
and 11 (Oct 8,10)

CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2013

Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut
Lecturer: Mohammad R. Salavatipour Scribe: Yaochen Hu and older notes

10.1 Multiway Cut

Definition 10.1 In a Graph G(V,E) with a cost measure on edges C : E → R+, given two vertices s, t ∈ V , a
cut is a partition of V (S, V \S), s.t. s ∈ S, t ∈ V \S; the weight of the cut is the sum of Ce across S and V \S.

Using Max-Flow-Min-Cut, we can solve the Min-cut Problem in polynomial time.

Definition 10.2 (Multiway Cut) In a Graph G(V,E) with a cost measure on edges c : E → R+, given
{s1, s2, ..., sk} ⊂ V terminals, the Multiway Cut Problem is to find the collectin of edges whose removal will
separate all these terminals with minimum cost (i.e. a set of edges whose removal disconnect each pair si, sj).

This problem is NP-complete with K ≥ 3. The first approximation algorithm we present for this problem is a
simple greedy method that uses minimum s− t-cut as a subroutine.

10.1.1 Algorithm

Multiway Cut Greedy Algorithm

Input: A graph G(V,E) with a cost measure on edges c : E → R+, and a set of terminals {s1, s2, . . . , sk} ⊂ V .
Output: A collection of edges C which separate the terminals.
1. For i← to k do
2. find a min si-cut (separate si from all the other terminals), and store it in Ci
3. end
4. find the Cβ with the max cost among all the Ci
5. C ← ∪i 6=βCi
6. return C

Figure 10.1: Greedy Algorithm

10.1.2 Algorithm Analysis

Theorem 10.3 The greedy algorithm gives a 2− 2
k -approximation for the Multiway Cut Problem.

10-1

10-2 Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut

Proof: It is straightforward that this algorithm gives a feasible solution. We need to show the approximation
ratio.

Without loss of generality, assuming that the Ck has the maximum cost, we have C = ∪k−1i=1 Ci. Let A be an
optimal solution. In that solution, the graph is cut into k subgraphs and each of them containing exact one
terminal Si. Let Gi be the subgraph containing terminal Si and let Ai be the edges coming out of Gi (going to
G−Gi). Now we have

A = ∪ki=1Ai. (10.1)

Since each edge of A belongs to exactly two Ai, we have

k∑
i=i

C(Ai) = 2C(A). (10.2)

For every terminal Si, since Ci is the minimum cut separating Si from the rest, we have C(Ci) ≤ C(Ai).
Therefore, we have

k∑
i=1

C(Ci) ≤
k∑
i=1

C(Ai) ≤ 2C(A). (10.3)

Since we through away the Ck with the maximum cost, then we get

C(C) ≤ (2− 2

k
)C(A) = (2− 2

k
)opt. (10.4)

This approximation ratio is tight. Figure (10.2) shows a tight example which is basically k vetices are on a
cycle, and every terminal connects to one of the nodes on the cycle. The edge between two nodes on the cycle
has the cost of 1, and the edge from the terminal to the node on cycle has the cost 2− ε, where ε is an arbitrary
small positive value. In this case, the cost of the optimal solution is exactly k, while the greedy solution will
give a cost of (2− ε)(k − 1).

Figure 10.2: A tight example for the greedy algorithm

10.2 An anlgorithm based on Randomized Rounding of an LP

The natural LP relaxation for Multiway cut has a bad integrality gap. So we present a different LP relxation
and show how rounding this LP yields a better approximation for this problem. Another way of looking at the

Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut 10-3

multiway cut problem is finding an optimal partition of V , say V1, V2, . . . , Vk, such that si ∈ Vi, i = 1, 2, . . . , k
and the cost of ∪ki=1δ(Vi) is minimized.

To formulate the problem as an integer program, we need to define some sets of variables. For each vertex
v ∈ V , we have k boolean variables xiv such that xiv = 1 if and only if v is assigned to the set Vi. For each edge
e ∈ E, we create a boolean variable zie such that zie = 1 if and only if e ∈ δ(Vi). Since if e ∈ δ(Vi), it is also the
case that e ∈ δ(Vj) for some j 6= i, the objective function of the integer program is then

1

2

∑
e∈E

ce

k∑
i=1

zie.

Now we consider the constraints for the integer program. Obviously, we have xisi = 1, i = 1, . . . , k since each si

must be assigned to Vi and we can also have
∑k
i=1 x

i
u = 1 for any vertex u ∈ V since u must be contained in

some Vi. Because for any edge e = (u, v), e ∈ δ(Vi) if and only if exactly one of its endpoints is in Vi, we have
zie ≥ |xiu − xiv|. Then the overall integer program is as follows:

minimize
1

2

∑
e∈E

ce

k∑
i=1

zie

subject to

k∑
i=1

xiu = 1, ∀u ∈ V,

zie ≥ xiu − xiv, ∀e = (u, v) ∈ E,
zie ≥ xiv − xiu, ∀e = (u, v) ∈ E,
xisi = 1, i = 1, . . . , k,

xiu ∈ {0, 1}, ∀u ∈ V, i = 1, . . . , k.

(10.5)

Since the relaxed linear program of this integer program is closely related with the l1-metric for measuring
distances in Euclidean space, we give the definition of l1-metric below.

Definition 10.4 l1-metric is a metric space where for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn the distance
between them is ||x− y||1 =

∑n
i=1 |xi − yi|.

Let ∆k denote the k−1 dimensional simplex, that is, the surface in Rk defined by {x ∈ Rk|x ≥ 0 &
∑k
i=1 x

i = 1},
where x is a vector and xi is the ith coordinate of x. The LP relaxation will map each vertex of G to a point in
∆k, and especially map each terminal to a unit vector. Let xv represent the point to which vertex v is mapped.
Thus, the relaxed linear program is as follows:

minimize
1

2

∑
e=(u,v)∈E

ce||xu − xv||1

subject to xv ∈ ∆k, ∀v ∈ V,
xsi = ei, i = 1, . . . , k,

(10.6)

For any r ∈ [0, 1] and 1 ≤ i ≤ k, let B(si, r) be the set of vertices corresponding to the points xv in a ball of
radius r around si under the measure of l1-metric, that is, B(si, r) = {v ∈ V | 1

2 ||si − xv||1 ≤ r}.

Here, δ(Ci) is the cutting set separating Ci from the rest.

10-4 Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut

Multiway Cut LP Rounding Algorithm

Input: A graph G(V,E) with a cost measure on edges c : E → R+, and a set of terminals {s1, s2, . . . , sk} ⊂ V .
Output: A collection of edges F which separate the terminals.
1. Find the fractional solution for the LP in (??)
2. For i = 1 to k, do
3. Ci ← ∅
4. end
5. Uniformly randomly pick r ∈ (0, 1)
6. Pick a random permutation π of {1, 2, ..., k}
7. For i = 1 to k − 1, do
8. Cπi ← B(sπi , r)− ∪j<iCπj
9. end

10. Cπk ← V − ∪k−1i=1 Cπi
11. return F = ∪ki=1δ(Ci)

Figure 10.3: LP Rounding Algorithm

Theorem 10.5 The randomized-LP-rounding algorithm is a 3
2 -approximation algorithm.

To prove this theorem, we need to introduce some useful lemmas first.

Lemma 10.6 ∀u, v ∈ V and any index l, |xlu − xlv| ≤ 1
2 ||xu − xv||1.

Proof: Without loss of generality, assume that xlu ≥ xlv. Then

|xlu − xlv| = xlu − xlv = (1−
∑
j 6=l

xju)− (1−
∑
j 6=l

xjv)

=
∑
j 6=l

(xju − xjv)

≤
∑
j 6=l

|xju − xjv|

Thus we have

2|xlu − xlv| ≤ |xlu − xlv|+
∑
j 6=l

|xju − xjv| =
k∑
j=1

|xju − xjv| = ||xu − xv||1,

which implies |xlu − xlv| ≤ 1
2 ||xu − xv||1.

Lemma 10.7 u ∈ B(si, r) if and only if 1− xiu ≤ r.

Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut 10-5

Proof:

u ∈ B(si, r) ⇔ 1

2
||si − xu||1 ≤ r ⇔

1

2

k∑
j=1

|xju − xjv| ≤ r

⇔ 1

2

∑
j 6=i

xju +
1

2
(1− xiu) ≤ r

⇔ 1

2
(1− xiu) +

1

2
(1− xiu) ≤ r

⇔ 1− xiu ≤ r.

Lemma 10.8 For each edge e = (u, v), Pr[e is in cut] ≤ 3
4 ||xu − xv||1.

Proof: We say that an index i settles edge (u, v) if i is the first index in the random permutation such that at
least one of u, v ∈ B(si, r). We say that an index i cuts edge (u, v) if exactly one of u, v ∈ B(si, r). Let Si be

the event that i settles (u, v) and Xi be the event that i cuts (u, v). Thus, Pr[e is in cut] =
∑k
i=1 Pr[Si ∧Xi].

Note that Si depends on the random permutation, while Xi is independent of the randomized permutation.

By lemma 10.7, we have

Pr[Xi] = Pr[min(1− xiu, 1− xiv) ≤ r < max(1− xiu, 1− xiv)] = |xiu − xiv|.

Let l = argmini(min(1 − xiu, 1 − xiv)), that is , sl is the closest terminal to one of u, v. We can claim that
any index i 6= l cannot settle the edge e = (u, v) if l comes before i in permutation π, since if at least one
of u, v ∈ B(si, r), then at least one of u, v ∈ B(sl, r). Note that the probability that l comes before i in the
randomized permutation π is 1

2 . Hence for i 6= l, we have

Pr[Si ∧Xi] = Pr[Si ∧Xi|l >π i]Pr[l >π i] + Pr[Si ∧Xi|l <π i]Pr[l <π i]

=
1

2
Pr[Si ∧Xi|l >π i] + 0

≤ 1

2
Pr[Xi|l >π i]

Since the event Xi is independent of the randomized permutation, Pr[Xi|l >π i] = Pr[Xi] and therefore for
i 6= l,

Pr[Si ∧Xi] ≤
1

2
Pr[Xi] =

1

2
|xiu − xiv|.

We also have that Pr[Sl ∧Xl] ≤ Pr[Xl] ≤ |xlu − xlv|. Therefore, we have

Pr[e is in cut] =

k∑
i=1

Pr[Si ∧Xi]

≤ |xlu − xlv|+
1

2

∑
i6=l

|xiu − xiv|

=
1

2
|xlu − xlv|+

1

2
||xu − xv||1

≤ 1

4
||xu − xv||1 +

1

2
||xu − xv||1 By lemma 10.6

=
3

4
||xu − xv||1

10-6 Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut

Now using the above three lemma, we can prove the theorem 10.5.

Proof: Let Zuv be a boolean variable which is 1 if u and v are in different parts of the partition. Then the
total cost of the cut returned by this algorithm is W =

∑
e=(u,v)∈E ceZuv, which have the expectation

E[W] = E

 ∑
e=(u,v)∈E

ceZuv


=

∑
e=(u,v)∈E

ceE[Zuv]

=
∑

e=(u,v)∈E

cePr[e is in cut]

≤
∑

e=(u,v)∈E

ce
3

4
||xu − xv||1

=
3

2
∗ 1

2

∑
e=(u,v)∈E

ce||xu − xv||1

≤ 3

2
OPT

10.3 Multicut in General graphs

Definition 10.9 Multi-cut Problem:
Input: a weighted graph G(V,E), with a cost measure on edges ce : E → R+; a set of terminals pairs (si, ti), 1 ≤
i ≤ k.
Goal: find the minimum cost set of edges whose removal separate each (Si, Ti), 1 ≤ i ≤ k.

The problem is NP-complete even when G is a star. Vertex conver in general graph can be reduced to multi-cut
on stars. We can give a 2-approximation algorithm by primal and dual LP when G is a tree. Today, we present
an O(log k) approximation for multicut in general graphs.

For each vertex pair (si, ti), let Pi denote the set of all paths from si to ti. Let P =
⋃k
i=1 Pi. Consider the

LP-formulation of the minimum multicut problem:

minimize
∑
e∈E

ce · xe

subject to
∑
e∈pi

xe ≥ 1, pi ∈ Pi, 1 ≤ i ≤ k

xe ≥ 0, e ∈ E

The above LP-formulation has an exponential number of constraints. However, we can still solve this LP using
the Ellipsoid method. Given a (possible) solution vector ~x (assignments to xe, e ∈ E), we can check if it is
feasible in polynomial time (this implies that the separation oracle for this LP is in P). To do so we interpret
variable xe as a distance label on edge e, for each e ∈ E; then we compute the lengths of shortest paths between
each source-sink pair (si, ti) w.r.t the current distance labels. If all the lengths are ≥ 1, then all the paths

Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut 10-7

between each pair (si, ti) must have lengths ≥ 1, and therefore, we can conclude that all constraints are satisfied
and the solution is feasible. If the shortest path is < 1 then we obtain a violated constraint.

The following example shows that this LP has a integrality gap of at least 4/3.

Figure 10.4: An example indicating the gap between the primal and dual

The cost of optimum integer solution is 2 as we have to remove two edges whereas the optimum LP could pick
each edge to the extend of 1/2 for a total cost of 3

2 .

Now, we introduce the beautiful O(log k)-factor approximation algorithm due to Garg, Vazirani, and Yannakakis
[GVY]. Before giving the algorithm, we restate the problem as a pipe system. This will help to some intuition
behind the algorithm.

Consider a feasible solution ~x to the LP. Suppose that we have a pipe running between i, j if there is an edge
e = (i, j) in E. Let the length of this pipe be xe and the cross-sectional area of this pipe be ce. Therefore,
ce ·xe will be the volume of this pipe and

∑
e∈E ce ·xe will be the total volume of the pipes in our system. With

this definition, the multicut problem is in fact the question of designing a pipe system such that the distance
between every source-sink pair is at least 1 and the total volume of pipes in the system is minimized. Therefore,
the fractional optimal solution, i.e. the solution to the LP, is the volume of the pipe system and we denote it
by V ∗.

Definition 10.10 For a feasible solution ~x, denote dx(u, v) to be the length of the shortest path between u and
v in G w.r.t the distance labels of ~x.

Definition 10.11 For a set of vertices S ⊆ V , denote the set of edges in the cut (S, V − S) as δ(S).

Definition 10.12 For a vertex v ∈ V and a (real) radius r, define the set of vertices in G with distance ≤ r
(with respect to distance label given by ~x) to v as Bx(v, r), i.e. Bx(v, r) = {u|dx(u, v) ≤ r}.

The algorithm will find disjoint sets of vertices S1, . . . , S`≤k, called regions by growing balls around terminals
such that:

• no region contains any source-sink pair, and for each 1 ≤ i ≤ k, either si or ti is in one of the Sj ’s.

• For each region, the weight of δ(Sj) is “small”.

Lemma 10.13 The algorithm terminates.

10-8 Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut

Region Growing Algorithm for Multi-cut Problem (GVY)

Input: A graph G(V,E) with a cost measure on edges Ce : E → R+, and a set of terminal pairs
{(S1, T1), (S2, T2), ..., (Sk, Tk)}.
Output: A collection of edges C which separate all the pairs.
1. C ← ∅; V ← V
2. Find the optimal fractional solution for (??)
3. While there is an (Si, Ti) connected in V , do
4. S ← B(Si, r) ∩ V for some r < 1

2
5. C ← C ∪ δ(S) (δ(S) is the set of edges cutting S from the rest)
6. V ← V − S
7. end
8. return C

Figure 10.5: GVY Algorithm

Proof: Since the ball grown around a terminal si at each iteration has radius at most 1
2 it cannot contain ti.

Thus, δ(S) will separate (at least) one source-sink pair. The algorithm has at most k iterations.

Lemma 10.14 The algorithm returns a multicut.

Proof: The only problem is when the algorithm separates some pair (si, ti) and there is a pair (sj , tj), such that
both sj ∈ BX(si, r) and tj ∈ BX(si, r). In this case, since we are removing all the vertices of the ball around
si, then (sj , tj) will not be separated by the algorithm. But this scenario is impossible to happen. Otherwise,
from dx(sj , tj) ≤ dx(si, sj) + dx(si, tj) ≤ 2 · r < 1, one of the LP constraints for sj , tj is violated.

Definition 10.15 Let V ∗ be the optimal fractional solution to the LP. Given a vertex v ∈ V and a radius r, a
ball with radius r is defined. Define the volume of this ball (region) as

Vx(v, r) =
∑

e=(u,v)∈Bx(v,r)

ce · xe +
∑

e=(u,v)∈δ(Bx(v,r))

v∈Bx(v,r)

ce(r − dx(u, v)) +
V ∗

k

and the cut volume of this region as

Cx(v, r) =
∑

e∈δ(Bx(v,r))

ce

Note that Vx(v, r) is an increasing function of r. It is a piece-wise linear function with possible discontinuities at
values of r where new vertices are added to the region. Therefore, VX(v, r) is differentiable everywhere except
those possible discontinuous points and

d Vx(v, r)

d r
= Cx(v, r) (10.7)

Lemma 10.16 There is some r < 1
2 , such that Cx(si,r)

VX(si,r)
≤ 2 · ln(k+ 1) and we can find such an r in polynomial

time.

Proof: By contradiction, assume throughout the region growing process, starting with r = 0 ending at r = 1
2 :

Cx(si, r)

Vx(si, r)
> 2 · ln(k + 1).

Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut 10-9

This implies that
d Vx(v, r)

d r
· 1

Vx(si, r)
> 2 · ln(k + 1).

Let r1 = 0 ≤ r2 ≤ · · · ≤ rq = 1
2 be the radii at which new vertices are added to the region (si, rq). For all r in

(rj , rj+1): ∫ rj+1

rj

d Vx(v, r)

d r
· 1

Vx(si, r)
>

∫ rj+1

rj

2 · ln(k + 1)d r

⇓
ln(Vx(si, rj+1))− ln(Vx(si, rj)) > (rj+1 − rj) · 2 · ln(k + 1).

We are going to sum up over all intervals (rj , rj+1) for 1 ≤ j < q. This will give us a telescopic sum and
the terms will be canceled out except the first and the last term. Doing this, even though the function is
discontinuous at the end-points of the intervals, is valid because the function Vx(si, r) is an increasing function.
Thus:

ln(VX(si, rq))− ln(Vx(si, r1)) > 2 · ln(k + 1) · (rq − r1)

⇓

ln(Vx(si,
1

2
)) > 2 · ln(k + 1) · rq + ln(

V ∗

k
)

⇓

ln(VX(si,
1

2
)) = ln(k + 1) + ln(

V ∗

k
)

⇓

ln(Vx(si,
1

2
)) > ln(V ∗ +

V ∗

k
)

⇓

Vx(si,
1

2
) > V ∗ +

V ∗

k
.

But this cannot happen, since Vx(si,
1
2) is part of the total volume and cannot be larger than it. This implies

that there exists such an r < 1
2 . To find r, consider the vertices of G according to non-decreasing order of

distance from si: si = v1, v2, . . . , vp with distances r1 = 0 ≤ r2 ≤ . . . , rp ≤ rp+1 where rp+1 ≥ 1
2 and rp <

1
2 .

At any interval (rj , rj+1), the volume Vx(si, r) increases while the value of cut Cx(si, r) is fixed. Therefore, the

volume is maximized (i.e. Cx(si,r)
Vx(si,r)

is minimized) at the end of the interval. So it is enough to check the ratio
Cx(si,r)
Vx(si,r)

at the end of the intervals.

Theorem 10.17 The GVY algorithm is a (4 ln(k + 1))-factor approximation algorithm for IMC.

Proof: We charge the cost of the edges removed from the graph at each iteration against the volume of the
region removed. By lemma 10.16, at each iteration:

Cx(si, r) ≤ 2 ln(k + 1) · Vx(si, r).

⇓ (Summing up for 1 ≤ i ≤ k)∑
e∈C

ce ≤ 2 ln(k + 1)

k∑
i=1

Vx(si, r)

≤ 2 ln(k + 1) · (V ∗ +
V ∗

k
· k)

= 4 ln(k + 1) · V ∗

≤ 4 ln(k + 1) ·OPT.

10-10 Lecture 10 and 11 (Oct 8,10): Multiway Cut, Multicut

References

GVY N. Garg, V.V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theorems and
their applications, SIAM Journal on Computing, 1996, 25:235–251.

