Lambda Depth-first Proof Number Search and its Application to Go

Kazuki Yoshizoe

Dept. of Electrical, Electronic,
and Communication Engineering,
Chuo University, Japan
yoshizoe @is.s.u-tokyo.ac.jp

Abstract

Thomsen’s A search and Nagai’s depth-first proof-
number (DFPN) search are two powerful but very
different AND/OR tree search algorithms. Lambda
Depth-First Proof Number search (LDFPN) is a
novel algorithm that combines ideas from both
algorithms. A search can dramatically reduce a
search space by finding different levels of threat
sequences. DFPN employs the notion of proof
and disproof numbers to expand nodes expected
to be easiest to prove or disprove. The method
was shown to be effective for many games. Inte-
grating A\ order with proof and disproof numbers
enables LDFPN to select moves more effectively,
while preserving the efficiency of DFPN. LDFPN
has been implemented for capturing problems in
Go and is shown to be more efficient than DFPN
and more robust than an algorithm based on classi-
cal A\ search.

1 Introduction

Many search methods have been developed to solve com-
plex AND/OR trees, as occur in games. The direction of
search can be controlled in an ad hoc manner by domain-
specific knowledge. Domain-independent best-first, nonuni-
form tree expansion techniques are a more principled ap-
proach. Research in this area has produced two families of
algorithms: in the first family of algorithms based on proof
and disproof numbers [Allis, 1994; Nagai, 2002; Kishimoto
and Miiller, 20051, search is controlled through the combined
estimated difficulty of solving sets of frontier nodes that must
be (dis-)proven in order to (dis-)prove the root. The second
family of algorithms utilizes null (pass) moves [Donninger,
1993] for finding threats to achieve a goal [Thomsen, 2000;
Cazenave, 2002]. Search proceeds in a statically determined
fashion from simpler to more complex threats. Both fam-
ilies of algorithms can be viewed as simplest-first search
paradigms, for different definitions of what constitutes a sim-
ple search. However, neither notion of simplicity matches the
ideal one, which is to find a (dis-)proof as quickly as pos-
sible. For example, in the case of threat-based algorithms,
a proof containing long series of simple threats is inferior to
one with a small number of more complex threats. In the case

Akihiro Kishimoto

Department of Media Architecture,
Future University-Hakodate, Japan
kishi@fun.ac.jp

Martin Miiller

Dept. of Computing Science,
University of Alberta, Canada
mmueller @cs.ualberta.ca

of proof-number based algorithms, overestimation of proof
and disproof numbers delays the search of nodes that look
unpromising but can be easily solved.

This paper studies a combined approach, which utilizes
proof numbers to control the effort put into search based on
different threats. In this manner, the most promising threat
types to use in different parts of a search tree can be selected
at runtime. The contributions include:

e The lambda depth-first proof-number (LDFPN) search
algorithm synthesizing depth-first proof-number search
[Nagai, 2002] and A search [Thomsen, 2000].

e Experimental results for capturing problems in the game
of Go demonstrating that LDFPN outperforms DFPN
with state of the art enhancements and is more robust
than classical \ search.

The rest of this paper is organized as follows: Section 2
summarizes the rules of Go. Section 3 describes related work.
Section 4 introduces the LDFPN algorithm. Section 5 dis-
cusses experimental results, and Section 6 concludes and out-
lines further research directions.

2 The Game of Go

The game of Go is a two person zero sum perfect informa-
tion game. It originated in China and is most popular in East
Asia. Players take turns to place stones on the intersections
of a grid. The first player uses black stones and the second
player uses white stones. A stone placed on the board stays
in its position unless the opponent captures and removes it.
The aim of the game is to surround more territory than the
opponent. An example of a terminal position in Go on a 9x9
board is shown in the left of Figure 1.

One of the few rules of Go is about capturing stones. A
set of directly connected stones of the same color is called a
block. Stones connect vertically and horizontally, not diag-
onally. Empty intersections directly adjacent to a block are
called liberties. A player can capture an opponent block by
playing on its last liberty.

A capturing problem in Go is the following decision prob-
lem: Given a block b in a Go position p and a player to play
first, can b be captured assuming best play by both? The
player owning b is called the defender, the opponent is the
attacker.

A block with only one liberty is said to be in atari. A
ladder is a special capturing problem where the attacker uses
a sequence of ataris. A successful ladder is shown in the right
of Figure 1. For more information about Go, please refer to
http://www.usgo.org/

Figure 1: Example of a terminal position in Go, and a ladder

3 Related Work
3.1 Threats, Threat-based Search and)\ Search

Threats can be used to direct and focusing search. A position
with many threats is usually good for the attacker, while an
absence of threats indicates that no quick success can be ex-
pected. If a player has a threat to win, it is worth investigating
it with high priority. Threats severely restrict the opponent’s
choice of replies to moves that can avert the threat, and often
lead to further follow-up threats.

Threats can be found by using null moves. Intuitively, a
threat is a move that, if ignored, leads to a quick win. In the
ladder example in Figure 1, each black move is a threat to
capture, and white has only one possible move to avert that
threat.

The threat-based approach of [Allis et al., 1996] was gener-
alized to \ search [Thomsen, 2000] and further by Cazenave
[2002]. While this paper concentrates on a comparison with
A search, its ideas should apply to threat-based methods in
general.

The basic concept of A search is the A\ order, a measure of
how fast a player can achieve a goal, or in other words, the
directness of a threat. A search creates A"-trees consisting of
A"-moves, which are recursively defined as follows: A suc-
cessful \°-tree for the attacker, denoted by \? = 1, consists
of a single attacker move that achieves the goal directly. A
A0-move is such a winning attacker move.

An attacker win by an order n threat is denoted by A" = 1,
while A" = 0 indicates that the attacker cannot achieve the
goal by order n threats. A A\"-tree is a search tree which
consists of A"-moves. If there is no A"-move for a node,
that node is terminal and a loss for the player to move. The
definition of \™-moves is as follows.

Definition 1 [Thomsen, 2000] A \!-move is an attacker
move such that if the defender passes in reply, there exists a
Ni-tree with \' = 1 (0 < i < n — 1). The attacker threatens
to win within a \ order of less than n.

Definition 2 [Thomsen, 2000] A Xlj-move is a defender
move such that after the move, there is no subsequent \'-tree
with \' = 1 (0 < i < n — 1). The defender move averts all
lower order attacker threats.

For example, in the capturing problem, a A\°-move occu-
pies the last liberty of the target block and captures it. At-
tacker’s Al moves are moves for capturing the target stones
in a ladder or directly, while defender’s A}i moves are moves
preventing a direct capture. Attacker’s A2 moves threaten to
capture the target in a ladder or directly.

The underlying concept of A search is that \™ moves are
defined by \" ! searches, and the size of a A"~ ! tree is ex-
pected to be far smaller than a A™ tree. Therefore A search
can prune moves according to the \ order with little effort.

A search is especially efficient for problems for which A
order is meaningful. Capturing problems in Go are an ideal
case, because lower bounds on the \ order can be derived
from game specific knowledge, the number of liberties of a
block [Thomsen, 2000].

Two simple dominance relations hold for the value of A
trees.

if =1 then M =1
if A"=0 then M =0

(n <))
(0<j<n) 2

A positive result of a \ search, \™ = 1, is correct provided
that pass is allowed or zugzwang is not a motive in a game. A
negative search result, A\ = 0, means that either there is no
solution, or a solution will be found at a higher order n’ > n.

3.2 Proof-Number Search Variants

In an AND/OR tree, let a proof be a win for the first player
(corresponding to an OR node) and a disproof a win for the
opponent (represented by an AND node). [Allis et al., 1994]
introduced proof and disproof numbers as an estimate of the
difficulty to find proofs and disproofs in a partially expanded
AND/OR tree. The proof number of node n, pn(n), is defined
as the minimum number of leaf nodes that must be proven in
order to find a proof for n, while the disproof number dn(n) is
the minimum number of leaf nodes to disprove for a disproof
for n. pn(n) = 0 and dn(n) = oo for a proven terminal node
n, and pn(n) = oo and dn(n) = 0 for a disproven termi-
nal node. pn(n) = dn(n) = 1 is assigned to any unproven
leaf. Let nq, - - -, ng be children of interior node n. Proof and
disproof numbers of an OR node n are:

k
pn(n) = I{li?l’kpn(ni), dn(n) = Zdn(nz)

=1,

For an AND node n proof and disproof numbers are:

k
pn(n) = ;pn(nl), dn(n) = i:r?’lur_l;kdn(nl).
Figure 2 shows the calculation.

Proof-number search (PNS) is a best-first search algorithm
that maintains proof and disproof numbers for each node.
PNS finds a leaf node from the root by selecting a child with
smallest proof number at each OR node and one with smallest

D OR node

proof number
disproof number

Figure 2: Calculation of proof/disproof numbers

disproof number at each AND node. It then expands that leaf
and updates all affected proof and disproof numbers along
the path back to the root. This process continues until it finds
either a proof or disproof for the root.

Depth-first proof-number (DFPN) search [Nagai, 2002] is
a depth-first reformulation of PNS which re-expands fewer
interior nodes and can run in space limited by the size of the
transposition table. Thresholds for proof and disproof num-
bers are gradually incremented and used to limit a depth-first
search, similar to Recursive Best-First Search [Korf, 1993].

DFPN has been a very successful search method, and is
used in the best tsume-shogi solver [Nagai, 2002], the best
tsume-Go solver [Kishimoto and Miiller, 2005], and a back-
end prover for solving checkers [Schaeffer et al., 2005].
Yoshizoe [2005] presented a DFPN-based solver for the cap-
turing problem in Go to find an inversion, a set of points
on which a move possibly changes the outcome of a search.
The dual lambda search algorithm [Soeda et al., 2005] tracks
threats by both players in the mutual king attack typical of
shogi endgames. [Soeda, 2006] develops a family of algo-
rithms closely related to our work and applies them to the
Japanese game of shogi.

4 The LDFPN Search Algorithm

4.1 Details of LDFPN

LDFPN is a proof number based A search. Proof/disproof
numbers for AND/OR nodes are initialized and propagated
as in DFPN. However, each attacker node is split into several
pseudo nodes corresponding to different A orders O, - - -, 1,
and search dynamically selects the most promising A\ order
to pursue at each node.

An attacker node n is shown at the top of Figure 3. It is
divided into pseudo nodes of different A orders up to a limit
of [= 3 in the example. Each pseudo node corresponds to
a subtree with different \ order. Let n be part of a \! tree,
and cg, - - -, ¢; the pseudo nodes of n. The attacker wants to
prove that ! = 1. By the dominance relation of equation
(1), the attacker need only prove any one of the pseudo nodes.
However, disproving any lower order A tree is no help for dis-
proving the \! tree as in equation (2). Therefore, the disproof
number of attacker’s node n is the same as for ¢;.

Formally the proof and disproof numbers of attacker’s node
n are calculated as follows:

pn(n) = r{)lin lpn(cz-), dn(n) = dn(q).

A defender node n is shown in the bottom of Figure 3. De-
fender’s aim is to disprove this node by showing \! = 0. By
equation (2), proofs of lower order \ subtrees are irrelevant

node

move

m Order i attacker's node

@ Order i defender's node

3 Defender's
A d @ node | | e » Pseudo

Figure 3: Attacker’s node and Defender’s node

for the proof of n. The proof of the highest A order subtree
is the only valid proof. However, a A\'! subtree is searched
for the exceptional case of a pass move. In the bottom of this
Figure, if the attacker cannot win by A order 2 after a defender
pass, then the attacker was not threatening to win by A order
2 and according to the definition cannot win by A order 3.
From the attacker’s point of view, the purpose for searching
this pseudo node c;—; is to check if the attacker’s previous
move m, which lead to node n, was a)\fl move or not. If
M= =0is proven, the search can immediately return to the
parent of n. Since a A~ ! subtree is typically smaller than a
Al subtree, the search for ¢;_; will often finish quickly.

The defender, looking for a disproof at AND node n, can
choose between the most promising move in the \' tree and a
pass move that searches a \'~!-tree. Therefore, the proof and
disproof numbers of a defender node n are calculated by:

pn(n) = pn(a), dn(n) = min(dn(c;—1), dn(cp)).

Like DFPN, LDFPN uses two thresholds for proof and dis-
proof numbers. LDFPN selects the leaf node with the small-
est proof/disproof number, regardless of the A order.

The main advantage of LDFPN over classical A search is
the ability of LDFPN to seamlessly switch between different
A order child nodes. There is no need to wait for a proof or
disproof of all lower A\ order subtrees. Since disproofs are
often more difficult than proofs, this ability to skip a difficult
disproof of a A"~ ! subtree and start search of a A" subtree
improves the search behavior.

4.2 Search Enhancements

Heuristic Initialization of Proof and Disproof Numbers
The basic DFPN algorithm initializes proof and disproof
numbers of an unproven leaf node to 1. As in [Allis, 1994;

)

1l
S

[1a]
o
=
/

1.
g*

]

v,»
A)\

<z
‘t

Figure 4: Sample test problem (Black to play)

Nagai, 2002], one way to enhance performance of LDFPN
is to heuristically initialize these numbers. Let H),(n) and
H,,(n) be evaluation functions to initialize the proof and dis-
proof number of leaf n. In LDFPN, H,,,,(n) and Hy,(n) are
defined as functions of the A order of n, to reflect the prop-
erty that a node with lower A order should be searched with a
higher priority (see Section 5.1 for details). DFPN with this
enhancement is called DFPN+ in [Nagai, 2002].

Ladder Search

A ! search for capturing problems of Go is the same as a
ladder search, shown in Figure 1. This search is exceptionally
easy, since the number of move candidates is very small (1
or 2 in most cases). In the implementation reported here, a
special purpose ladder search is 10 times faster in terms of
nodes per second than LDFPN. It can be used as a subroutine
by LDFPN.

Simulation
Kawano’s simulation [Kawano, 1996] saves search time by
reusing the proof tree of similar board positions. If a board
position A was (dis-)proven, a similar board position B is
likely to be (dis-)proven by the same (dis-)proof tree.
LDFPN uses simulation only for pass moves at AND
nodes. A pass move is searched at AND nodes, and if it re-
sults in a loss, its sibling nodes are checked using the disproof
tree of the pass move. In this way, irrelevant moves which do
not help the player can be disproven quickly.

5 Experimental Results

5.1 Setup of Experiments

The test suite consists of 217 capturing problems, including
110 from [Mas, 2002] and 107 modified ones. While the
original problems all have a winning solution, the modified
problems test the case where the first player loses. A typi-
cal example is shown in Figure 4. The attacker Black must
capture the crucial white stones marked by triangles to save
the black stones marked by squares. The correct answer is
marked with a cross.

Each problem was searched in two ways: First to capture
the stones marked with triangles, and second to defend the
stones marked with squares. Some problems contained 2
blocks to be defended, and in some others, there were 2 blocks
to be captured. Counting these as separate problems yields a
total of 440 test problems.

The following three algorithms were tested:

e LDFPN: The LDFPN algorithm described in Section 4
with the highest A\ order of 5. Several methods for ini-
tializing proof and disproof numbers were tested to tune
H,, and Hg,. As aresult, i, and Hg, for a node n
with A order \ are defined as follows:

Hpp(n)

o DFPN+: The DFPN algorithm with heuristic initializa-
tion. Hy,,, and Hyg, use Go-specific knowledge, the dis-
tance to a target block. To allow a fair comparison, state
of the art enhancements are incorporated into the imple-
mentation of the DFPN+ algorithm, such as techniques
from [Kishimoto and Miiller, 2003; 2005] and Kawano’s
simulation [Kawano, 1996].

= Hy,(n) = max(1,271) (0 < A <5).

e Pseudo A search: Thomsen’s original A\ search uses
an alpha-beta framework. For better comparison with
LDFPN, pseudo \ search uses LDFPN with special pa-
rameter settings that mimic the search strategy of A
search, which expands trees strictly in increasing order
of \. A similar effect is achieved in LDFPN by letting
the heuristic initialization grow very quickly with \:

Hyn, (n) = Han(n)

Since the capturing problems tested are in open-ended ar-
eas, it is hard to restrict move generation and achieve prov-
ably correct results. In practice, most computer Go programs
heuristically limit moves for their capture search engines and
regard a block with a large enough number of liberties as es-
caped. Three types of move generators were tested: not only
to generate all legal moves and also to accurately assess the
life and death status.

= max(1,256* 1) (0 <\ <5).

e Heuristic generator: generates moves on the liberties of
surround blocks [Thomsen, 2000], and of blocks near
the target block. It also generates some more moves in-
cluding the 2nd liberties of the target block.

e Heuristic+ generator: generates moves by the heuristic
generator plus on all their adjacent points.

e Full board generator: All legal moves are generated.

For DFPN+, a liberty threshold to regard the block as es-
caped is passed as a parameter. LDFPN uses the failure of
a search with the preset maximum A order 5 to determine
whether a target block has escaped. For DFPN+, the num-
ber of liberties of the target block was used as the threshold.
LDFPN with maximum A order of [evaluates a block with
[+ 2 or more liberties as escaped. A liberty threshold of [+ 2
for DFPN+ is roughly comparable to a LDFPN search with
maximum order /.

The parameters given to LDFPN are the target blocks to
capture/defend, and the \ order.

A test case was considered solved, if the move returned
was the solution given in [Mas, 2002].

Experiments were performed on an Opteron 870 at 2.0
GHz with a node limit of 1 million nodes per test position
and a 200 MB transposition table.

— [LDFPN | DFPN+ [pseudo A |

Heuristic: num solved 294 272 288
Heuristic+: num solved 283 267 282
Full board: num solved 207 149 201

Table 1: Number of problems solved by each move generator.

5.2 LDFPN versus DFPN+

Table 1 summarizes the number of problems solved by
LDFPN and DFPN+ with the three move generators. LDFPN
solved more problems than DFPN+ in each case. The differ-
ence is largest for the full board move generator. This is not
surprising, because threats based on the A\ orders can drive
LDFPN to focus on searching moves near the target block of
the defender.

Figure 5 compares the performance of LDFPN and DFPN+
for each problem solved by both algorithms with the three
move generators. In this Figure, the execution time of
LDFPN was plotted on the horizontal axis against DFPN+ on
the vertical axis on logarithmic scales. A point above y = x
indicates that LDFPN performed better. LDFPN outperforms
DFPN+ for all three generators, with the largest difference for
the full board move generator, showing the clear advantage of
LDFPN on pruning irrelevant moves.

The example shown on the left in Figure 6 is solved faster
by LDFPN. With the “heuristic” move generator, LDFPN
searched 895 nodes to solve this problem in 0.007 seconds,
while DFPN+ searched 3,143 nodes in 0.022 seconds. In this
problem, black has to sacrifice 2 stones to win. If stones are
captured, there are more empty points in a position (i.e. the
points where the stones used to be placed), resulting in an
increase in the number of legal moves. This increases the
proof number of a node in DFPN+, which should have been
easily proven. DFPN+ delays searching such a node with an
apparently large proof number. LDFPN tends to search with
a smaller set of moves based on the A order, and this effect
occurs less frequently and is less severe than with DFPN+.

One disadvantage of LDFPN is that it occasionally has to
visit the same nodes in different A orders. If the additional in-
formation of A order is not effective, the advantage of LDFPN
disappears. In particular, if the number of possible moves is
small, DFPN+ works well.

The right position in Figure 6 shows an example that
DFPN+ solved more quickly than LDFPN. The answer is
marked with a cross in this Figure. With the “heuristic” move
generator, LDFPN searched 63,201 nodes to solve the prob-
lem in 0.44 seconds, and DFPN+ searched 10,871 nodes in
0.08 seconds. This is a typical problem, in which A order has
a negative effect. Both players have several suicidal moves
with low A orders. LDFPN therefore tends to search to dis-
prove all suicidal moves before trying to prove the correct
move. In DFPN+, the suicidal moves result in captures of
non-target blocks, leading to larger proof numbers for these
moves. DFPN+ therefore delays searching these suicidal
moves and expands the correct move earlier.

normal DFPN with sim,H [sec] normal DFPN with sim,H [sec]

normal DFPN with sim,H [sec]

100 T T T T T
10 F . .
+ + f*»ﬁwtt:r -
1F o Q#Jr j:r i - ++§Et E
+ I ps ﬁﬁﬁj
+
01 F T P +w°*’r++ i
+ o+ +
4 J#; L + o
+ i o E
0.01 | M " + E
+ 2]
+ T +]
0001 | R -.
+ +]
+
00001 .@%I n 2ol PR il .y=)f il - P
0.0001 0.001 0.01 0.1 1 10 100
LDFPN with sim,H,ladder [sec]
(a) Heuristic generator
100 T T T T T
10 + 4 4 =
* +i§> #ﬁif#fﬁ% £t
., REURAE . S
TF . oF §¢++ R - 3
+ £ F
AT i Lo
LRI A e S
: 4t Fe+ F
+ % +
0.01 L]
g + S+ I + 1
+ +
+ i 1
0.001 | + E
J:; ++jr$ N T
F y=X
0.0001 Ko ' ' : '
0.0001 0.001 0.01 0.1 1 10 100
LDFPN with sim,H,ladder [sec]
(b) Heuristic+ generator
100
10 |
1k
0.1
0.01 |
0.001 |
00001 il - 2ol PR il .y=)f il - P
0.0001 0.001 0.01 0.1 1 10 100

LDFPN with sim,H,ladder [sec]
(c) Full Board generator

Figure 5: LDFPN with ladder vs DFPN+

LDFPN was faster DFPN+ was faster

Figure 6: Problems which LDFPN solved faster/slower.
(Black to play)

5.3 LDFPN versus Pseudo)\ Search

Table 1 also compares the number of problems solved by
LDFPN and pseudo A search. For all types of move gener-
ators, LDFPN solved more problems than pseudo \ search.

This comparison shows that LDFPN is slightly more robust
than pseudo A search.

6 Conclusions and Future Work

This paper investigated an approach to combine proof num-
ber based search and threat based search. Results on applying
LDFPN to the capturing problem are very promising. In par-
ticular, if the move generator generates a larger set of moves,
LDFPN outperforms DFPN+ by a large margin with more
robustness than the classical A-search based approach. Since
using a larger set of moves can improve the accuracy of solv-
ing the capturing problem, LDFPN can be a good choice for
solving tactical problems in Go.

There are many topics to pursue for future work. First of
all, the method should be explored for other domains, such
as Hex. H,,,, and H 4, of LDFPN can clearly include domain
dependent knowledge to enhance performance as in DFPN+.
The right balance of domain-dependent knowledge and A or-
derin H,,, and H 4, must be investigated. Additionally, since
LDFPN can compute the A-order of a goal, it can be applied
to domains with more than one goal, in order to measure
which of several goals can be achieved the fastest. Work is in
progress on a semeai solver in Go, because this problem of-
ten involves multiple goals. Finally, integrating LDFPN with
a complete Go-playing program will be an important topic to
improve the strength of the programs.

Acknowledgments

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and Al-
berta’s Informatics Circle of Research Excellence (iCORE).

References

[Allis et al., 1994] L. V. Allis, M. van der Meulen, and H. J.
van den Herik. Proof-number search. Artificial Intelli-
gence, 66(1):91-124, 1994.

[Allis et al., 1996] L. V. Allis, H. J. van den Herik, and
M. P. H. Huntjens. Go-moku solved by new search tech-
niques. Computational Intelligence, 12:7-23, 1996.

[Allis, 1994] V. Allis. Searching for Solutions in Games and
Artificial Intelligence. PhD thesis, University of Limburg,
Maastricht, 1994.

[Cazenave, 2002] T. Cazenave. A generalized threats search
algorithm. In Computers and Games 2002, Edmonton,
Canada, 2002.

[Donninger, 1993] C. Donninger. Null move and deep
search: Selective search heuristics for obtuse chess pro-
grams. ICCA Journal, 16(3):137-143, 1993.

[Kawano, 1996] Y. Kawano. Using similar positions to
search game trees. In Richard J. Nowakowski, editor,
Games of No Chance, volume 29 of MSRI Publications,
pages 193-202. Cambridge University Press, 1996.

[Kishimoto and Miiller, 2003] A. Kishimoto and M. Miiller.
Df-pn in Go: An application to the one-eye problem. In
Advances in Computer Games 10, pages 125—-141. Kluwer
Academic Publishers, 2003.

[Kishimoto and Miiller, 2005] A. Kishimoto and M. Miiller.
Search versus knowledge for solving life and death prob-
lems in Go. In Tiventieth National Conference on Artificial
Intelligence (AAAI-05), pages 1374-1379. AAAI Press,
2005.

[Korf, 1993] R. E. Korf. Linear-space best-first search. Arti-
ficial Intelligence, 62(1):41-78, 1993.

[Mas, 2002] Master of Semeai (Semeai no Tatsujin in
Japanese). Japanese Go Association, 2002. ISBN:
4818204722.

[Nagai, 2002] A. Nagai. Df-pn Algorithm for Searching
AND/OR Trees and Its Applications. PhD thesis, Dept. of
Information Science, University of Tokyo, Tokyo, 2002.

[Schaeffer et al., 2005] J. Schaeffer, Y. Bjérnsson, N. Burch,
A. Kishimoto, M. Miiller, R. Lake, P. Lu, and S. Sutphen.
Solving checkers. In Nineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-05), pages 292—
297, 2005.

[Soeda et al., 2005] S. Soeda, T. Kaneko, and T. Tanaka.
Dual lambda search and its application to shogi endgames.
To appear in Proceedings of Advances in Computer Games
11 (ACG11), Taipei, 2005.

[Soeda, 2006] Shunsuke Soeda. Game Tree Search Algo-
rithms based on Threats. PhD thesis, The University of
Tokyo, September 2006.

[Thomsen, 2000] T. Thomsen. Lambda-search in game trees
- with application to Go. ICGA Journal, 23(4):203-217,
2000.

[Yoshizoe, 2005] K. Yoshizoe. A search algorithm for find-
ing multi purpose moves in sub problems of Go. In
Game Programming Workshop 2005 (GPWO0S5), pages 76—
83, 2005.

