Available at

www.ElsevierComputerScience.com Information
POWERED BY SCIENCE @DIRECT“ ProceSSlng
Letters

ELSEVIER Information Processing Letters 88 (2003) 195—200

www.elsevier.com/locatefipl

Depth-First Discovery Algorithm for incremental topological
sorting of directed acyclic graphs

Jianjun Zhou, Martin Miller

Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada
Received 16 September 2002; received in revised form 19 March 2003
Communicated by F.Y.L. Chin

Abstract

We study the problem of incrementally maintaining a topological sorting in a large DAG. The Discovery Algorithm (DA)
of Alpern et al. [Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 32—-42] computes alC@ferodes
such that a solution to the modified problem can be found by changing node priorities fitbrity. It achieves a runtime
complexity that is polynomially bounded in terms of the minimal cover gize

The temporary space complexity of DA grows quickly with increasing number of added edges and cover size. We introduce
the Depth-First Discovery Algorithm (DFDA), which uses depth-first search to reduce the temporary space of DA from
O(A| x ||IK) to O(JA| + |II), where|A] is the number of edges to add aivd|| is theextended size of the cover. DFDA is
simpler than DA and performs better in our empirical tests.
00 2003 Elsevier B.V. All rights reserved.

Keywords: Topological sorting; Incremental updating; Graph algorithms; DAG; Space complexity

1. Introduction consistent information (for example, in spreadsheets)
[1,5].

The goal of incremental dynamic priority ordering
(topological ordering, topological sorting) is to main-
tain a correct prioritization of a directed acyclic graph
(DAG) as it is modified. A DAG is said to be correctly
prioritized if every vertexv in the graph is assigned
a scalar priority, denoted bgriority(v), such that if
there is a directed edge fromo w, thenpriority(v) <
Priority(w) [6]. Since deleting edges does not destroy
an existing priority order of a DAG, we only discuss
edge insertions in this paper. Fig. 1 shows an instance
T Corre _ of the incremental updating problem. After adding the

orresponding author.

E-mail addresses: jianjun@cs.ualberta.ca (J. Zhou), edge from the priority 3 node to the priority 2 node,
mmueller@cs.ualberta.ca (M. Miiller). the priorities of the source and destination must be

In many types of computational problems, small
changes to a problem instance often have closely
related solutions. Computing a solution to a modified
problem incrementally from an existing solution can
be much more efficient than computing each solution
from scratch. Applications of incremental algorithms
include program development, interactive systems,
text processing, and management and maintenance o

0020-0190/$ — see front mattér 2003 Elsevier B.V. All rights reserved.
d0i:10.1016/j.ipl.2003.07.005

196 J. Zhou, M. Miller / Information Processing Letters 88 (2003) 195-200

Ao A

ONNO,
©

Inserted
edge

(a) DAG in priority order (b) Inserting an edge (¢) Changing priorities

Fig. 1. Inserting an edge and changing priorities.

changed to fix the priority order. In general, changes 2. Previouswork

beyond the endpoints of inserted edges may be neces-

sary. Acover is a set of nodes such that the modified We discuss three algorithms for the problem of in-

problem can be solved by changing only node priori- crementally updating a topological ordering. Hoover's

ties within the cover. method [2] inserts one edge at a time. However, in
typical applications edges are added in larger batches

Definition 1 (cover [1]). A set of nodesC is a cover [1]. Based on Hoover's work, Alpern et al. gave an al-

if, for all nodesv andw in the changed graph, gorithm for simultaneously inserting multiple edges.
This algorithm was the first with a runtime complex-

ity that is polynomially bounded in the general case in

+
—> w A priorit > priorit . .
v wAP yw) > p y(w) terms of the minimal extended size of the cover [1].

= vekvwek, However, when dealing with large DAGs with a large
n number of edges to insert, their algorithm requires a
wherev — w denotes a nonnull path fromto w. lot of working memory. Our work focuses on resolv-

ing this problem. Ramalingam et al. [5] developed a

Alpern et al. argue that the size &f is not method for the more general problem of managing in-
enough to measure the effort of computing the re- cremental changes in constraint systems, which can be

quired changes, and propose &ttgended size as a bet- used to maintain a topological sorting. However, the

ter measure: runtime of this algorithm is not polynomially bounded,
and it can produce covers that are much larger than the

Definition 2 (extended size [1]). Given a coverC, its ~ Minimal one.

extended size Our work is based on the two-step algorithm of

Alpern et al.: first the Discovery Algorithm (DA)
, marks a cover, then the Reassignment Algorithm (RA)
assigns consistent priorities to nodes in the cover. DA
where TouckX) is the set of edges that are incident processes all added edges simultaneously, needs 2
with nodes inkC. different priority queues, and requir€g|A|) storage
per visited node in the worst case. The purpose of
This paper describes an algorithm that computes marking nodes for all edges simultaneously is to avoid
a cover by a series of searches. The approach isrepeatedly reassigning the priorities of nodes, which
conceptually simple and performs well in practice. can happen if Hoover’s single-edge algorithmis called
We survey previous work and motivate our approach for each edge.
in Section 2, and develop the DFDA algorithm in While DA uses a breadth-first approach to organize
Section 3. Section 4 presents empirical results, and the processing of different inserted edges, our new
Section 5 summarizes our contribution. algorithm DFDA works depth-first. Added edges are

def

IKII ='1K| + [TouchK)

J. Zhou, M. Miller / Information Processing Letters 88 (2003) 195-200 197

processed one by one, extending the cover, while re- two visited fields for each (visited node, inserted edge)
ducing the Q|A| x ||K]||) temporary storage require- pair. DFDA keeps pushing the frontiers of one inserted
ments of DA to Q|A| + ||K])). The improved memory edge until the frontier node pairs are in order, or until
efficiency also enhances the overall processing speedat least one frontier becomes empty. The visited fields
in practice. Both algorithms achieve the same theoret- are reset before processing the next inserted edge.
ical runtime complexity of @A|klogk), wherek is DFDA only needs two fields for each visited node.
the minimum extended size for a cover. There are two kinds of dependencies between
Given a correctly prioritized DAG and a cover computations in both algorithms. One is for a single
K, the Reassignment Algorithm (RA) checks that inserted edge. The first time a nodés visited by an
the graph is cycle-free and reassigns priorities to the edgee while searching forward is marked as visited
nodes inXC with a worst case runtime of QK| + by e. When the search from meetsx again along a
|K|log|K]). In practice, RA is faster than DA and different path, it is skipped, anglcontinues searching
uses less memory, so improving DA enhances the the successors of. Another dependency is between

performance of the whole system. different inserted edges. If nodeis already marked
by e, then all other edgesg’ will skip x and search
beyond it.

3. Depth-First Discovery Algorithm (DFDA) An important feature of both DA and DFDA is

how they choose which nodes to mark as part of the

Our Depth-First Discovery Algorithm (DFDA) is ~ COVer. For every paib, f), the node with smaller
based on the Discovery Algorithm (DA) [1]. Both €V IS marked, anq thev counters of both nodes are
DA and DFDA mark the nodes of a covéf by decreased by this smaller value. In case of equal

considering pairgx, y) of unmarked nodes such that & Values, both nodes are marked. This is the key
+ - technique to achieve bounded runtime complexity.
x —> y. If the priorities are out of order, then at

.) The process is illustrated in Fig. 3. For the case of
least one of the nodes is marked. The algorithms use DA, after addinge and¢’, x and y are the frontiers

a counter called thedge value (ev) in each visited
node.ev is initialized to the degree of the node, and is
decremented during algorithm execution as described
below.

Initially, the DAG is assumed to be prioritized
correctly. After adding a batch of edges, each new
edgee searches backward from its source and forward They are in order, so the so DA stops. For DFDA,
from its destination, forming two frontiers which are £« (x,y) and (w, y), then (x,z) and (w,z) are
stored in priority queues: &ackwardFrontier that checked.
keeps the largest priority, andferwardFrontier that Let A be the set of added edges. DA ugegA|)
keeps the smallest priority on top. worst case space for marking in each visited node.

In DA, there is one pair of priority queues for each Temporary space is bounded by|@| x |||}, since
new edgee. The nodes and / at the top of the two 41y nodes ink, and neighbor nodes will be visited.
queues ofe represent the set of all pais, y) such Let k be the minimal possible value §f||. Then DA

of edgee, andx andz the frontiers ofe’. Assuming
the algorithm deals witte first, x is marked since
x.ev < y.ev, and is extended. They of bothx andy
is reduced by .ev= 3. For edge’, nodex is skipped
since it was already marked lbyNext, DA checks the
pairs(w, y) and(w, z).

thatx — y along a path that includés ¢ and f. If computes a cover with extended sig€| < 3k in a
the priorities ofb and f are in order, then so are the worst case time of QA|klogk) [1].
priorities of allx andy. Otherwiseb or f (or both) Pseudocode for DFDA is shown in Fig.Process-

are marked as visited ly and search continues until Edge is called for each inserted edge. The source and

either a frontier becomes empty or a correctly ordered destination of an edge are denoted b.source and

pair (b, f) is found. e.destination. The edge value of a nodeis indicated
The main difference between DA and DFDA is by n.ev. Procedure&etBackward andGrowBackward

the handling of inserted edges. DA expands searchare analogous to the procedur€gtForward and

frontiers of inserted edges one step at a time, and needsGrowForward shown.

198 J. Zhou, M. Miller / Information Processing Letters 88 (2003) 195-200

Main()
for all inserted edges

e.destination.visitedForward := true;
forwardFrontier.Clear(); forwardFrontier.evPusdéstination);
e.source.visitedBackward := true;
backwardFrontier.Clear(); backwardFrontier.evPash(rce);
ProcessEdge();
Reset all visitedForward and visitedBackward fields;

PriorityQueue.evPush]
X.ev:=degreéx);
Pushg);

ProcessEdge()
while f := GetForward) A b := GetBackwarg) A b.priority > f.priority

w:=min(f.ev, b.ev);

if fev=p
forwardFrontier.Pop();
f.marked := true;
GrowForward f);

if b.ev=p,
backwardFrontier.Pop();
b.marked := true;
GrowBackwardb);

fev:i=fev—pu;bev:=bev—pu,;

GetForward()
do
if forwardFrontier.IsEmpty() returilull;
x := forwardFrontier.Top();
if x.marked
forwardFrontier.Pop();
GrowForwardg);
while x.marked;
returnx;

GrowForwardg)
for all y with x — y do
if ~ y.visitedForward
y.visitedForward := true;
if y.marked GrowForwardg);
else forwardFrontier.evPusk)(

Fig. 2. The Depth-First Discovery Algorithm.

Theorem 1. DFDA needs temporary space of size W
O(A[+ IKD.
et (3)r
Proof. Besides storing the input DAG, thd | added ¢
edges and two frontiers of size(fC||), the algorithm l A
stores an edge value and only two visited values (:; z@ Inserted edges

(visitedForward and visitedBackward) for each of at
most||K|| visited nodes. O Fig. 3. Communication between edges.

J. Zhou, M. Mdiller / Information Processing Letters 88 (2003) 195-200 199

Theorem 2. Given a correctly prioritized directed
graphand a set A of newly added edges, DFDA marks
a set of nodes C such that

(a) Kisacover;

(b) |1K] < 3k, where k is the minimum extended size
for a cover;

(c) theworst case running timeis O(|A |k logk).

Runtime (second)

Proof (Sketch).(a) Any nonnull pathP : w 5 zwith
Priority(w) > Priority(z) must contain inserted edges. ° 1o 2o 38 0 56

As in DA, the search for an inserted edge skips any Nunber of inserted edges

marked node as the frontier moves aloRgA proof Fig. 4. Comparison of runtime as batch size varies.
by induction over the path length as in Theorem 2

of [1] shows thatw or z (or both) will be marked. We also compared cover size and extended cover

(b) Becausé., is a cover, and I!ke DA, DFDA uses size for DA and DFDA experimentally. The observed
the smaller edge value for selecting nodes to mark, by differences in sizes were very small

the same argument as in Theorem 2 of [1], it follows
that || IC|| < 3k.

(c) Insertion and deletion in a priority queue with
O(k) elements can be performed in time(l@yk).
Each node inC and the neighbor nodes &f will be
added to a queue at most once for eacland each
time the algorithm checks the order of two nodes, at
least one node is removed from the queue. The visited
values must be reset in at mdi¢€|| nodes for eacla.
The overall time complexity is QA |k logk + |A k) =
O(|Alklogk). O

5. Summary

We proposed DFDA as an improvement to the
Discovery Algorithm of Alpern et al. that reduces
the temporary space from(@| x |K|) to O(|A| +
IIKX]), where|A| is the number of added edges and
Il the extended size of the cover. DFDA achieves
much better runtime performance. Processing inserted
edges by a series of searches, not simultaneously, also
simplifies the algorithm.

4, Empirical results

Acknowledgements
We compared the performance of DA and DFDA
on random DAGs generated by DagAlea [4]. For uni- We are grateful to Lorna Stewart for insightful
formity, algorithms were implemented using LEDA discussions and feedback on our manuscript, and to
[3], with Fibonacci heap priority queues. All exper- the anonymous reviewers for comments that greatly

iments were performed on a Pentium Ill 700 MHz helped to improve the presentation of this paper.
workstation with 768 MB of memory.

Fig. 4 compares the runtime on 1000 random DAGs
with 1000 vertices and 3000 edges each. A small, References
randomly selected set of edges was removed from
each DAG, then added as a batch. We repeated this[1] B. Alpern, R. Hoover, B. Rosen, P. Sweeney, F.D. Zadeck,
process 10 times with different random batches for Incremental evaluation of computational circuits, in: Proc. 1st
each DAG, so each point in the plot corresponds Annual ACM-SIAM Symp. on Discrete Algorithms, 1990,
to an average over 18 1000 runs. With increasin pp. 32-42.

A g . e 9 [2] R. Hoover, Incremental graph evaluation, Technical Report

batch size, DFDA benefits from its smaller temporary 87-836 (PhD Thesis), Dept. of Computer Science, Cornell
storage and simpler algorithm. University, Ithaca, NY, May 1987.

200 J. Zhou, M. Miller / Information Processing Letters 88 (2003) 195-200

[3] K. Mehlhorn, S. N@her, LEDA: a platform for combinatorial and [5] G. Ramalingam, J. Song, L. Joskowicz, R.E. Miller, Solv-

geometric computing, Comm. ACM 38 (1995) 96-102. ing systems of difference constraints incrementally, Algorith-
[4] G. Melancon, I. Herman, DAG drawing from an information mica 23 (1999) 261-275.

visualization perspective, in: Proc. of the Joint Eurographics and [6] G. Ramalingam, T. Reps, On competitive on-line algorithms

IEEE TCVG Symposium on Visualization, 2000; also available for the dynamic priority-ordering problem, Inform. Process.

online: http://www.cwi.nl/InfoVisu. Lett. 51 (3) (1994) 155-161.

