let pS =

∑

i∈S pi and dS =
∑

i∈S di. Furthermore, we extend the definition
of f(k, p) to include k = −1 and k = −2 which should simply read as f(k, 0) = 0 and
f(k, p) = ∞ for p > 0 whenever k = −1 or −2 (in other words, one can only obtain a
profit of 0 if no tasks are chosen).
The following notation will be helpful. Let A(k, p) be the collection of all subsets S of

Dk of size at most ǫ−2 with pS ≤ p and the following additional property. For any subset
T of Dk−2 ∪Dk−4 ∪ . . . with total profit p− pS and total demand dT = f(k− 2, p− pS) we
have dT +

∑

i∈S:j∈span(i) di ≤ cj for each time j contained in the common intersection

of all tasks in classes Dl, l < j. Intuitively, a set S in A(k, p) is one that can extend
any optimum set T corresponding to f(k − 2, p − pS) to a feasible solution S ∪ T . We
only have to verify the capacity constraints are satisfied for those times in the common
intersection of all tasks in some lower class Dl, l + 2 ≤ k. Again, by Lemma 3.5 this is
because the span of each task in Dk is completely contained in the span of each task
in some Dl, l + 2 ≤ k.
We can efficiently determine the members of A(k, p) in the following way. While the

above definition for A(k, p) may consider exponentially many T ⊆ Dk−2∪Dk−4∪ . . ., all
such sets T have the same total demand across the common intersection of all tasks in
classes Dl, l < j so to determine if S ∈ A(k, p) it is enough to know the value f(k−2, p−
pS). Lemma 3.6 essentially says we can restrict our attention to small subsets of Dk

since any subset larger than ǫ−2 is not feasible on its own. Therefore, we can determine
the members of A(k, p) in polynomial time by iterating over all subsets S of Dk of size
at most ǫ−2 and checking that pS ≤ p and f(k − 2, p − pS) +

∑

i∈S:j∈span(i) di ≤ cj for

each j contained in the common intersection of all tasks in classes Dl, l < j.
Formally, the recurrence for relating the f(k, p) values looks like:

— f(k, 0) = 0 for k ∈ {−1,−2}
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— f(k, p) = ∞ for k ∈ {−1,−2}, p > 0
— f(k, p) = ∞ for k ≥ 0 if A(k, p) = ∅
— f(k, p) = min

S∈A(k,p)
f(k − 2, p− pS) + dS for k ≥ 0, A(k, p) 6= ∅

LEMMA 3.7. The recurrence correctly relates the values of f(k, p).

PROOF. The base cases with k < 0 are clearly correct (when interpreted as sug-
gested above). Now, consider some k ≥ 0 and profit p. If f(k, p) < ∞ then let S = S′ ∪B
be a subset ofDk∪Dk−2∪. . . obtaining profit pwith total demand f(k, p) and S∩Dk = B.
We first verify that B ∈ A(k, p). By Lemma 3.6, we know |B| ≤ ǫ−2 (in fact, B may be
empty). Furthermore, we also clearly have pB ≤ p. Finally, since S′ is a feasible subset
ofDk−2∪Dk−4∪ . . . then f(k−2, p−pB) ≤ f(k, p)−dB. By Lemma 3.5, any optimum set
S∗ with profit p− pB and demand f(k− 2, p− pB) places less demand across each time
spanned by B than set S′. For such a set S∗ we have S∗ ∪ B being feasible. Therefore,
B ∈ A(k, p).
In fact, the arguments at the end of the last paragraph show that dS∗ = dS′ for S∗

an optimum set corresponding to f(k− 2, p− pB). Indeed, if dS∗ < dS′ then the feasible
set B ∪ S∗ has demand strictly less than B ∪ S′ and profit p which contradicts that
dS = dB∪S′ = f(k, p). Therefore, any optimum subsets S of Dk ∪Dk−2 ∪ . . . with profit
p and demand f(k, p) has S ∩ Dk ∈ A(k, p) and S \ Dk being an optimum subset of
Dk−2 ∪ Dk−4 ∪ . . . with profit p − pB and demand f(k − 2, p − pB) so the recurrence
correctly determines f(k, p) in this case.
On the other hand, if f(k, p) = ∞ then A(k, p) = ∅. This is because any B ∈ A(k, p) is

such that f(k−2, p−pB)+dB ≤ cj for all tasks j in the common intersection of tasks in
Dk−2 ∪Dk−4 ∪ . . .. Thus, by definition we would be able to extend any such set of tasks
with demand f(k − 2, p − B) to a feasible set of tasks obtaining profit p with demand
f(k, p).

THEOREM 3.8. There is a polynomial-time 2-approximation for UFP when the tasks
are intersecting and tight and all profits are integers bounded by O(n/ǫ′) for some con-
stant ǫ′ > 0.

PROOF. As in Theorem 3.4, the highest p for which f(k, p) 6= ∞ is then the optimum
profit of a feasible subset of tasks in D′

0 or in D′
1. This, in turn, is at least 1/2 of the

total profit of an optimum subset of tight tasks. By Lemma 3.7, we can compute the
values f(k, p) using dynamic programming (notice the recurrence for a given pair (k, p)
only refers to pairs (k′, p′) for which k′ < k).
The total profit is O(n2/ǫ′) and the profit of any subset of tasks is an integer. The

number of integers k for which Dk 6= ∅ is also at most n. Therefore, the total number
of f(k, p) entries that need to be considered is O(n3/ǫ′). For each k and each p, we

have |A(k, p)| ≤ nǫ−2

by Lemma 3.6 so the values f(k, p) can be computed in a dynamic
programming fashion in polynomial time if ǫ and ǫ′ are regarded as fixed constants.

3.3. Left-Tight and Right-Tight

We describe the algorithm for left-tight tasks. The algorithm for right-tight tasks is
essentially identical. As in the case of tight tasks, we group the tasks according to
their demand. That is, task i is in group Dk if ǫ−k ≤ di < ǫ−k−1. As before, let D′

0 be
D0 ∪ D2 ∪ D4 ∪ . . . and let D′

1 be the remaining tasks. We have the following lemmas
whose proofs are readily adapted from the analogous results for tight tasks.

LEMMA 3.9. If i ∈ Dk and j ∈ Dl with k + 2 ≤ l, then si < sj .

LEMMA 3.10. Let Bk be any feasible subset of Dk. Then |Bk| ≤ ǫ−2.
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Furthermore, we have the following observation. Recall that t is the point on the line
which all tasks share.

LEMMA 3.11. If S is any subset ofD′
0 orD

′
1 such that |S∩Dk| ≤

1−ǫ
ǫ

for each k, then
the total demand in S at any given time m > t does not exceed cm.

PROOF. Note that all the tasks are left-tight. So for any such task di and any time
m > t we have di ≤ ǫcm. Let m > t and let k be the largest integer such that ǫ−k−1 ≤
ǫcm. Using the above argument, notice that Dk′ ∩ S = ∅ for any k′ > k since the tasks
are only left-tight. Now, for any k′ ≤ k we have the total demand in S ∩ Dk′ being at
most:

1− ǫ

ǫ
· ǫ−k′−1 ≤

1− ǫ

ǫ
· ǫk−k′+1cm

since ǫ−k−2 ≤ cm by our choice of k. Summing over all k′ ≤ k shows the total demand
in S across time m is bound by:

(1− ǫ)cm

k
∑

k′=0

ǫk−k′

≤ (1 − ǫ)cm

∞
∑

k′=0

ǫk
′

= cm

Therefore, the capacity constraint at time m is not violated by S.

The preceding lemmas indicate that we can use a dynamic programming algorithm
similar to the one for tight tasks. The main difference is that we only need to be con-
cerned with the times m ≤ t if we ensure we only take subsets of Dk of size at most
1−ǫ
ǫ
. Furthermore, since the optimum solution chooses at most ǫ−2 tasks from each Dk

then the resulting solution found will be close to the optimum. Let f(k, p) denote the
minimum total demand of a feasible collection of tasks from groupsDk, Dk−2, Dk−4, . . .
that has total profit exactly p. The recurrence looks identical to the one for tight tasks
except the set A(k, p) is restricted to subsets of Dk of size at most 1−ǫ

ǫ
and the only

times we need to check for feasibility those times j ≤ t in the common intersection of
all tasks in Dk−2 ∪Dk−4 ∪ . . ..
The proof of correctness is similar to that of the recurrence for tight tasks. The only

difference is that Lemma 3.11 assures us that no time to the right of the common time
t will be violated by any subset S that represents any finite f(k, p) entry. Furthermore,
the recurrence can be computed in polynomial time if ǫ and ǫ′ are fixed constants since
there are at most n distinct values for k, the maximum total profit p to be considered is
O(n2/ǫ′), and the number of subsets of each Dk that need to be iterated over is at most

n
1−ǫ

ǫ .

LEMMA 3.12. The best of the two solutions found by running the dynamic program-

ming algorithm on D′
0 and D′

1 has total profit at least a
ǫ(1−ǫ)

2 -fraction of the optimum
solution for these left-tight tasks.

PROOF. Let T be an optimum collection of left-tight tasks. For each Dk, discard
all but the 1−ǫ

ǫ
most profitable tasks in T ∩ Dk from T ; call this new set T ′. Since

|T ∩ Dk| ≤ ǫ−2 then a ǫ(1 − ǫ)-fraction of the total profit of T remains in T ′. Now,
partition T ′ into two groups T1 and T0 where T0 ⊆ D′

0 and T1 ⊆ D′
1. Surely one of T1

or T2 contains at least half of the profit of T ′. Therefore, the profit of one of T1 or T2 is

within a factor ǫ(1−ǫ)
2 of the optimum profit.

The dynamic programming routine finds the optimum profit subsets S0 of D
′
0 and S1

of D′
1. So the profit of S0 is at least the profit of T0 and the profit of S1 is at least the

profit of T1. Thus, one of S0 or S1 has total profit within a factor of 2
ǫ(1−ǫ) of the profit

of T .
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THEOREM 3.13. There is a polynomial-time 2
ǫ(1−ǫ) -approximation for intersecting

instances of UFP that are either left-tight or right-tight.

3.4. Bringing it Together

We presented a constant-factor approximation for all four types of tasks in intersect-
ing cases. Let ρ be the worst approximation ratio among these algorithms. Taking the
most profitable of the four solutions found for these cases is a 4ρ-approximation for
intersecting cases. Since each group Gr can be partitioned into 3 sets, each of which
can be partitioned into intersecting cases where no two demands from different inter-
secting cases share a common time, then we have a 12ρ-approximation for each group
Gr.
Since there are ⌈log2(2n)⌉ groups, then the overall algorithm finds a solution ob-

taining at least 1−ǫ′

12⌈log
2
(2n)⌉ -fraction of the optimum solution (recall that we scaled the

profits and lost a (1 − ǫ′) factor at the start of the algorithm). For fixed constants ǫ, ǫ′,
the solution found is within an O(log n) factor of the optimum.

4. RING GRAPHS: WHEN THE GRAPH IS A CYCLE

UFP can be solved approximately using the algorithm for line graphs. The following
approach was observed in [Chakrabarti et al. 2002]. Consider an edge e in the cycle
with the smallest capacity ce and partition the tasks used in an optimum solution, say
T , into two groups. Group 1 is the collection of tasks that are routed along edge e and
group 2 is the collection of tasks which are not routed along edge e. Say the total profit
of these groups is, respectively, OPT1 and OPT2.
We can approximate OPT1 within (1 + ǫ) by using the known PTAS for Knapsack

[Ibarra and Kim 1975]. For each task i with demand di and profit pi, we create an
item for the Knapsack with size di and value pi. Any feasible packing to the Knapsack
instance maps directly to a feasible solution for UFP on the cycle by simply routing all
tasks whose corresponding Knapsack item is packed. These tasks are routed along the
route using edge e. Since all tasks in this solution use edge e and e has the minimum
capacity over all edges, then surely any other edge cannot have its capacity constraint
violated.
For approximating OPT2, notice simply that the tasks in group 2 (which are not

routed across e) correspond to a feasible solution to the UFP problem on the line ob-
tained by deleting edge e. So, we can approximate OPT2 within a factor O(log n) using
the UFP approximation algorithm described in this paper. Thus, we get an O(log n)-
approximation to UFP on cycles by taking the best of our two approximations to OPT1

and OPT2. To summarize,

THEOREM 4.1. There is an O(log n)-approximation for UFP on rings.

5. CONCLUDING REMARKS

Obtaining an algorithmwith approximation ratio o(log n) seem to require a more clever
way to deal with the interdependencies of the tasks than simply grouping them into
intersecting instances. There are instances which require Ω(logn) groups to partition
the tasks into independent intersecting instances. Consider the following example. Fix
a value k and create 2k − 1 tasks. There are 2i tasks of length 2k−i for each 0 ≤ i < k.
Arrange all of the tasks on a line of length 2k so that for each fixed 0 ≤ i < k, the union
of all 2i tasks of length 2k−i spans the entire line. Call this instance Ik (see figure 4 for
an illustration). It is easy to show that at least k partitions are required to group the
tasks into independent intersecting instances.
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Fig. 4. A sketch of an instance requiring Ω(logn) partitions into collections of independent intersecting
instances.

LEMMA 5.1. Any partition of the tasks into collections of independent intersecting
instances requires at least k sets.

PROOF. By induction on k with k = 1 being apparent. For the inductive step, con-
sider any partitioning of the tasks in instance Ik+1 into independent intersecting in-
stances. Let P be the set in the partition that includes the single task of length 2k.
Notice then that P cannot contain two tasks that are on opposite sides of the point
2k. Say, without loss of generality, that P contains no task to the left of point 2k. The
collection of all tasks to the left of point 2k are from a copy of instance Ik so at least
k groups different than P are required to partition this copy of Ik into a collection of
independent intersecting instances. Thus, the total number of groups that partition
Ik+1 is at least k + 1.

The main open problem left over from our work was determining if UFP on line
graphs could be approximated within constant factors in polynomial time without any
extra assumptions. This has been answered positively with a (7+ ǫ)-approximation for
any constant ǫ > 0 [Bonsma et al. 2011]. The next step seems to be determining if the
problem admits a PTAS (or even quasi-PTAS) without any further assumptions as the
tightest known lower bound is strong NP-hardness [Bonsma et al. 2011]. On the other
hand, it could be that general instances of UFP on line graphs is APX-hard.
There is an O(log2 n)-approximation for trees [Chekuri et al. 2009] which loses one

O(log n) factor essentially due to the same reason we lose O(log n) in our ratio (a group-
ing argument). Can the approximation for trees be reduced to O(log n) to match the ra-
tio we obtain for paths? As noted before, the best hardness for trees is APX-hardness
and there is a Quasi-PTAS for trees under the assumptions of a quasi-polynomial
bound on the capacities as well as a polylogarithmic bound on the number of leaves
[Arackaparambil et al. 2009].
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