
CMPUT 675: Approximation Algorithms Fall 2013

Lecture 12 (Oct 15, 2013): Approximation via rounding SDP: Max-Cut
Lecturer: Mohammad R. Salavatipour Scribe: based on older notes

12.1 Approximation Algorithm for Max-Cut

The next technique we learn is designing approximation algorithms using rounding semidefinite programs. This
was first introduced to obtain improved approximation algorithms for the problem of Max-Cut.

input: G(V,E) with weight function w : E → Q+

goal: find S ⊂ V s.t. it maximizes
∑

e∈δ(S) w(e)

A trivial 1
2 -approximation is to obtain a random partition of the vertices; i.e. place every vertex v ∈ V into set

S with probability 1/2. We get E(weight of cut) = 1
2

∑

e∈E w(e) ≥ 1
2opt and thus we obtain a 1

2 -approximation.

Every known LP relaxation of Max-Cut has an integrality gap of 2. Thus, to improve beyond the trivial
algorithm we need more powerful techniques.

12.1.1 Semidefinite programming

A quadratic program is the problem of optimizing a quadratic function of variables subject to a set of quadratic
constraints. Quadratic programs are difficult in general and we don’t know how to solve them. A strict quadratic
program is a special case in which each of the constraints and objective functions consist of only degree two or
zero monomials. Let X be a symmetric n× n real matrix.

Definition 1 We say X is positive semidefinite (p.s.d.) if and only if ∀a ∈ Rn : aTXa ≥ 0.

It is straightforward to prove the following theorem (e.g. see Vazirani):

Theorem 1 If X is a symmetric matrix from Rn×n then the following are equivalent:

1. X is p.s.d.

2. X has non-negative eigenvalues

3. X = V TV for some V ∈ Rm×n (m ≤ n).

Let Mn be the set of symmetric n×n real matrices. Let C,D1, . . . , Dk ∈ Mn, b1, . . . , bk ∈ R. Then we can solve
the following semidefinite programm SDP with an additive error of ǫ > 0 in polynomial time in n and log(1

ǫ
):

min /max
∑

i,j

CijXij s.t.

∀1 ≤ l ≤ k
∑

i,j

DijlXij = bl,

X � 0 is p.s.d.

X ∈ Mn

12-1

12-2 Lecture 12: Approximation via rounding SDP: Max-Cut

It can be verified that the set of feasible solution to a SDP forms a convex body, i.e. any convex combination
of a set of feasible solutions is a feasible solution. SDP’s are equivalent to vector programs (defined below). Let
~v1, . . . , ~vn ∈ Rn. A vector program VP is defined as

min /max
∑

cij(~vi · ~vj) s.t.

∀1 ≤ l ≤ k
∑

dijl(~vi · ~vj) = bl,

~vi ∈ Rn.

To convert VP to SDP we replace (~vi · ~vj) by Xij and require that X > 0 and symmetric and p.s.d.

Lemma 1 VP and the corresponding SDP are equivalent, i.e. each feasible solution of VP corresponds to a
feasible solution of SDP with the same objective value and vice versa.

Proof. Let ~a1, . . . , ~an be a solution to VP. Let

W =

| |
a1 · · · an
| |

 .

Then X = WTW is a feasible solution to the SDP. The proof of other direction is similar.

This theorem implies, that vector problems can be solved in polynomial time, too.

We can formulate Max-Cut using semidefinite programming as follows. Each vertex i is assigned a variable
yi ∈ {1,−1} that indicates whether i ∈ S or i ∈ S̄, respectively. Then

1− yiyj =

2, i ∈ S, j ∈ S̄
2, i ∈ S̄, j ∈ S
0, o.w.

.

Therefore we can write Max-Cut as follows:

max
1

2

∑

wij(1− yiyj)

y2i = 1

yi ∈ Z.

Note that yi = +1 or yi=-1, specifies whether i is in S or S, respectively. Considering the contribution of every
edge to (1 − yiyj) in the objective function value, it is easy to see that MC models Max-Cut. Next, we relax
MC to a vector program (VP):

max 1
2

∑

i<j wij(1− ~vi~vj) (V P)

~vi · ~vj = 1, ∀i

~vi ∈ R, ∀i

Given a feasible solution to MC; for any variable yi, define the corresponding vector ~vi = (yi, 0, . . . , 0). This set
of vectors gives a feasible solution to VP. Let ZV P and ZMC be the value of the objective function of V P and
MC, respectively.

Lecture 12: Approximation via rounding SDP: Max-Cut 12-3

Corollary 1 ZV P ≥ ZMC .

The semidefinite program equivalent to VP is:

max 1
2

∑

i<j wij(1− yiyj)

y2ii = 1, ∀i

Y � 0 (Y is positive semidefinite)

Y ∈ Mn (Y is symmetric)

Since ~vi · ~vi = 1, each vector lies in the unit sphere in Rn.

Example. Take the input graph to be C5, with the weight of every edge wij = 1. The optimal solution of
Max-Cut (MC) is to take S to be any two nonadjacent vertices, hence ZMC = 4. And for (VP), it turns out
that all vectors of the optimal solution lie in R2, and ZV P = 5 · 1

2 (1− cos(4π5)).

Define θij to be the angle between the two vectors ~vi and ~vj . Note that ~vi ·~vj = cos θij . This suggests that, the
larger θij , the larger the contribution of the expression wij(1 − ~vi · ~vj) to the objective function will be. The
idea will be put to work by randomized rounding.

Vector Rounding for MAX-CUT

1. Solve (VP) to obtain the optimal solution with value ZV P .

2. Choose a random vector ~r (from the normal distribution with mean 0 and standard deviation 1), from the
unit sphere Sn.

3. Let S = {i|~r · ~vi ≥ 0}.

4. Return S.

Theorem 2 [GW95]Vector Rounding for Max-Cut is an αGW -approximation for the Max-Cut problem, where
αGW ≥ 0.8785.

The main step in the proof of the above theorem is the following lemma.

Lemma 2 Pr[vi and vj are separated by the selection of r] =
θij
π
.

Proof. Take two vectors vi and vj . Let r′ be the vector defined by the projection of r onto the hyperplane
defined by vi and vj . Now, we have r = r′ + r′′, where r′′ is orthogonal to the plane defined by vi and vj .

vi · r = vi · (r
′ + r′′) = vi · r + vi · r

′′ = vi · r
′

vj · r = vj · (r
′ + r′′) = vj · r + vj · r

′′ = vj · r
′

In order to see whether the two vectors are separated by ~r, we have to compare the signs of ~vi ·~r and ~vj ·~r. Let
AB be the diameter orthogonal to ~vi, and CD be the diameter orthogonal to ~vj (see figure 12.1).

Consider the position of r’:

12-4 Lecture 12: Approximation via rounding SDP: Max-Cut

vj

θij

θij

θij

B

D

A

C

vi

Figure 12.1: The vector ~r will separate vi and vj , if it falls in one of the green arcs AC or BD

• If r′ ∈ AviB, then r′ · vi ≥ 0

• If r′ ∈ CvjD, then r′ · vj ≥ 0

Hence, when r′ lies in one of the two arcs AB or CD, the signs of ~vi · ~r and ~vj · ~r differ.

Pr[vi and vj are separated] = Pr[r′ lies in one of the arcs AC or BD]

Let W be the weight of the cut.

E[W] =
∑

i<j

wij · Pr[vi and vj are separated] =
∑

i<j

wij ·
θij
π

Let αGW = 2
π
·min0≤θ≤π

θ
1−cos θ ; αGW ≥ 0.8785. For any θ, we have θ

π
≥ αGW · (1−cos θ

2).

E[W] ≥ αGW ·
1

2

∑

i<j

wij(1− cos θij)

= αGW · ZV P

≥ αGW ·OPTMC .

It is known that the integrality gap of the semidefinite program is almost surely the same as αGW

Theorem 3 [Kar95] There is an infinite family of graphs, such that E[W]
ZSDP

tends to αGW , as the size of the
graph grows.

The best hardness results known are as follows.

Theorem 4 [Has97] There is no α-approximation for MC with α > 16
17 ≈ 0.941, unless P = NP.

Theorem 5 [KKMO04] Assuming the Unique-Games Conjecture (UGC) holds, there is no (αGW+ǫ)-approximation
for any constant ǫ > 0.

The same technique has been applied to devise an approximation algorithm for the MAX-2SAT problem.

Lecture 12: Approximation via rounding SDP: Max-Cut 12-5

12.2 Approximation Algorithm for for MAX-2SAT

We saw an LP-based approximation algorithm with ratio 3
4 . This approximation ratio can not be beaten using

LP-based methods, because of the integrality gap of the corresponding LP. We see an improved algorithm using
Semidefinite Programming. The algorithm is similar to that of the previous section for Max-Cut; the main idea
is the formulation of the problem as an SDP.

Introduce variables yi ∈ {+1,−1} for each boolean variable xi, also introduce an extra variable y0; yi = y0, if
and only if xi is true.

For a clause C, its value V (C) = 1 if and only if C is satisfied. For clauses of size one, we have:

V (xi) =
1 + yiy0

2
, V (xi) =

1− yiy0
2

And for clauses of two variables,

V (xixj) = 1− V (1− xi) · V (xj)

= 1−
1− yiy0

2
·
1− yjy0

2

=
1

4
(3 + yiy0 + yjy0 − yiyjy

2
0)

=
1 + yiy0

4
+

1 + yjy0
4

−
1− yiyj

4

For any clause C, V (C) is a linear combination of the expressions of the form 1 + yiyj and 1 − yiyj (for
1 ≤ i, j ≤ n).

Therefore, the MAX-2SAT problem can be formulated as a quadratic programming as follows, where aij and
bij are coefficients.

max
∑

i<j [aij(1 + yiyj) + bij(1− yiyj)] (QP)

yi ∈ {+1,−1}

Similarly, the problem can be formulated as a vector program.

max
∑

i<j [aij(1 + ~vi · ~vj) + bij(1−~~vi · ~vj)] (V P)

~vi · ~vi = 1

~vi ∈ Rn+1

The algorithm will go like this.

Approximation Algorithm for MAX-2SAT

1. Solve VP to obtain a solution ZV P .

12-6 Lecture 12: Approximation via rounding SDP: Max-Cut

2. Take a randm vector ~r ∈ Sn+1.

3. Round each yi to 1, if and only if ~r · ~vi ≥ 0.

The analysis of the algorithm is essentially the same as that of MAX-CUT.

Lemma 3 E[W] ≥ αGW · ZV P .

The best SDP-based approximation algorithm has ratio 0.940.

Theorem 6 [LLZ02]SDP rounding gives 0.940 for MAX-2SAT.

The currently best known hardness of approximation results for the MAX-2SAT problem are as follows:

Theorem 7 [Has97] There is no 0.9545-approximation for MAX-2SAT, unless P = NP.

Theorem 8 [KKMO’04] There is no 0.943-approximation for MAX-2SAT, unless the UGC is false.

References

GW95 M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming, Journal of the ACM,1995, pp. 1115–1145.

Has97 J. Hastad, Some optimal inapproximability results, Proceedings of the 29th ACM Symposium on Theory
of Computing, 1997, pp. 1–15.

Kar99 H. Karloff, How good is the Goemans-Williamson MAX CUT algorithm, SIAM Journal on Computing,
1999, pp. 336–350.

KKMO04 S. Khot, G. Kindler, E. Mossel and R. O’Donnell, Optimal inapproximability results for MAX-
CUT and other 2-variable CSPs?, 2004, pp. 146–1546.

LLZ02 M. Lewin, D. Livnat, and U. Zwick, Improved rounding techniques for the MAX-2SAT and MAX
DI-CUT problems 2002, pp. 67–82.

