CMPUT 675: Approximation Algorithms Fall 2011
Lecture 2,3 (Sept 13 and 15, 2011): Set Cover, Introduction to LP
Lecturer: Mohammad R. Salavatipour Scribe: based on older notes

2.1 Set Cover Problem

Now we turn our attention to the Set Cover problem, which is (perhaps) the most central problem in the study
of approximation algorithms. There are different algorithms for this problem. In this course we will see at least
4 different approximation algorithms for this using different methods.

Set Cover:

e Input:

— A set of n elements U = {ey,...,e,}, called the Universe.
— A set S ={S1,...,Sn} of m subsets of U such that each e € U is in some S; € S
— A cost function ¢: S — QF

e Goal: Find a minimum cost subset S’ of S such that each e € U is in some S; € S’.

Note that vertex cover is a special case of set cover where U is the set of all edges and each vertex v is a subset
in S which contains all edges incident to v. In this case, each element is in exactly two subsets in S. We present
a greedy approximation algorithm for Set Cover. This is probably the most natural greedy algorithm for this
problem. The idea is, at each iteration pick a set where the ratio of the cost of the set divided by the number of
new elements it covers is minimized. This general idea of “covering” elements iteratively by finding good partial
solutions has been used in many other problems. The analysis of set-cover (we present here) can typically be
extended to those other covering algorithms that behave similarly.

Definition 1 Given a subset C' of U, define the cost effectiveness of set S; € S as \gfiéy If S; C C then say
the cost effectiveness is +00.

Algorithm SC1

C+0
S0
while C' # U do
select S; € S with minimum cost effectiveness a = i g(fg‘ with respect to C'

for each e € S;, define price(e) as «
S STU{S;}
C+CUS,;

return S’

2-1

2-2 Lecture 2,3: Set Cover, Introduction to LP

U/
v 12 13 Un

Figure 2.1: A tight example for SC1.

Obviously, all elements are eventually covered by S’ since the algorithm terminates only when C' = U. Note
that the final cost of set " is) ., price(e) since, for each S; € S’, the cost of S; is distributed among all
elements in S; that were covered for the first time when S; was picked.

Lemma 1 Algorithm SC1 is an Inn-approximation algorithm; more precisely it has ratio at most H,,, where
H,, is the n’th harmonic number.

Proof. Let Topr C S be a set cover with minimum cost OPT'. Order the elements of U by the time they were
covered by algorithm SC1 (breaking ties arbitrarily) as e, ea, ..., €,.

Consider the time just before ey, is covered. The remaining at least n — k+ 1 elements can be covered at a price
of no more than OPT by adding the currently unselected sets of Topr to S’. In other words, each element can

be covered at a price of no more than no_ll;T_l on average.
We claim that there must be a set with cost effectiveness at most Ollﬁl If this were not true, then the cost
of covering the remaining uncovered elements would be strictly greater than (n —k+1) - noflﬁl = OPT which

contradicts the fact that the remaining elements can be covered at a cost of at most OPT by selecting Topr.
Thus, price(ex) < no_—llzfl which yields

;pmce gnkarl PT-;

where H,, is the n’th harmonic number. By comparison with f % we see that Inn < H,, <lIlnn + 1. Therefore
SC1 is an O(logn) approximation algorithm. [|

- OPT - H,

e

Through similar analysis, we can show that SC1 is an O(log k)-approximation where k = max |S;|. Note that
this proves the ratio of O(log A) for the greedy vertex cover algorithm where A is the size of maximum degree of
nodes. The analysis of SC1 is also tight. For any € > 0 being a small constant, consider the following instance
of set cover (illustrated in Figure 2.1):

° U:{el,...,en}
o S=1{S,51,....5}

e ¢(So) =1+cand ¢(S;) =1 forall1 <i<n.

The optimum solution is So with a cost of 1 + € while SC1 returns the solution {Si,...,S,} with a cost of
=OPT - . Since this holds for any small constant € > 0, the analysis is tight (even up to the constant).

Interestingly, the above algorithm is essentially the best possible for set cover.
Theorem 1 (Lund and Yannakakis (92), Feige (96), Raz and Safra (97), Sudan (97))

e Unless P = NP, there is no clnn approzimation algorithm for set cover for some constant 0 < ¢ < 1.

e Unless NP C DTIME(nC{og198m)) " there is no (1 — €) Inn approzimation for set cover for all € > 0.

Lecture 2,3: Set Cover, Introduction to LP 2-3

2.2 Linear Programming

Definition 2 Linear Programming (or LP) is the problem of optimizing a linear function of variables subject
to some linear constraints.

An LP with n variables x1, ..., x, takes the form
n

minimize : E CiT;
i=1

\%
EQ“
<
<
A
<
A
3

n

subject to : Z ajiT;
i=1

z;, > 0, Vi<i<n

for some constants c;, a;5,b;,1 <i <n,1 < j < m. Here, the first expression is called the objective function. In
matrix form, an LP looks like

minimize : x -
subject to: x - b, V1<j<m

>
> 0, Vi<i<n

8 o

where x is an n-dimensional vector of variables. In such a case, A is called the constraint matriz. An assignment
of values to the variables in x is said to be feasible if all the constraints are satisfied.

Consider the following LP with two variables and four constraints.

minimize : T2
subject to : 3r1 —x9 > 0
r4+zxz+1 > 6
—I1 + 2:62 Z 0
X1 Z 2
r1,72 = 0

In this example, the assignment x7; = 2 and z2 = 4 is feasible and has objective function value 4. See figure 2.2
for a visualization of the LP as well as how the following terminology applies to the example.

Each LP falls into exactly one of the following three categories:
e There is a feasible x € R™ such that for all feasible 2 € R™, the objective function value under assignment
2’ is at least the objective function value under x. We say the LP has a finite optimum.
e Every x € R" is not feasible. In this case, we say the LP is infeasible.
e For every z € R, there exists a feasible z € R™ such that the objective function value under assignment z

exceeds the objective function value under assignment x. Here, the LP is said to be unbounded.

Each constraint defines a half-space of R™. The feasible region is the intersection of all half-spaces defined by
the constraints of the LP. Consider an LP with a non-empty feasible region. If this feasible region is bounded
then the LP has a finite optimum which also implies that the feasible region is infinite if the LP is unbounded.
Finally, if the LP is infeasible, then the feasible region is empty.

Every solution to an LP is a vector in R™. Every constraint corresponds to a half-space. The set of feasible
solutions to an LP isconver. That is, for all feasible 2,y € R™ we have ax 4+ (1 — o)y being feasible for each

2-4 Lecture 2,3: Set Cover, Introduction to LP

A 4901

7

/)

-
o

2) X1

Figure 2.2: A visualization of the example LP. The four lines correspond to the four constraints and are numbered
in the order they appear in the example. The feasible region (shaded above) is infinite while the LP has a finite
optimum. The optimum value 22 = 2 occurs at the basic feasible solution (circled above) defined by the second
and third constraints.

0 < a < 1. Intuitively, all points along the straight line between two feasible points are also feasible. A feasible
region for an LP is called a polyhedron. If the LP is bounded, then the feasible region is called a polytope. A
feasible point z € R"™ is called a basic feasible solution or a vertexr of the polytope if some n constraints are
satisfied with equality under assignment . Geometrically, a basic feasible solution is found where the boundaries
of n distinct half-spaces intersect. By definition, a vertex solution is not a convex combination of two or more
distinct feasible solution. It can be shown that if an LP has a finite optimum, then some optimum occurs at a
basic feasible solution.

A linear program can be solved in polynomial time using, for example, the ellipsoid method or an interior point
method. An oracle for an LP is a method that decides if a proposed point x € R" is feasible and, if not, produces
a violated constraint. The ellipsoid method, while not nearly as practical as interior point methods, has the
advantage of solving an LP in polynomial time if there is a polynomial time oracle for the problem even if the
number of constraints is exponential.

2.3 Set Cover by deterministic rounding

Let’s formulate the Set Cover problem as an integer program and find the LP relaxation. Summarizing the
definition of Set Cover we have:

e Input

— U ={ey,...,en} is the universe of elements.

— S={S1,...,Sn} is a collection of subsets of U with costs ¢(S1),...,c(Snm).

e Goal: to find the minimum cost set S’ C S such that the union of all elements of S’ give U.

Lecture 2,3: Set Cover, Introduction to LP 2-5

minimize: Zc(Si) - T
i=1
s.t ij > 1, VeecU (1)
eesS;

If we relax constraint (2) to 0 < x; < 1 then we obtain the LP relaxation to the IP. Note that in any IP/LP,
the solution to the LP is a lower bound for the IP. Note that, we can remove the condition z; < 1 as in any
optimal solution there cannot be a value larger than 1. The reason is that in any feasible solution we can round
all the z; > 1 to 1 and still get a feasible solution with a lower cost.

A common technique in design of approximation algorithms is to first formulate the problem as an IP/LP, then
solve the LP relaxation, and then round this fractional solution to an integer one while keeping a bound on the
total value of the objective function. There are different ways to round a fractional solution to an integer one.
Here we discuss a deterministic rounding for Set Cover.

We define the frequency of an element e € U to be the number of the sets of S that contain e and let f be the
largest frequency among all elements. For instance, for the case of vertex cover (where the elements are edges
and the sets are the vertices) the frequency of each element is 2, so f = 2. Below we describe an f-approximation
rounding algorithm for set cover.

SC2: Deterministic Rounding for Set Cover
e Let x* be an optimal solution to the LP relaxation of set-cover.
e For each set i define Z; = 1 if 2f > 1/f and 0 otherwise.

e return the set of sets with z; = 1.

First we claim that this algorithm returns a feasible solution. The reason is that for each element e, constraint
(1) implies that among all the at most f sets containing e, at least one set has z* value at least 1/ f. Therefore,
for at least one of those sets Z value is 1. To see that this is an f-approximation it is sufficient to observe that
for each set S; picked in our solution, the fractional solution is paying at least % - ¢(S;) since zf > 1/f.

The above algorithm when applied to vertex cover implies a 2-approximation even for the case of weighted
vertex cover in which every node v € V has a weight (or cost) ¢, and the goal is to find a feasible solution with
minimum total cost (the cardinality vertex cover is the special case where ¢, = 1 for all nodes).

2.4 Integrality Gap

For an instance I of a minimization problem, let OPT¢(I) be the cost of the optimal LP solution. Then,
integrality gap of this instance is given by OPT(I)/OPT¢(I). The integrality gap of the problem II is
max; OPT(I)/OPTy(I), i.e. the largest ratio between the fractional and integral solution over all possible
instances of II. Note that in any LP rounding algorithm, we use the LP solution as a lower bound for the opti-
mal solution. Therefore, any such algorithm cannot have a performance ratio better than the integrality gap. In
general, it is difficult to design algorithms with ratio better than the integrality gap. Therefore, large integrality
gaps typically are indications of difficulty of a problem. Consider for example the Vertex Cover problem, and
let I be the complete graph K,,. Clearly by assigning a value of % to each vertex we get a fractional solution of
value § whereas any integer solution must contain at least n — 1 nodes (or else one edge is not covered). Thus
the integrality gap of V.C. is at least 2 — %

2-6 Lecture 2,3: Set Cover, Introduction to LP

Exercise. Prove that the integrality gap for Set Cover problem is Q(logn).

2.4.1 Weighted Vertex Cover.

In this section we show that the standard LP for the weighted version of V.C has some other nice features.
Recall the following LP relaxation of the vertex cover problem:

n
minimize : g Cy * Ty
=1

subject to: Ty + Ty , YuweEFE

Ly

IV IV

Definition 3 (Half-integer) A variable is half-integer, if it is an integer factor of {0,%,1}.
Our main goal is to prove the following lemma:

Lemma 2 Any basic solution to the above LP for the Vertex Cover is half-integer

It’s easy to see that by rounding each z; > % to 1 we get a 2-approximation algorithm for V.C.

Proof. In order to prove this lemma, we take advantage of the fact that all non-basic feasible solutions can be
written as a convex combination of two other feasible solutions. However, basic solutions cannot be written in
such a way. Let x be any basic solution to the LP. Assume z is not half-integer. Define:

1
V>{v —<xu<1}
2
< 1
VS =4qwv 0<xu<§

Assuming that z is not half-integer, we must have V> UV < # (. We would like to show that there exist feasible
solutions y, and z, such that x can be written as a convex combination of them, which is a contradiction. Define
1, and z, as follows:

Ty+e z€EV”™ Ty —€ TEV”
Yo = Ty—€ T EVS and 2z, = Ty+e zEVS
Ty Otherwise Ty Otherwise

Observation 1. If V> U V< #£ (), then y # z and z # x.
Observation 2. x = %(y + z); i.e. = is written as a combination of y and z.

We can easily make sure that 0 < y,, z, < 1 by choosing € sufficiently small. In order to prove y and z are both
feasible solutions, we consider two cases:

1. For every edge uv with x, + 2, > 1, we can easily choose € so small that we have (z, —¢€) + (z, —€) > 1.
In this case, both y, +y, > 1 and z, + 2, > 1 since y,, and z,, are both > x,, — € (similarly for y, and z,)

Lecture 2,3: Set Cover, Introduction to LP 2-7

2. Now, suppose x, + ©, = 1. In this case one of z, and z, belongs to V> and the other belongs to
V<. Assume z, € V-~ and z, € V<. Therefore (z, +€—€) + (2, —€+€) = 1 = y, + ¥, = 1 and
—— N——

Yu Yo
(xy —€ete)+ (xy+e—e)=1= 2z, + 2, =1
Zuy Zv

Therefore, in z,y are both feasible and x (which is a basic solution) is a convex combination of two feasible
solution, a contradiction.

