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ABSTRACT 7


Abstract
Combinatorial game theory provides an exciting approach to the analysis of games: It
allows the decomposition of a game into a sum of local games. In contrast to classical
game theory, few applications to computer game playing have been demonstrated.


Game programming has enjoyed the continuous interest of computer science
research. Progress has been impressive: several games have been solved by computer,
typically by a combination of mathematical analysis and exhaustive search. Programs
for many other popular games such as chess challenge the top human players. The
notable exception is the ancient oriental game of Go.


This thesis claims that combinatorial game theory can be applied to computer Go.
We develop a sum game model for heuristic Go programming and a program for perfect
play in late stage endgames. As a case study in Knowledge Engineering, the ‘Explorer’
program presents new approaches to modeling Go knowledge. We adapt a string
matching algorithm for Go pattern matching, develop algorithms for board partition,
and create a framework for identifying, searching and evaluating local games.


We extend the Smart Game Board, a workbench for game programmers, with tools
for displaying and editing Go-specific data. For measuring the performance of Go
programs, we introduce the Computer Go Test Collection containing thousands of
annotated positions.


Kurzfassung
Die kombinatorische Spieltheorie liefert einen interessanten neuen Ansatz zur Analyse
von Go: sie erlaubt die Zerlegung eines Spiels in eine Summe von lokalen Teilspielen.
Im Gegensatz zur klassischen Spieltheorie wurde sie jedoch kaum in Computerspiel-
programmen eingesetzt.


Die Entwicklung von Spielprogrammen ist ein aktives Forschungsgebiet der
Informatik. Dabei wurden eindrucksvolle Fortschritte erzielt: mehrere Spiele wurden
vollständig gelöst, typischerweise durch eine Kombination von mathematischer Analyse
und erschöpfender Suche. In vielen anderen bekannten Spielen wie etwa Schach sind
Programme starke Gegner für die besten menschlichen Spieler. Die bemerkenswerte
Ausnahme ist das alte asiatische Brettspiel Go.


Diese Dissertation vertritt die These, dass die kombinatorische Spieltheorie auf
Computer-Go anwendbar ist. Wir entwickeln ein Summenspiel-Modell für die
heuristische Goprogrammierung und ein Programm für perfektes Spiel im späten
Endspiel. Als Fallstudie im ‘Knowledge Engineering’ enthält das Programm ‘Explorer’
neue Ansätze zur Modellierung von Go-Wissen. Wir adaptieren einen Zeichenketten-
vergleichsalgorithmus für den Mustervergleich im Go und entwickeln Methoden zur
Brettaufteilung sowie zur Identifikation, Suche und Bewertung von lokalen Spielen.


Wir erweitern das Smart Game Board, eine Entwicklungsumgebung für Spielpro-
gramme, mit Werkzeugen zur Anzeige und Bearbeitung Go-spezifischer Daten. Um die
Leistung von Goprogrammen zu messen, erstellen wir die Computer Go Test Collection
mit tausenden von kommentierten Positionen.
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1
Computer Go


The research of Go programs is still in its infancy,


but we shall see that to bring Go programs to a level


comparable with current Chess programs, inves-


tigations of a totally different kind than used in


computer chess are needed.


John McCarthy 1990


This chapter motivates why computer Go is an interesting research subject. It introduces
the specific advantages and problems of this domain. We survey theories related to Go
and briefly describe our development shell, the Smart Game Board. A final section
explains the structure of the thesis.


The ideal reader of this thesis would be a computer scientist familiar with the game
of Go and the basic concepts of game theory. Knowledge of combinatorial game theory
is helpful, too. An introduction is given in Chapter 3. A glossary of terms is included as
an appendix.


1.1  Why Computer Go?
John McCarthy sums up the present state and future direction of computer Go in a few
words. Games have long been used as vehicles for research in computer science. Some
of the most prominent computer scientists are linked with the beginnings of computer
game playing [Neumann/Morgenstern 44, Shannon 50, Turing et al. 53].


Since that time, computer game playing has become a specialized research subject,
leading to less insight for computer science in general than had been hoped by the early
prophets of Artificial Intelligence. In games such as chess, brute force search techniques
have proven superior to knowledge based, ‘intelligent’ programs.


Because of its complexity, Go seems to resist any brute force approach. The promise
that computer Go methods will lead to insight into general problem solving makes the
topic a challenging one for computer scientists.


1.2  State of Computer Go
With the single exception of chess, more programming effort has been spent on Go than
on any other game. Yet in playing strength, Go programs lag far behind their
counterparts in Checkers, Awari or Nine Men’s Morris. Reasons for this deplorable
state of affairs can be found in the inherent difficulty of the game, in the structure of the
computer Go community, and in the limitations of existing programs, which will be
analyzed in Chapter 2.
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Go Programs
…


 


20 Kyu 15 Kyu 10 Kyu 3 2 1


weak strong 3 4 5 6


1 Dan 9 Dan


amateur professional


21


45


Dan


Kyu


Go programs on the human ranking scale


The ultimate goal of Go programmers is to create a program of amateur Dan level, or
even challenge Ing’s million Dollar price in a match against professional players.
Currently we are far from reaching this goal. The best programs rank as relative begin-
ners on a human scale, and need a huge number of handicap stones after a player gains a
little bit of practice in playing them. Progress has slowed down as the complexity of
existing ad hoc solutions increases.


The Computer Go Community


While Go programming started in the late sixties, it got a big boost in the mid eighties
with the appearance of the sponsors Mr. Ing Chang-Ki and the computer company Acer
Inc. The current size of the serious computer Go community is estimated at about 50
people. There are only a few tournaments. The annual International Computer Go
Congress (ICGC) has the status of a world championship.


Traditionally, computer Go has been a one person or very-small-team effort. Many
researchers in related disciplines such as computer chess, AI, expert systems or machine
learning have studied Go and concluded it was ‘too hard’. Most existing Go programs
have been written by Go enthusiasts, often strong amateur players.


The basis for professional programmers is even smaller than in chess. Computer Go
activists are typically university researchers or hobbyists. Though progress is made,
most programs remain tied to a single person with limited time budget. The consensus
is that a state-of-the art program needs at least 4-5 man-years of effort. Most of the
leading programs are veterans approaching their tenth birthday. Few individuals and
organizations are willing to make that kind of investment.


Two ways out of the bottleneck are being pursued:
• Start a larger scale project: The obvious way to get more man-years into a Go


program. It does not automatically mean better results, though, as new problems of
coordination and management crop up. A potentially promising project was recently
started by Mark Boon [Boon 94].


• Concentrate on tractable subproblems: Berlekamp and colleagues study the
mathematics of late-stage endgames [Berlekamp 94]. Thomas Wolf has developed a
strong tsume Go program [Wolf 91]. The progress in these domains has been
impressive. So far, these approaches have not been integrated into a playing
program.


A third way, collaboration between researchers, has proven very difficult in practice.
Groups have split or lost members more often than researchers have joined forces.
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1.3  Some Facts that make Go a Difficult Game for Computers


Size and Structure of the Problem Space


The size of the search space for 19x19 Go, estimated at 10170 positions, is probably the
biggest of all popular board games [Allis et al. 91]. No simple yet reasonable evaluation
function seems to exist. This is evident to all Go players, and confirmed by the fact that
many difficult combinatorial problems can be formulated as Go problems
[Lichtenstein/Sipser 78, Morris 81, Robson 83].


A Go position can be highly regular, making perfect play possible with little search
and a good theory, as exemplified by Berlekamp’s endgame studies [Berlekamp 91]. It
can also be extremely chaotic, leaving exhaustive analysis as the only known method of
solution. Therefore a competent Go program will have to combine a good theoretical
foundation with lots of computing power.


Quality and Quantity of Human Knowledge


Humans are able to recognize subtle differences in Go positions that will have a
decisive effect many moves later. Professionals know by intuition whether a group can
be captured or not. Proving this by an exhaustive computer search however would take
billions of nodes.


Skilled players usually know which side is better in a game after a quick glance at
the position, another feat that would involve an enormous amount of processing on a
computer, if we knew how to do it. We can contrast Go with more computer friendly
games such as Nine Men’s Morris, Awari and some chess endgames: Humans get lost
in the ‘combinatorial chaos’ of the game, while machines exploit their computing power
[Thompson 86, Gasser 91].


A huge quantity of Go knowledge has accumulated over centuries, much of it im-
plicit in game records of master players. Thousands of game commentaries, tutorial
books and problem collections have been compiled.


Pattern knowledge of experts seems at least comparable to that of chess experts,
which is already daunting [De Groot 65]. Patterns recognized by humans are more than
just stones and empty spaces: Players can perceive complex relations between groups of
stones, and easily grasp fuzzy concepts such as ‘light’ and ‘heavy’ stones. This visual
nature of the game fits human perception but is hard to model in a program. The cogni-
tive models of Reitman and Wilcox [Wilcox 79] were interesting, but today’s programs
make do with comparatively simple pattern matching [Boon 90, Müller 91b].


While the knowledge of chess programs is tuned nicely to their searching power, Go
programs are severely lacking in both quality and quantity of knowledge.


1.4  Goals of Computer Go Research
We have identified three types of research on Computer Go:


1. The ‘tournament approach’: The goal is to win the International Computer Go
Congress and other computer Go tournaments. The long term goal is to win Ing’s
million dollar prize. Progress is made by improving overall play, which often means
finding and fixing the worst bugs.


2. The ‘niche approach’: The goal is strong or perfect play in a subset of Go positions.
Examples are Thomas Wolf’s Life&Death program and the endgame component of
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Explorer. Progress is made by expanding the range of positions for which exact
solutions are feasible, or by adapting the methods to heuristic play.


3. The ‘test vehicle approach’: The goal is to use Go as an example to demonstrate new
computer science methods. Go specific results are secondary. This approach is
popular with researchers in neural networks and machine learning.


1.5  Theories for Computer Go
For the development of a game program we use theories in two ways:
• To understand the problem domain (e.g. subtleties inherent in the rules) more


precisely.
• To provide means of (efficiently) analyzing aspects of a game.


An advantage of Go over other classical board games is that the more regular structure
of Go allows better application of mathematical theories.


Classical Game Theory


Classical game theory was pioneered by von Neumann and others, who formalized and
proved fundamental concepts of game-playing [Neumann 28, Neumann/Morgenstern
44]. In von Neumann’s model of two-person games, players alternate moves until they
reach a terminal position. At a terminal position, the game value is determined by an
evaluation function. The minimax rule can be used to obtain the optimal values for
nonterminal positions.


Many refinements have been developed for the implementation of classical game
theory in computer programs: Alpha-beta pruning, transposition tables, and parallel
search among others [Marsland/Schaeffer 90]. These techniques lead to enormous suc-
cess in many board games, yet they fail in all but the most basic Go problems
[Thorp/Walden 64]. In place of full-width game tree search, selective search is widely
used in computer Go. Examples are goal-oriented search to solve specific tactical prob-
lems or tightly constrained global search.


Game-specific Theories


Many specialized theories have been developed for solving a particular game, or for a
subgame such as King, Bishop and Knight against King in chess. The purpose of such
theories is to reduce the search space: Search depth is reduced by evaluation of
nonterminal positions, search width by pruning rules which reduce the number of
moves to be investigated. Ideally, a theory can solve a game by direct evaluation of the
initial position, without any search.


The solutions of the game Qubic by Patashnik and of Gomoku by Victor Allis
demonstrate the power of game-specific theories [Patashnik 80, Allis 94]. Examples of
theories for Go subproblems are the traditional ‘semeai formula’ [Lenz 82] and
Benson’s algorithm for detecting unconditional life [Benson 80].


Combinatorial Game Theory


Combinatorial game theory (CGT) has been developed and applied to many mathe-
matical games in [Conway 76] and [BCG 82]. This theory defines a game in a very
elegant mathematical way that generalizes von Neumann’s: There is no restriction that
players must move alternately. A principal goal of the theory is the decomposition of
games into independent subgames. This leads to the notion of a sum of games.
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Recently, CGT has been used for pencil-and-paper analysis of difficult Go
endgames [Berlekamp 91, Wolfe 91a]. Automating these methods and applying them to
computer Go is a main topic of this thesis.


Heuristics


Beyond strict theory, there are heuristics: formalized rules of thumb, or applications of
a theory outside its guaranteed range of validity. A vast number of heuristics have been
developed for the evaluation of game positions, and for pruning moves during selective
search. Still other heuristic rules help decide when to apply heuristic evaluations:
Quiescence search is used to avoid evaluation of turbulent positions in which heuristic
evaluation is too imprecise.


Almost all the substance of current Go programs is contained in their heuristics for
position evaluation and move generation. For example, most patterns can be interpreted
as heuristic move generation rules.


1.6  Notes on History of Go Theory and Computer Go Endgame
The history of computer Go has been documented in several places [Erbach 92, Kierulf
90, Müller 89, Wilcox 79]. Dissertations dealing with computer Go are [Friedenbach
80, Kierulf 90, Ryder 71, Zobrist 70a]. We complement the literature with a summary
of other work that influenced our investigations.


Applications of Combinatorial Game Theory to Go Endgames


An early attempt using sums of games for Go endgames is [Miller 76]. We do not know
whether these ideas resulted in a playing program.


B W


BB WW


The binary tree model of Kao and
Chen


Raymond Chen, a student of Berlekamp, has
built a demonstration program that plays
endgames according to a human-built database of
local games [BW 94]. A first step towards
automatic generation of such a database was our
program for exhaustive analysis of single local
endgame positions [Müller/Gasser 94].


Kao Kuo Yuan and Ken Chen studied a
simplified version of local endgame play, where
players are restricted to a single move in each
node. This is a useful approximation whenever a
good local move is easy to identify. Finding an
optimal move in this binary tree model is faster
than in the general case [Chen 93].


Safety of Stones and Territory


Benson gave a mathematical characterization of unconditionally alive blocks of stones
[Benson 80]. These blocks cannot be captured by the opponent even if she is allowed an
arbitrary number of moves in a row. Benson’s algorithm detects a set of blocks and
regions that together form two or more eyes. It relies on the assumption that suicide is
illegal.
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B
A


D
C


E


Illustration of unconditional life


The group in the left picture is not unconditionally alive: it can be captured by five
successive white moves A…E. The right side group is alive when suicide is forbidden.
Of more practical interest are algorithms for detecting groups of blocks which are safe
under alternating play. Most Go programs contain such Life and Death knowledge,
typically a combination of exact and heuristic rules [Kraszek 88].


The performance of programs on Life&Death puzzles is in the mid kyu range,
maybe slightly above their general level of skill. Specialized programs for solving such
problems in a small completely enclosed region do better, reaching the level of strong
amateur Dan players [Wolf 91]. Wolf’s program contains powerful rules for static
Life&Death recognition, elaborate move ordering heuristics and a state of the art tree
searching algorithm.


         


White stones recognized statically as dead (left), and alive (right), from [Wolf 91]


 A classification of living groups according to the existence of specific algorithms for
making life is given in my diploma thesis [Müller 89].
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1.7  Smart Game Board: A Development Tool for Go Programs


Sample screen display


What is the Smart Game Board ?


Anders Kierulf’s Smart Game Board is a tool supporting players [Kierulf 90] and
programmers [Müller 90] of two player board games. Initially designed for Go
[Kierulf/Nievergelt 85], it has been generalized and adapted to half a dozen popular
board games.


The Smart Game Board has proven its value for several hundred game players all
over the world. In many ways, an electronic game board is more powerful than a con-
ventional board. One example is its ability to keep track of several move sequences and
multiple games.


The value of the Smart Game Board for game programmers is evident from all the
playing programs written on or ported to the Smart Game Board. This includes two ad-
vanced Othello programs [Kierulf 82, 89a], a perfect Nine Men’s Morris program
[Gasser 90, 95] and several generations of Go programs [Kierulf/Nievergelt 89]. Ken
Chen’s Go Intellect [Chen 89] and our Explorer both use the Smart Game Board.


The Smart Game File (SGF) Format has become a widely accepted method of stor-
ing Go games and problems. Thousands of amateur and professional games in SGF
format are available from anonymous ftp sites such as bsdserver.ucsf.edu (the main Go
archive site) and imageek.york.cuny.edu (the IGS archive in subdirectory /igs).


1.8  Project History
The Explorer program is one of several game playing programs running under Smart
Game Board, which have been developed by Prof. Nievergelt’s group at ETH Zürich
and UNC Chapel Hill.
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At the beginning of this thesis, Explorer was already a five year old project
[Kierulf/Nievergelt 85, Kierulf 90]. The software, coded in Modula-2 for the
Macintosh, was organized in three layers:
• Smart Game Board kernel, written by Anders Kierulf
• Go Board and Go Tactics, also written by Anders Kierulf
• Explorer, written by Ken Chen


In 1989 Nievergelt and Kierulf returned to Switzerland, while Chen stayed in North
Carolina. When I joined the project a few months later, Anders Kierulf soon left the de-
velopment of Explorer to me. I tried to analyze it by playing with it, reading the source
code, and breaking up its evaluation function into components [Müller 90]. Attempts at
improving the program had only marginal success. It was becoming clear that it is hard
for a non-author to improve such a complex program. To quote Anders Kierulf:


“Regardless of how muddled the structure of Explorer is, it is the result
of half a year of Ken Chen fiddling with parameters, adjustments, and re-
finements, and it's anyone's guess which parts of the program contribute to
its playing strength and which parts are just noise.” [Kierulf 89b]


Starting in 1990 essential parts of Explorer were rewritten from scratch. Knowledge
representation was changed from hard-coded Modula-2 to graphical patterns, using a
pattern matching engine based on the Patricia method [Geiser 91, Müller 91b].


Recognition of territories and groups was now done with new board partition algo-
rithms developed during my diploma thesis [Müller 89]. The influence function, the
basic partitioning method of the old Explorer, was replaced by these new algorithms.


A big part of a Go program’s knowledge is not being used directly for generating
moves, but for building a good representation of the board. With increasing amounts of
knowledge, an old problem of game programming crept up: coordination between
different parts of the knowledge base. In the end, more time was spent on relative
adjustments between parts of the program than on adding new knowledge. It was time
to tackle the major structural weakness of Explorer, the reliance on one huge static eval-
uation function.


Stimulated by the success of Mathematical Go Theory, in 1992 we began experi-
menting with a sum game model for computer Go. Wolfe’s toolkit for mathematical
games was ported to our development environment as a student term project [Fierz 92].
Using Explorer and this toolkit we built a program that could automatically recognize
and solve sums of simple endgame positions such as corridors and node rooms [Wolfe
91a, Müller/Gasser 94].


This work has been continually extended in two directions: solving a larger class of
endgame positions, and building a heuristic Go program using the sum-of-games
approach.


Why Focus on Go Endgames?


At first sight, it seems silly to spend much effort on endgame play: at the current level
of Go programs, it is irrelevant for 90% of all games played. Yet Go endgames offer a
number of advantages for research:
• The complexity of the game often decreases towards the end. This allows the study


of Go in a controlled, simplified context.
• An exact solution is possible for some classes of endgame positions.







16 COMPUTER GO


• The exact solution of parts of a Go board facilitates the analysis of the rest.
Reaching the ultimate goal of winning the game is easier when complete infor-
mation about part of the game is at hand. Such information is useful as additional
input for the heuristics that deal with the rest of the board. Human experts use
similar reasoning: they observe the score continually from the early midgame, and
base their strategic decisions on such an analysis [Takagawa 85].


• Some methods developed for partitioning, searching and scoring during endgame
play carry over to the midgame and opening. As programs improve, fewer game-
deciding blunders will occur, so the importance of endgame-type calculation is
bound to increase.


• On a more philosophical note, the endgame relates to the full game of Go as Go
relates to real world AI problems: It provides a simplified, more controlled
subdomain that allows the use of stronger theoretical models than the larger, more
general problem.


1.9  Contributions of this Thesis
We developed and implemented a computer model of Go as a sum of local games,
which proves the feasibility of this divide-and-conquer approach to computer Go. We
examined the interaction of search, knowledge, domain-specific theories and abstract
mathematics in the ‘micro-world’ of Go. This gave insights into the modeling of
complex domains.


As a verification of the resulting program, we computed solutions to endgame
studies of Berlekamp and others [Berlekamp 91, Wolfe 91a], establishing a nontrivial
subdomain of Go in which a computer plays perfectly. We also implemented and tested
a competitive Go program, using new approaches to board partitioning and pattern
matching.


1.10  Structure of this Thesis
Chapter 2 summarizes the state of the art in computer Go programming and introduces
the program Explorer. Various ways in which Go knowledge is built into Explorer are
described and compared with the knowledge representation of other well-known
programs.


Chapter 3 reviews combinatorial game theory and its application to Go endgame
theory, as developed by Berlekamp and others.


Chapters 4 to 6 develop new models for playing computer Go as a sum of local
games. Chapter 4 develops a heuristic sum game model for the entire game that aims at
reusing components of an existing Go program. Chapter 5 deals with board partitioning
algorithms, which are used to split Go positions into sums of independent games.
Chapter 6 describes search and evaluation in local games. Chapters 5 and 6 combined
yield a program that computes exact solutions to endgame problems.


Chapter 7 deals with implementation aspects of Explorer, focusing on the sum game
model. Sections on the user interface describe a pattern editor and tools for experiments
with sums of local games.


Chapter 8 gives results of endgame computations, and discusses the problem of
performance measurement in general. It argues for the necessity of a Computer Go Test
Collection. In Chapter 9 we summarize the contributions of this thesis to computer
science and propose future research topics.
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The appendix describes our Computer Go Test Collection. A glossary defines con-
cepts of combinatorial game theory, Go and heuristic game programming relevant for
this thesis.


Throughout the thesis, algorithms will be given in a pseudocode notation loosely
based on the Modula-2 language.
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2
Elements of Go Knowledge:


a Case Study in Knowledge Engineering
The basic question addressed in this chapter is: How can we put Go knowledge into a
playing program? Knowledge Engineering in computer Go means that knowledge must
be acquired, selected, represented, applied and maintained.


Using the ‘classic’ non-local versions of Explorer as a case study, we introduce
some standard components of Go programs. Several types of search are discussed. In
our description of Explorer, we focus on those parts that serve as building blocks for the
local game player discussed later: Knowledge representation by patterns, and other
localized data structures.


2.1  Conventions
Due to a multitude of languages and traditions, there is no standard nomenclature for
Go and computer Go terms. We will use the following conventions: A connected set of
stones of the same color is called a block. The terms chain and group are used for
bigger aggregates of stones.


 In diagrams, which were produced using the Smart Game Board, the following
markers are used:


   Safe stones and territories


Dead stones


Insecure stones


  Connections


 Dividers


Markers used in diagrams


Partially shown stones at the edge of a diagram are considered safe. Typically these are
walls surrounding the area of interest. Other nearby points are sometimes shown
dimmed.


2.2  Knowledge Engineering in Computer Go
We survey the steps of knowledge engineering: Acquisition, selection, representation,
application and maintenance.
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Types of Knowledge used in a Go Program


In a Go program, game-specific knowledge is used for board partition, position
evaluation and move generation. Machine-dependent knowledge is needed for the man-
agement of resources such as time (search control) and memory. A unique problem of
computer Go is allocation of time between multiple search tasks required for the same
move.


An important classification of knowledge is facts vs. heuristics. Both coexist in a Go
program. There is a tradeoff between computing exact solutions and relying on heuris-
tics for faster approximate solutions.


Knowledge Acquisition and Selection


A huge amount of Go knowledge is available in form of literature on theory, Go prob-
lems, and master games. The biggest practical problem is finding a suitable subset for
an implementation. The selection should follow the principles of consistency,
completeness, relevancy and soundness.
• Consistency aims at avoiding contradictory advice (e.g. both ‘move is good’ and


‘move is bad’). Some cases of inconsistency can be resolved by a priority scheme,
as discussed below.


• Completeness (relative to a given standard of performance) assures there are no
knowledge gaps that lead to sudden inexplicable drops in performance. An
incomplete program will play a sequence of good moves, then suddenly turn else-
where or commit a blunder that invalidates all previous moves.


• Relevancy means that knowledge is applicable in situations that are likely to occur
during computer play. The knowledge base must be tuned to the general level of the
program. It is counterproductive to include ‘high-level’ moves if the program cannot
follow up correctly. A huge joseki database would be of little use to a 10 kyu
program, and might even have a negative effect on the program’s playing level. If a
joseki results in a wall for one player, this wall must fit the surrounding positions. If
a joseki ends in a difficult position with many weak groups, invariably the program
will blunder in the continuation.


• Soundness means giving advice that is good, at least in a large percentage of cases.
Soundness is closely related to the other three principles.


Building Knowledge through Search and Inference


New knowledge created by search must be integrated with existing knowledge. We
consider only ‘special case’ knowledge here:


Example lemma: The black
group can be proven safe using


only the section of the board
shown


• Proving lemmas about a Go position: once the
safety of stones and territory in a certain context
has been proven, the result is put into a database
for reuse. The same procedure is used for partial
results such as eye status of an area, and for the
perfect evaluation of near end positions.


• Prove bounds on a game’s value: By restricting
one player’s move options, a bound on the real
game value can be computed even if the game
itself is too complicated or contains loops in the
game graph.
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• Inference using rules: e.g. applying the rule that a group of stones is alive if it has
two eyes. Results of inference may be treated as lemmas, too, and be put into a
knowledge base for reuse.


Goal-Oriented Local Search


Go programs use tactical search to classify the status of blocks as dead (is captured,
cannot escape), threatened (can be captured, or can escape), or safe (cannot be captured
tactically). The simplest searches are ladders. Move generators for general tactical
searches are restricted to moves close to the block and its neighboring blocks. Similarly,
programs perform Life&Death search for groups of several loosely connected blocks of
stones [Kraszek 88, Kierulf 90].


Knowledge Representation


>1
a!


>1


Knowledge representation by pattern, with
annotations in a Go-specific mini-language: ‘a!’
indicates that a is an urgent move, ‘>1’ is a
constraint on the number of liberties required
for the block


Knowledge can be added directly to
a program by writing code, building
on a library of Go-specific functions,
or it can take the form of a database
containing patterns or rules in a Go-
specific mini-language. The choice
of representation is affected by the
ease of implementation, the ease of
entering and maintaining the
knowledge base, and efficiency.


As an example of knowledge
representation by procedural code, we show the top level of Explorer’s move generator
for groups:


ALGORITHM TGroup.GenerateMoves (toPlay: Color);
(* Generate moves for a group and a player *)
BEGIN


IF (fTotal ≠ dead) THEN
IF (fColor = toPlay) THEN Expand () ELSE Reduce () END;


IF (fTotal ≠ safe) THEN
IF (fColor = toPlay) THEN Save () ELSE Attack () END


END;
END;


END GenerateMoves;


Knowledge Application


Knowledge Application involves two phases: During static analysis of a position, we
match a knowledge base against the current board. During search, we use rules in a
(different) knowledge base for move generation and evaluation. In both phases, we must
select relevant parts of the applicable knowledge.


Static Analysis: Matching a Knowledge Base Against the Current Board


Rules consist of a precondition (IF-part) and an action (THEN-part). Rule matching
tests which preconditions are currently true. A hierarchical organization of the rule base
avoids checking each rule every time. Matching of patterns will be described later in
this chapter.
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Knowledge-Guided Search


Knowledge is used to select moves, and to control tree growth. During selection a
program chooses promising move candidates, and prunes unpromising ones. Move
order is important for the efficiency of alpha-beta evaluation. Tree growth control
decides which nodes should be expanded, and in what order. It affects the quality of
position evaluation: quiescent positions can be evaluated directly without introducing
big errors, turbulent positions should be expanded.


Goal-oriented search is a special case of knowledge guided search: the evaluation
function measures progress towards reaching a specific goal. Move generators produce
only goal-related moves.


 Evaluation during search has to be orders of magnitude faster than the static evalua-
tion of the root position. The knowledge put into these evaluation functions must be
tuned for speed, in contrast to the take-all-you-can-get approach of static analysis.


Knowledge Maintenance


Maintenance follows the application of knowledge to debug the knowledge base and
achieve the goals of consistency, completeness, relevancy and soundness. Problems dis-
covered while playing through computer games or special test collections provide
stimuli for doing maintenance. A good environment with tools for manual and auto-
mated testing greatly facilitates maintenance.


2.3  The State of the Art in Computer Go
The evolution of Go programs has produced a set of standard components that are
present in most programs. On the other hand, Go programs also share a set of common
weaknesses.


Go Skills Present and Absent in Current Go Programs


Standard components present in today’s Go programs are:
• Abstractions for representing a Go position, such as blocks, groups and territory
• Pattern matching for move generation
• A joseki library for standard moves, mainly in the corner
• An influence function to determine groups and territory
• Connections between blocks, defined by rules, patterns or influence
• Move generation and evaluation based on static analysis
• Selection of the best move by computing a total move value, using either a linear


combination of evaluations, or a priority scheme of move motives
• Specialized search tasks for deciding whether a block can be captured tactically, and


whether a group can make two eyes or not
• Knowledge about the Ko rule, and simple Ko threats such as atari


On the negative side, the overall standard of play is still low:
• Go programs rely on heuristics which are incomplete and sometimes contradictory.
• In contrast to chess [Thompson 82], there is no clear correlation between computing


power and playing strength. The amount of search is only one of many factors
limiting playing strength.
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• Games are decided by local fighting and the number of blunders equivalent to ‘Pass’
moves.


• Many concepts are still missing: recognition or generation of double threats, or
consistency of moves.


• Programs play bad ‘forcing’ moves, which turn out to be gote or have bad side
effects.


A Survey of Current Go Programs


As a more detailed overview of the state of the art, we give short characterizations of
important programs:


Go Intellect (Ken Chen, International Computer Go Champion 1992 and 1994), the
‘brother’ of Explorer, uses a detailed model of blocks and groups, and a complex
evaluation function [Chen 89]. It does specialized tactical and Life&Death searches.
The resulting move evaluation is dependent on the heuristic value of the blocks and
groups involved.


A selective global search involving a few high ranking moves provides additional
input to the final move selection procedure. Go Intellect plays some ‘obvious’ joseki
and tactical moves instantly without search.


Handtalk (Chen Zhixing, International Computer Go Champion 1993) is an amaz-
ingly small program, written in assembler for PC. Currently, it seems to be the most
solid player, with well balanced knowledge. Unfortunately, little more is known about
the program, since no publications are available.


The search used in Goliath (Mark Boon, International Computer Go Champion
1989-91) is closest in spirit to the sum-of-local-games approach. Goliath identifies
goals, such as cutting, attacking a group, or invading some territory. For each player
going first it performs a goal-directed search. Often this search comprises only a
sequence of urgent moves. Sometimes a more complete minmax search is done. The
difference in scores for each player moving first determines the urgency of the goal.
The local move with greatest score difference, i.e. the hottest switch in terms of
combinatorial game theory, is played. There are adjustments to increase the value of
sente moves [Boon 91].


Goliath plays many moves instantly, including joseki and forced sequences it has
computed in advance.


Many Faces of Go (David Fotland, 2nd place International Computer Go
Championship 1994) is one of the best known and also best described programs
[Fotland 93, Fotland 94]. It has played thousands of games on IGS, the Internet Go
Server.


Star of Poland (Janusz Kraszek, 2nd place International Computer Go
Championship 1993) has always been one of the top programs. It is based on the
paradigm of homeostasis, trying to react to changes of equilibrium and keep a balance
[Kraszek 90]. Star of Poland is a fast program that is good in Life&Death [Kraszek 88].


A previous version of Explorer has won the first Computer Games Olympiad in
London [Kierulf/Nievergelt 89]. Other well-known programs include ModGo (Knöpf-
le), Stone (Kao), Go 4.4 (Reiss), Igo (Sanechika), Dragon (Hsu), MicroGo (Scarff),
Nemesis (Wilcox), and GOG, an application developed during the Japanese Fifth
Generation Project.
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Snapshots from Recent Tournament Games


This section shows the strengths and weaknesses of leading programs in games from
recent tournaments.


11


12
13


10


Go Intellect (W) vs. Many Faces of Go (B),
US Championship 1994


Intellect’s favorite kosumi at 10 forces a
reply at 13. Yet both programs play a non-
urgent move first, before Many Faces
finds the ‘hot spot’.


a


17 b


Explorer (W) vs. Many Faces of Go (B),
International Computer Go Congress 1993


The wrong choice: Faced with two urgent-
looking moves, Explorer chooses a and
gets into trouble after Many Faces cuts at b.
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Star of Poland (W) vs. Goliath (B),
International Computer Go Congress 1991


The highlight of the Singapore tourna-
ment: Goliath kills Star of Poland’s fairly
safe-looking corner.
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Go Intellect (W) vs. Modgo (B),
International Computer Go Congress 1993


A quiet game from the congress in
Chengdu: Modgo is a solid program, but
Intellect gets far ahead in territory without
fighting.
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Handtalk (W) vs. Go Intellect (B),
International Computer Go Congress 1992


A good opening by both programs,
following the principle of extending to the
edges from the corners.


a!


39?


Continuation (1)


Black’s tactical error is punished immedi-
ately by White’s cut at ‘a’. A few moves
later, the local situation will be reversed.


68!


a


Continuation (2)


The big black group is neglected…


87
121


102
95


120
85


88
98


96
122
119
86
80


83
89
93
94


81


97
84
90
100


a


72


75


79


91


99


74


78


92


101


118
111


125
126


70


114
113
104
105


71


124


110
109
103
106
116


82
112
108
107


77
76


115


73
69


117


Continuation (3)


…and finally dies, after missing many
chances to live.


Go-related Research in Visual Perception, Machine Learning and Neural
Networks


Go has been used as a vehicle for research in visual perception, machine learning and
neural networks [Wilcox 79, Enderton 91, Stoutamire 91, Schraudolph 94]. Starting
from only the rules of the game, learning programs can typically pick up basic Go
principles, such as saving a stone from capture, or making a one point jump.
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A most disturbing fact is that since Wilcox’ pioneering efforts, none of this research
has been applied to a state-of-the-art Go program. The problems of automatically tuning
and expanding an existing knowledge base, or learning of new high-level concepts,
seem quite different from the ab-initio learning problems that have been researched.


Low level concepts can be learned, but they have already been programmed in the
better programs. Neural networks can be trained to play locally good shapes, but have
no clue when to play it. Such programs fall easy prey to those that know more about
tactics and Life&Death.


Parallel Computing


Parallel computing is becoming a popular way of increasing computer power. Several
top chess programs use this approach. In Go, the impact of parallel computing is not yet
felt: most developers prefer a solid development platform on a PC or workstation to the
more experimental environments offered on today’s parallel machines. Computer Go
tournaments usually require machines on site, which makes it hard to participate with a
big parallel machine.


2.4  Overview of the Explorer Program
Explorer is described as an example of knowledge engineering in a Go program. In the
course of its evolution, components of earlier versions were continually adapted and
reused.


Explorer’s Foundation: Smart Game Kernel and Go Modules


User interface
Game tree & 
board manager


Computer play
& time manager


Search engine


Game
specific


Game
independent


Board display
& move input


Tree search


Game-playing algorithmRules
Move selection


Kernel: Shared data types and procedures


Figure 2: The basic structure of the Smart Game Board [Kierulf 90]


Figure 2 shows the structure of the Smart Game Board. A kernel provides basic data
types and functions shared by the other modules. The modules of user interface, game
tree, board manager, computer play, time manager and search engine contain the game
independent parts of a program. These modules provide slots where game-specific
functions can be installed. Board display, move input and rules are shared between all
programs for the same game. The game-playing part may also consist of several layers:
Different algorithms can share a game-specific library. The Kernel and Go modules are
essentially those described in [Kierulf 90]. We give a brief summary.


Kernel Data Types


The game-independent Smart Game Kernel offers basic data types and operations: a
game board consisting of points, general purpose lists, game trees and a hash table for
detecting transpositions. Graphical user interface elements include a board display with
markers and labels on points, tree navigation tools, an overview window showing
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several boards at the same time, and a tree view showing the structure of the game tree.
Game trees created with the Smart Game Board can be stored on disk.


Kernel Go Modules


These modules provide Go-specific behavior to the Smart Game Kernel. They are part
of both playing (Explorer) and non-playing versions of Smart Go Board. Basic game-
specific functions include executing and undoing moves, a legal move checker that
handles full board repetition, and a ladder searching routine. The Go kernel’s collection
of procedures provides a higher level of abstraction, a ‘Go language’ that is used
throughout Explorer.


Explorer Base Modules


These modules expand the ‘Go language’ with a point set type (implemented as a bit
map). It provides operations such as computing Connected Components, Border and
Interior of a set, and conversion of sets to and from lists of points. Many algorithms can
be expressed concisely in this language: In the example, blocks and liberties are
computed from sets of all Empty, Black and White points using point set operations.


ALGORITHM ComputeBlocksAndLiberties;
BEGIN


FOR color := Black TO White DO
blocks [color] := ConnectedComponents (All [color]);
FORALL block IN blocks [color] DO


block.liberties := Border (block.stones) * All [Empty];
END


END
END ComputeBlocksAndLiberties;


Modules originally designed by Anders Kierulf and Ken Chen [Chen et al. 90]
implement blocks, chains, and specialized search routines for block tactics and
Life&Death. Modules added by the author handle pattern matching, dividers and
connections.


Blocks and Chains


Blocks are connected sets of stones of the same color. Chains are sets of blocks
joined by connections across empty points:
• Two or more common liberties
• One protected common liberty
• A connection pattern
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The Starting Point: Explorer 1.0-3.3
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Influence function of Explorer 3.3, and groups derived from influence function


The old Explorer versions [Chen 89, Chen et al. 90] were based on influence: Stones
radiated a certain power over nearby empty points. On top of the basic structures blocks
and chains, groups were defined as contiguous regions of a certain minimum influence.
Additional rules handled exceptions near the edge of the board, and made certain that
all blocks of a chain ended up in the same group. Localized goal-directed searches were
used for tactics (capture/escape block) and Life&Death (kill/save group).


The pattern matching system was implemented as many pages of procedural code.
This representation was probably a good decision at the beginning of the project, to get
something started quickly. But it had grown to its limits: it was very hard to maintain
and improve, especially for people other than the original author.


Transition to Explorer 4


A board partition based on an influence function causes nonlocality and unpredictable
behavior. Therefore Explorer 4 introduces a new model based on dividers and zones.
Dividers indicate a gap between stones that is small enough to stop the opponent from
connecting through. Blocks and dividers of the same color work together to form the
boundary of a zone.


Replacing the other purposes of influence functions, a set of auxiliary board maps
stores information for each point and color, such as its distance to the next stone, and
sets of near, reachable, dead, or alive points. Hard-coded pattern matching was replaced
by a pattern editor and a pattern matching engine. Patterns could now be entered
graphically and stored as standard Smart Game Format files.
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Explorer Main Modules


Move Generators


Move Evaluators


Move Selector


Move Checker


Life & Death Tactics


Capture Tactics


Stones


Blocks


Influence


GroupsChains


Computer Move


Move not ok


(dead
blocks)


Move Generators


Move Evaluators


Move Selector


Move Checker


Life & Death Tactics


Capture Tactics


Stones


Blocks, 
Fights


Patterns


Groups


Chains


Computer Move


Move not ok


Connections Dividers


Zones


Control structure of Explorer 1.0-3.3 vs. Explorer 4


These modules implement the top level of the knowledge representation hierarchy.
Zones, groups, and fights represent bigger units on the board than blocks or chains.
Explorer modules for pattern matching, local data and move selection will be discussed
in the following sections. Even if few of the original components survive till today, the
overall control structure of Explorer 4 is still close to that described in [Chen et al. 90]
and [Kierulf 90].


2.5  Pattern Matching in Explorer


       


Corner pattern matching in two places


Patterns are a simple yet powerful way of encoding Go knowledge. Most fuseki, joseki,
and tesuji moves are described as patterns in the Go literature. Patterns can be applied in
all stages of the game, from opening to endgame. In Explorer, we use patterns for two
purposes: To keep a permanent database of standard situations, and to temporarily store
results of local analysis.


A pattern record has three parts:
• The pattern map indicates which state (Empty, Black or White) the points in the


pattern must have.
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• The pattern context specifies additional constraints that a board position must satisfy
to match the pattern.


• The pattern information contains knowledge which can be applied if the pattern
matches.


Definition of Pattern Maps and Matching


We define a pattern map as a set of points on a two-dimensional grid, where each point
(x, y) has a state Empty, Black, or White. The set must be connected on the grid graph,
but need not have a specific shape. The coordinates (x, y) are nonnegative. They are
called local pattern coordinates.


The state of a point on a Go board is denoted by Board (x, y).
A pattern p matches a Go board at location (x, y) if the following condition holds:


For all (px, py) ∈ p: state (px, py) = Board (x+px, y+py)
Given a set of patterns and a board, we want to find all pairs of patterns p and loca-


tions (x, y) such that p matches the board at (x, y).
Symmetries: We want to find occurrences of a pattern obtained by reflecting it about


the x-, y-, or diagonal axis, or by swapping colors. Thus a pattern can take up to 16
symmetric forms. We keep only one copy of a pattern and match it against eight copies
of the board, which takes care of the mirror symmetries. Color swap is handled directly
by the matching procedure.


Most Go programs use a hashing scheme for pattern matching. This is efficient if
patterns fit into the same small rectangle [Boon 90, Fotland 93]. Our method for
matching patterns of variable size (→ Chapter 7, p. 75) uses a Patricia tree index
[Gonnet 88].


We distinguish three types of patterns:
• Center patterns can occur anywhere on the board
• Edge patterns touch the edge of the board
• Corner patterns (e.g. Joseki) are limited to the four corners


Pattern Knowledge


A huge amount of Go knowledge can be encoded in local patterns. Examples are
patterns describing eyes, safe connections, or joseki moves. Information stored in pat-
terns includes which moves to play, or not to play, e.g. bad shape moves. Move infor-
mation includes the motives for playing a move, e.g. enclose, reduce, make or destroy
eye, or urgent shape.
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aaaa!!!!


Urgent move


aaaa


Reducing move


Connection pattern


aaaa


Breakout/Enclosing move


Pattern types


Patterns contain either exact or heuristic knowledge, indicated by a flag in the pattern
information. Procedures for proving endgame values or Life&Death status of stones
may use only exact patterns.


≥3


≥3


≥3


≥3


≥2


e


c
a
b d


a) The one point jump, a
heuristic connection pat-
tern


b) A supporting stone and
a bigger pattern area
guarantee safe connection


c) A case where splitting
the one point jump is good
(Note that pattern (a)
matches, while (b) does
not)


Example: A one point jump where both endpoints have three or more liberties is usually
connected. In theory, the opponent can split the jump by playing on the center point, but
that is rarely a good move. Therefore one point jump is a heuristical connection pattern.
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Knowledge Acquisition and Maintenance: Building a Pattern Database


Explorer contains a knowledge base of about 3000 patterns. A pattern editor was
developed to build the database. The pattern database slowly approaches a saturation
point: few obvious blunders are caused by wrong patterns nowadays. Yet detailed anal-
ysis of a typical Explorer game still leads to 5-10 revisions of entries (new patterns,
changes to pattern extent, additional evaluation information etc.)


Occasional cleanup work further improves the database by browsing through the
Smart Go File describing the database: maintenance tasks include adding continuations
of standard sequences, merging similar branches and deleting obsolete patterns.


Move Generation using Patterns


A typical midgame situation produces about 500 matches from the 3000 pattern
database. Most matches indicate simple connections, dividers or safe extension moves.
We increase consistency and relevancy by the following postprocessing:
• Use all patterns that define basic structures such as connections.
• Corner patterns are better tuned to the peculiarities of the corner than edge or center


patterns, edge patterns are better suited to the edge than center patterns. Therefore
ignore edge pattern moves inside a corner pattern, and center pattern moves in an
edge pattern.


2 2


Standard edge extension is overridden by a specialized pattern in the corner


a!


One point jump is threatened in the center but safely connected near the edge


• Big patterns dominate small patterns. When there is a small pattern for the general
case, and a bigger pattern describing a special case, ignore the small pattern.


           


3


a! 5 a?


To cut or not to cut…


Example: The crosscut is usually an urgent move, but if the surrounding position is as
in the pattern to the right, the cut is not good anymore.
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More Postprocessing: Checking the Pattern Context


≥3


≥3
Pattern context


Constraints [Müller 94] add non-local context to a pattern. The
most important constraints involve the liberty count of blocks. In
the example, both blocks must have at least three liberties. Since
only two liberties each are visible in the pattern map, these
constraints are non-local.


Context must be checked for all matching patterns at each
move: Even if a pattern map stays valid from one move to the
next, the context might invalidate the pattern, e.g. if a crucial
outside liberty has been taken.


2.6  Computing Local Data


Object Hierarchy


The components of Explorer’s board representation are Blocks, Connections, Chains,
Dividers, Zones, Groups and Fights. These objects share several attributes which are
contained in a common base object type. Fields of the base object type are an ID
number, a color, member points and dependency region, a move motive list and a safety
estimate.


Basic methods are provided to initialize, free, link, write and display objects. Other
methods count the local score, generate moves, and compute the safety estimate. The
types of all objects used in board representation are extensions of this base object type.
They extend or override behavior of the base type.


Legal and Repetition Moves


S


R R


Illegal moves (White to play):
‘R’ … repetition (Ko),
‘S’ …single stone suicide.
Moves on all other empty points
are legal, including a large
scale suicide move


Legal moves are computed using the Smart Game
Board function MoveIsLegal. This routine detects the
cause of illegality, including full-board repetition
detection [Kierulf 90]. Repetition moves may be
generated by tactical and Life&Death move
generators. If such a move gets the best evaluation,
Ko threats will be generated (→ Section 2.7, p. 36).


Blocks


Blocks are the basic elements of board representation.
Attributes of blocks include stones, liberties,
connections, and references to the block’s chain and
group. The tactical status of blocks with few liberties
is computed by capture search, with each player
moving first. A block can be tactically safe, but
strategically dead, or vice versa:
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Tactical vs. strategic status of blocks


The black block has many liberties and is tactically safe, but it has only one eye and is
strategically dead. The white five stone block is tactically captured by Black, but
strategically part of white territory.


The stability of a block is computed in several steps. The initial stability depends on
the liberty count, after computation of chains and groups the stability is updated.


Connections, Potential Connections and Chains


a
a


b


Connection pattern near the edge, connection through safe shared liberty,
and connection through two potential connections


Connections across empty points define chains of blocks. Explorer recognizes three
types of connections: connection patterns, connection through a safe shared liberty, or
connection by two independent potential connections. Potential connections are shared
liberties or potential connection patterns.


1
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1
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2


2
2


2
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2 2


Chains formed by common liberties and connection patterns


A chain is a set of blocks joined by pairwise independent connections. A player can
prevent the opponent from cutting off any block from a chain. Important attributes of
chains are their member blocks and connections, a stability estimate, and the group to
which the chain belongs.
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Boundary Pieces: Dividers and Potential Dividers


Specific small gaps between blocks form a divider or potential divider:


≥3 a ≥3


A divider, and a potential divider (move a generates two dividers)


A divider is weaker than a connection: its purpose is to stop an opponent’s connection
from one side to the other, not to connect one’s own stones. Dividers of both players
may cross each other in a crosscut pattern, but by definition a divider cannot cross an
opponent’s connection.


A potential divider can be transformed into real dividers by one move. It is used to
recognize the borders of potential territories.


Zones


a
→


Dividers, and a resulting partition into white zones
(note the contiguous zone on the lower side)


A zone generalizes the notion of (safely surrounded) territory: a connected set of points
bounded by blocks, dividers, and potential dividers of one color is recognized as a unit.
The interior of small zones might contain more dividers and potential dividers, because
it makes no sense to split these areas further. Adjacent small zones with many dividers
and potential dividers are merged. The zones adjacent to divider a in the figure provide
an example.


Zones give a heuristic partition of the board from one player’s point of view: A sin-
gle zone is not too big, because many points including potential dividers are used for
partitioning the board into zones. It is not too small because tightly controlled areas
(where each point is a divider point) are grouped into a single zone. One zone can
contain or overlap several opponent zones.


For the eye status of a zone, a total of four estimates is computed: minimum and
maximum of existing and of potential eyes in the zone. The safety of zones is classified
as safe territory, potential territory, threatened, neutral or dead. Zones are the units of
board control in Explorer. Each player strives to secure own zones and neutralize
opponent zones. Zone-related moves are decisive in quiet, territory-oriented games.
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Groups


b
a


A white move ‘a’ splits Black into
two weak groups; a black defensive
move such as ‘b’ yields a connected,
more stable group.


Groups are sets of chains and zones of one color
enclosed in the same opponent zone. Important
attributes of groups are connectivity, safety, and
the eye status of member zones.


Groups are Explorer’s units of defense. Each
group needs two eyes to be safe. Surrounded
unsettled groups are analyzed by a Life&Death
routine [Kierulf 90], to check if they can live, or
be killed.


A group may contain several own zones
providing eye space for the group. Each group is
contained in one opponent zone, which provides
the context for attacking and saving the group.


Example of fight (safe
stones next to fight are


shown dimmed)


Group-related move motives are decisive in many games:
Adjacent weak groups of the same color can connect to create
a single safer group, or be subjected to a splitting attack.
Junction points between weak adjacent groups of opposite
color combine attack and defense.


Fights


A fight is an area containing a set of unstable blocks of both
colors. The local situation is too vacillating to analyze it in
terms of individual blocks, chains or groups. Fights are
analyzed by a variant of capture search: the goal is to capture
one of the opponent vital block’s while saving all own vital
blocks in the fight.


2.7  Static Board Analysis and Move Selection
Static analysis creates a full board description by combining all local data. This full
board information is used for improving move generation and selection.


Game Stage


Explorer distinguishes four stages of the game: Opening, midgame, endgame and final
stage. Some move generators are influenced by the game stage: bad shape moves are
strongly penalized during the opening, but only slightly devalued in the endgame. In the
final stage only, dame points are filled. Dead groups are captured in the final stage, if it
does not cost points under the currently used rules.


Score


Safe territory is counted to find the game score. For potential territories and areas near
to one player’s stones, a reduced score is used.


Generate Moves and Move Motives


There are two types of move generators: Local generators are bound to a specific object,
such as a group, a zone or a block. These generators propose moves related to that
object, e.g. defending a group, or capturing a block.
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Type of object Move generators
Zone extend, reduce, defend, invade
Group attack, defend, expand, cut
Block escape, capture, stabilize


Type 1 move generators


Global generators rely on full board information. They handle interactions between
objects, and moves that cannot be assigned to a single object. Examples are playing a
double attack, or occupying a junction point between two territorial frameworks.


The result of calling a move generator is a set of move motives. Move motives
consist of a motive type, the move, and a value. They are Explorer’s units of evaluation.


A B C D E F G H J K L M N O P Q R S T
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1


18


Move W E6:
Flags:
Normal-Move Possible Legal Junction
No-Check-Move


Motives:
Position Urgent = 400
Zone W K10 Expand = 73
Zone W B7 Expand = 34
Group W C3 Expand = 20
Group W C3 Save-Group = 328
Conn-Extension W E6 Expand = 0


Total Value: 801


Pattern motives:
Connect Urgent Expand Reduce


Modifier: Normal


Move motives and move value


Move Values


After collecting motives from all objects, filtering removes misplaced motives, e.g.
extension moves inside territory or tactically bad moves. Filters use full-board informa-
tion unavailable to local move generators.


Motives are sorted by move, and their values are added to find a total value for each
possible move. To avoid multiple contributions for similar motives, the sum of similar
motives is replaced by their maximum value. In the example above, only the highest-
valued of three Expand motives is included in the total move value.


Select Moves


The highest ranking move that survives a move checker is produced as best move. The
move checker is a last filtering step: its objective is to avoid tactical blunders proposed
by non-tactics-aware generators.


If the best move is forbidden due to repetition, its value is reset to zero, and a special
Ko threat generator is called. The total values of Ko threat moves are recomputed, and
Select Moves is restarted with the new move values. If no move with positive move
value can be found, the program passes.
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3
Combinatorial Game Theory


and its Application to Go
In this chapter, we survey combinatorial game theory (CGT) as the study of sums of
independent games. We introduce the techniques of CGT to simplify game values,
evaluate sums, and find a move in a sum game. Of special importance in Go are the
technique of cooling and the approximate sum game playing algorithms Thermostrat
and Sentestrat. We show that Go endgame play can be interpreted as a combinatorial
game theory problem.


3.1  Combinatorial Game Theory, or Playing Sums of Games
Combinatorial game theory investigates the following problem: given two or more
(relatively simple) independent games, play the (complex) sum of these games well. If
possible, restrict analysis to single games, avoid actually computing the sum.


The complexity of computing a good or optimal move in a sum game may grow
exponentially with the input size. Often, though, we can take advantage of the local
game structure to dramatically reduce the effort required for solving the sum game.


Basic Definitions and Notation


For introductions to combinatorial game theory, see [Conway 76, BCG 82, Berlekamp
91, High 92]. A game is played by two players called Left (Black) and Right (White). It
is defined by its left and right options, i.e. the game positions to which Left and Right
can move.


G = { L1,…, Ln | R1,…, Rm }


or G = { GL | GR }


This definition is recursive: Li and Rj are again games. GL and GR denote sets of games.
The inverse game -G is constructed by swapping colors. Its definition is:


-G = { -GR | -GL }


An integer number n can be represented as the game where Left can move n times
whereas Right has no move, e.g. 0 = {|}, 1 = {0|}, n+1 = {n | }. Negative numbers are
the inverses of positive numbers, e.g.


-2 = -(2) = -{1 | } = { | -1} = … = { | { | 0}}


There are games corresponding to fractional numbers too, such as 1/2 = {0 | 1} and
1/4 = {0 | 1/2}. The Sum of games G, H is defined as:
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G + H = { G + HL, GL + H | G + HR, GR + H }


 A move in a sum game G+H is therefore a move in either G or H. Games, inverses
and sums as defined above have the mathematical structure of a group. In a sum game
G = A+B+C+…, the single games A, B, C,… are called subgames of G.


Loopy games: It is possible to define a game recursively in terms of itself, as in G =
{G | G}. The strongest results of the theory apply only to loopfree games. In Go, loopy
games appear in Ko fights. We will assume all games are loopfree from now on, except
for those sections where we explicitly discuss Ko.


To abbreviate notation of games, curly braces can be omitted, and precedence indi-
cated by multiple slashes.


Example: {3 | {2 | 1}} = 3 | {2 | 1} = 3 || 2 | 1


Comparing Games


The following definition gives a partial order on games: G≥H if Left can do at least as
well in G as in H under any circumstances, i.e. any sum G + Rest is at least as good for
Left as H + Rest. This partial order is used for pruning dominated options (see next
section).


Canonical Form


Any loopfree game can be brought into a unique canonical form by removing domi-
nated options and reversing reversible options.
1) Remove dominated moves: If G = {A, B, C, …|…}, and A≥B, then A dominates B,


and B can be omitted: G = {A, C, …|…}
2) Reverse reversible moves: If G = {A, B, C, …|…}, and A has a right option AR ≤ G,


then Left’s move to A reverses through Right’s move to AR: If AR = {A1,A2,A3…|…},
then G = {A1,A2,A3,…,B,C,…|…}.


Analogous definitions hold for Right’s moves. An example of a reversible move is
shown in Chapter 4, p. 50.


Leftscore and Rightscore


Leftscore and Rightscore provide a connection to classical game theory: They are the
minimax values of a game when players move alternately and Left (Right) plays first.


Incentive


The improvement made by moving in a game, defined as the difference between a game
and an option of this game. Incentives are games, not numbers. They are defined as
follows:


Left incentive = GL-G
Right incentive = G-GR


Incentives can be used to find an optimal move in a sum game without computing the
sum, by proving that a move is optimal. The incentive of a move can be computed
locally: If G = A+B+C+… and we move from A to AL, the Left incentive becomes GL-
G=AL+B+C+…-(A+B+C+…) = AL-A. Thus the incentive depends only on the sub-
game A containing the move. It is easy to prove that all moves with dominated incen-
tives can be pruned: Assume AL-A > BL-B. Then AL+B+C+… = G+(AL-A)  > G+(BL-
B) = A+BL+C+…, so the move to BL is dominated. We may also prune all but one of
several moves with identical incentives. Often only one candidate move remains.
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Example: In the game 1|0 + 2|0 + 3|0 + 4|0 + 5|0, the incentive for the move from
5|0 to 5 or 0 dominates all other incentives. Therefore it is an optimal move for both
players in this sum game.


Mean


A measure how many points a game is worth on average, when playing many copies of
the same game. This must not be confused with the value of a move which is measured
by the incentive. The mean is linear: mean (A+B) = mean (A) + mean (B)


Cooling


Cooling is a technique for simplifying games by adding a ‘tax’ on every move. It is a
homomorphism used to simplify a game while retaining much of its structure. Cooling
reduces the temperature of a ‘hot’ game. It does not change the mean.
The game G cooled by the amount t is denoted by Gt and is defined as follows [BW 94,
p. 50]:


Gt = {Gt
L − t|Gt


R + t},


unless for some τ < t,  {Gt
L − τ|Gt


R + τ} is infinitesimally close to a number x,


in which case Gt = x


The special significance of cooling for Go comes from the fact that cooling by 1 is an
order preserving one-to-one mapping of even elementary Go positions (→ [BW 94, p.
52/53], or Glossary, p. 102) to simpler ones. Cooling turns typical endgame values into
infinitesimals, sums of which are well understood.


Many of these games sum well, avoiding the usual combinatorial explosion of sum
computation. A partial order on incentives of infinitesimals is often enough to assure
optimal play without computing the sum.


Cooling by 1 helps less for hot summands. It is most effective when games already
have low temperature.


Temperature


Temperature is an estimate of how urgent it is to move in a game. It is defined as the
smallest cooling value such that the Leftscore and the Rightscore of the cooled game are
the same. Cooling a game by more than its temperature yields a number, the mean value
of the game.


Thermographs


A thermograph is a graph showing the scores of a game against all amounts of cooling,
i.e. Leftscore (Gt) and Rightscore (Gt) for t≥0. The score axis is traditionally drawn
with values increasing to the left.
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t


score


Left 
scaffold


Right 
scaffold


Sample thermograph


Switches


Switches are the simplest ‘hot’ games, with a temperature > 0. These games end after
one move by either player. A switch a | b, with numbers a>b, has mean (a+b)/2 and
temperature (a-b)/2. One can play a sum of switches optimally by moving in the switch
with highest temperature. This strategy does not always work for sums of other games
more complicated than switches.


Symbols for Special Games


The game 0 | 0 is called * in combinatorial game theory, dame in Japanese Go jargon. It
is a game with mean 0 and temperature 0.


Game Types in Combinatorial Game Theory


The mathematical theory of games defines four basic types of games G:


G > 0 positive game Black wins no matter who plays first
G < 0 negative game White wins no matter who plays first
G = 0 null game The second player wins
G 0 fuzzy game The first player wins


Game Trees of Combinatorial Game Theory


In contrast to the game trees of minmax search, game trees for combinatorial game
theory must contain successive moves by the same color, because the opponent might
tenuki, i.e., play in another local game. Move generation is locally exhaustive in prin-
ciple. Terminal or stopping positions are positions without a good move. In Go this
usually happens when all points are occupied or have become territory.


Approximate Algorithms for Sum Game Evaluation


We distinguish global algorithms that may need to compute the sum game to make a
move decision from local algorithms that work on local games, without computing
sums of games. A local algorithm cannot always determine the optimal move, but it
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may be much easier to compute. Furthermore, some local algorithms such as Sentestrat
or Thermostrat guarantee a result close to the optimal score [BCG 82].


Because summing games is a complex operation, we want approximate algorithms
that can play a sum game without computing the sum. The goal of approximate algo-
rithms is to find a good move in a reasonable time.


The Hottest Subgame Algorithm


This elementary algorithm can play a sum of many types of simple games (such as
switches) correctly. It fails to play perfectly, or even guarantee a result close to the
mean value, in sums of more complicated games. Berlekamp gives an example in
[Berlekamp 92, p. 60]: the game 27 | {33 || 1 | -3 ||| -16} || -1 has mean 0 and tempera-
ture 1. If Right follows a hottest game strategy, Left can win by an ever increasing
amount in a sum of more and more copies of the game, while all these sums have mean
0 and temperature ≤1.


ALGORITHM HottestMove (sum: TSumGame): MOVE;
BEGIN


hottestTemp := -infinity; hottestGame := NIL;
FOREACH game IN sum DO


temp := Temperature (game);
IF temp > hottestTemp THEN


hottestTemp := temp; hottestGame := game
END


END
RETURN MoveAtTemperature (hottestGame, hottestTemp);


END HottestMove;


Improved Temperature Based Algorithms: Thermostrat and Sentestrat


Thermostrat [BCG 82, Berlekamp 92] improves on the simple hottest game algorithm.
It guarantees play close to the optimum if the temperature is low. It bounds the maxi-
mum error by the temperature of the hottest subgame. Thermostrat is an algorithm
based on the thermographs of subgames. It is asymptotically optimal: the error can be
bounded by a constant for playing a sum of arbitrarily many copies of a game.


Sentestrat [Berlekamp 92] is a simpler algorithm which is also asymptotically opti-
mal. All opponent moves that raise the temperature above an ambient are treated as
sente and answered. Compared with Thermostrat, this reduces the complexity of the
algorithm. Sentestrat needs only the top part of a thermograph.


3.2  Go as a Sum Game
Computing the game-theoretical value of a Go position by exhaustive search is feasible
only for the simplest positions [Thorp/Walden 72]. Even with today’s advanced search
techniques, the effort grows exponentially in the number of possible moves. If there are
more than 20-30 possible moves, exhaustive search takes too long. Yet a late endgame
position that looks trivial to an experienced Go player often contains over 100
reasonable moves that must be checked to prove the value of a position.


A Go position usually consists of several local scenes that can be analyzed individu-
ally. In the opening, these scenes can be far apart, and their influence on each other may
be weak. A better partition occurs late in the game, when there are walls of stones di-
viding the board. A move cannot have any influence across a wall of safe stones.


Independence holds only for games where Ko loops are irrelevant for local play.
The influence of Ko on the theory is discussed in Section 3.3, p. 43.
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Board partition improves when many safe walls are on the board. In the opening and
midgame, any partition can be approximate at best. In the endgame, the partition gets
more precise when the status of all big groups has been settled, and the outlines of
territories are clear. When stones become immortal, significant parts of the board defi-
nitely belong to one of the players. The connected components of the rest of the board
form local games that are independent from each other.


If each local game is simple enough to analyze completely, combinatorial game
theory can compute an optimal move for the full board position.


Late endgame position suited for exact analysis


To apply combinatorial game theory to Go, we make the following assumptions:
Positive scores are good for Black, negative scores good for White. Most of our analy-
sis will be identical for all popular variants of the rules. When necessary, we will dis-
cuss rule-specific differences. Per default, suicide is forbidden.


We model play from a given starting position to the last valuable move: better than
dame in Japanese rules, better than filling territory in Chinese rules. Local games with
integer value, or integer plus a number of dame, are treated as terminal positions.


What Kinds of Positions can be Analyzed By the Local Games Approach?


The sum-of-local-games approach can handle a broad spectrum of situations, from a
heuristic combination of selective local search (Chapter 4) to mathematically exact
analysis of late endgames (Chapter 5 and 6). Differences between exact and approxi-
mate approaches appear in rules of board partition, exhaustive vs. selective local tree
search and precise vs. heuristic evaluation of local terminal positions.


Positions Suited for Exact Analysis


Berlekamp and other mathematicians have analyzed local and full-board endgames by
hand. [BW 94] contains a set of more than 100 node rooms and their mathematical
values. The book contains an analysis of corridors, groups invading several corridors
that need a connection at a later stage, and several other generalizations. A set of full-
board problems illustrates play in sums of local games.


The analysis of full board positions as a sum of local games depends on the inde-
pendence of local areas, or at least on an observation that dependencies do not affect the
value of the sum game. In many cases in [BW 94], this is not obvious, and has to be
established through case-by-case analysis. In our model, we will pose strict conditions
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to ensure independence of local games. For our Computer Go Test Collection, we
designed a set of problems with endgames equivalent to those in [BW 94] and with
clearer independence of local games.


Playing Computer Go as a Sum of Local Games


We can now outline a procedure for playing Go as a sum of local games:


• Board partition: find safe blocks, safe territories, and local areas
• Generate local game trees in each area
• Evaluate local terminal positions
• Transform local game trees into mathematical games (and simplify games)
• Find an optimal move in the sum game and play it


We will develop algorithms following this outline in the rest of this thesis: heuristic
algorithms for playing the entire game, and exact algorithms for late endgame positions.


3.3  Local Games with Ko Loops
The classical model of combinatorial game theory assumes loopfree games to derive its
theorems. Games with loops, which are called Ko in Go, have a ‘completely different’
theory [BCG 82, Chapter 11]: for example, the mathematical group structure is gone for
sums involving such games. Since Kos appear so often in local game analysis, we need
to deal with it in our program.


Ko


Developing the theory of loopy
combinatorial games and applying
it to Go is an ongoing research
effort [Berlekamp 92, Moews 93,
BW 94, Berlekamp/Kim 94]. It
seems that two fundamentally
different classes of Ko positions
exist. Many concepts of com-
binatorial game theory can be extended to an astonishingly large class of Kos: mean
value, temperature, Leftscore and Rightscore of such games can all be defined
independently of Ko threats for these games. For the other hyperactive class of games,
these values depend on available Ko threats, and a general theory seems more difficult.
[Berlekamp 92] extends the algorithms Sentestrat and Thermostrat to incorporate loopy
games and absolute Ko threats.


The number and size of Ko threats are side effects of endgame play that are not vis-
ible in the mathematical game values. Using Chinese rules, victory may depend on
playing the endgame (including dame) in such a way as to leave the maximum number
of threats for the final half point Ko fight [Berlekamp/Kim 94].


A complete theory of Kos would have to deal with many intricate problems: for
example, it must handle the tradeoff between playing a move for profit and saving it as
a later Ko threat, when to play a point losing threat, when to generate or remove Ko
threats instead of making points [Popma/Allis 92], or how to play small Ko threats in a
small Ko fight and leave the big threats for a potential later, bigger Ko.


Removing Loops to Calculate Bounds on Ko


Simple-minded backup of values through a loopy graph leads to an infinite loop even if
loopy moves are irrelevant for computing the game value. To calculate bounds on loopy
games we must find loopfree games that approximate the loopy game.
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1 2


3 at 1
Suicidal two-
move-White-


only loop


As a preliminary step, we remove loops where one player makes all
the moves. In such loops the player needs to commit suicide with as
many stones as there are moves in the loop. Single-player loops
therefore only happen if suicide is allowed.


Since a single-player loop just loses stones, there must be at least
one bad move in the loop. The naive way of disabling one of the
suicide moves is dangerous, because it may be a good move. A safe
way of removing a single-player loop is to disable the last move
closing the loop. Each remaining loop will contain moves by both
players.


Sidling [BCG 82, Chapter 11] is an iterative algorithm to improve upper and lower
bounds on a loopy game. In its general form the algorithm starts with loopy games on
and off that are not handled by our software. By restricting moves of one player we ob-
tain other bounds on the game value that can be used to initialize sidling [Müller/Gasser
94]. If after sidling the two bounds are identical, good local play does not depend on Ko
and we have determined the exact game value.
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4
A Heuristic Sum Game Model for Computer Go


In this chapter we develop a heuristic sum game model for Computer Go through a
systematic study of approximations to board partition, exhaustive search, scoring and
evaluation of sum games. The result is a new framework for embedding the heuristic
knowledge of Go programs discussed in Chapter 2. The basic concepts of this model
have been implemented and tested in a prototype Go program, Explorer 5. The imple-
mentation of Explorer is discussed in Chapter 7. A complementary view of this chapter
is as a study of extensions to the exact model for endgame play that will be developed
in Chapters 5 and 6.


4.1  A Sum Game Model for the Entire Game of Go
When applying a local game model to the opening or midgame, the biggest obstacle is
the fact that the board cannot be partitioned into independent subgames. Few areas are
completely surrounded, and surrounding stones are not yet invulnerable. We develop
heuristics for board partition that split the imperfectly surrounded areas of the opening
and midgame.


An unavoidable side effect of heuristic partition are dependencies between the re-
sulting local games. Simple strategies for dealing with dependencies are pretending the
games are independent, or re-searching a bigger merged game. We discuss two more
sophisticated techniques for dependency analysis: proving that dependencies do not
affect the game value, and Wolfe’s analysis of blocks adjacent to many corridors
[Wolfe 91a]. Ko fights are another source of dependencies: They add cycles to local
game graphs, and introduce non-local effects through the repetition ban rule.


When local games are independent, evaluated local game graphs contain all relevant
information. To deal with dependencies between games, we introduce the notion of a
context of a local game: an abstract representation of the relevant features of the rest of
the board.


Even after heuristic partition, areas remain that are too big for an exhaustive search
by a computer Go program, which must produce a move in a few seconds or minutes. In
such big areas we use selective search. Tree growth is controlled by limiting the number
of moves generated, and by stopping the search before reaching a terminal position.


Evaluation of local midgame positions is more complex than the territory evaluation
used for the quiet terminal positions encountered in the endgame. To account for issues
such as Life&Death and tactical stability of stones, we develop an iterative search
model where modules covering different aspects of the game work together to expand
and evaluate nodes of the same local game graph. The model is inspired by quiescence
search, a method popular in minmax search programs.


There are two levels of search control: for the whole sum game, search time must be
distributed between local games. For each local game, we must decide which nodes to
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a


Context affects play and
evaluation of a local game


expand and which expert modules to use for search and evaluation. A postprocessing
stage handles detected dependencies between games.


Computing the exact sum of hot games is impractical, and may even be useless
when dealing with heuristic local game values. Faster approximate algorithms for sum
game evaluation such as those of Chapter 3 better match the needs of our framework.


A Sum-of-Games Framework for Computer Go


Based on our experience with both a specialized program for exact endgame calculation
and a program for the entire game of Go, we state the following goals for a program
based on the sum-of-games approach:
• It works in all stages of the game, not only the late endgame.
• It replaces most of the guesswork of a static evaluation function, which invariably


leads to worthless moves and other blunders, by local search. The effect of moves is
compared with the effect of the opponent’s local moves.


• It improves locality and modularity of the program through the collaboration of
modules for different aspects of the game.


4.2  Context and Constraints: Augmenting the Local Game
Information


The context of a local game is an abstraction of relevant features on the rest of the
board, and of the history of the local game, especially prisoners and Ko status. Varying
the context leads to versions of a local game: different sets of nodes in the game graph
are valid, and the evaluation of nodes may change, too.


Constraints model a dependency between a game and
its context. An evaluation of a node that relies on
constraints becomes invalid if one of these constraints is
violated during play on the rest of the board. Typical
constraints are predicates involving the number of outside
liberties, outside eyes, or potential connections of blocks
to safe blocks.


Constraints are used to guide search. They are
generated by one expert module for use by the others. For
example the Life&Death expert sets up conditions that
need to be respected during endgame search. We call a
constraint endangered if it can be violated by the next
move.


In the example, the value of the white territory
depends on outside moves: Three different games result depending on whether:
• a is occupied by White
• a is occupied by Black but other outside liberties remain
• all outside liberties are occupied by Black
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Context =
OutsideLiberties (a, 2) 
& OutsideEyes (a, 0)


a


Local game with context information: Six points in the corner


Two matching instances of the same local game


The next example shows that context is a useful abstraction mechanism: The evaluation
of the six point corner area depends on the number of outside liberties and eyes of the
black stones. Their exact location on the board is irrelevant. A small number of different
contexts covers all possible developments on the outside.


4.3  Heuristic Board Partition


In this position from [Kageyama 78], safety of blocks and territories cannot be proven


The requirements for proving blocks and territories safe are very strict, and are rarely
fulfilled before the endgame. In the fairly typical example position, no block or territory
on the board can be proven safe. The whole board becomes a single ‘local’ game. Such
partition failure is in contrast to the capabilities of human players and heuristic
programs, who can produce a reasonable approximate partition.
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A good approximate partition?


How can we find a good heuristic board partition? Safe stones, territories and dame
points make ideal boundaries because they are not affected by play on the rest of the
board.


For approximate partition we choose additional empty points that have little in-
teraction with the rest of the board, and strong stones that are unlikely to be captured
later. Suitable empty points are those classified as neutral by a Go program, or points in
a divider such as a bamboo joint. Strong blocks that help to partition the board are those
that have many liberties, or are connected to safe blocks in a chain.


Another partitioning method relies on conservative constraints: the assumption that
a player will always defend the boundaries of a loosely surrounded area. These bound-
aries can then be used for board partition.


Algorithm for Heuristic Board Partition


To keep the partition as exact as possible, we first execute the exact board partition
algorithm (→ Chapter 5, pp. 61-65) to find immortal blocks, safe territories and in-
dependent small endgame areas. In a second step we apply heuristic partition to the
remaining big areas.


.


Explorer’s heuristic partition of Kageyama’s position
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ALGORITHM ComputeHeuristicBoardPartition;
BEGIN


ComputeExactBoardPartition (safe, dame, smallAreas, bigAreas);
(* smallAreas are already suitable for search, big areas need to be partitioned heuristically *)


boundaries := ComputeHeuristicalBoundaries;
FOREACH bigArea IN bigAreas DO


FOREACH heuristicArea IN ConnectedComponents (bigArea - Area (boundaries)) DO
DefineLocalGame (heuristicArea, bigArea) (* Find type of area, initialize *)


END(*FOREACH*)
END(*FOREACH*)


END ComputeHeuristicBoardPartition;


Endgames Adjacent to Loosely Bounded Territory


a
a


b


Endgame areas a and b between adjacent
territories.


The divider marked × separates the two areas


a
a


a
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Expanding the initial area


The endgame areas next to loosely bounded territories as computed by board partition
are too small. For search and evaluation we extend the initial areas of endgames into
adjacent territories. The exact initial boundary between territory and endgames is not
critical because we allow endgame play to expand into the territory dynamically during
a search.


Loosely Bounded Territories and Potential Territories


Territory loosely
surrounded by blocks


and dividers


Territories loosely surrounded by blocks and dividers are
common results of heuristic board partition. They can be
reduced by successive moves from adjacent endgame areas.


Endgame areas adjacent to the same territory are usually
dependent: a multi-move invasion sequence from one
endgame will eventually reach the area of another endgame.
Often, dependencies between these sequences will not affect
the value of the initial position much.


In practice, we can assume that these endgames are
independent for an initial analysis. If the overlap turns out to
be critical, we will recognize it during postprocessing. Otherwise we can treat the total
area as the approximate sum of a constant territory in the middle plus several adjacent
endgames. We make the constant context assumption that during analysis of one
endgame no other adjacent endgame is played.


Another type of dependency concerns endgames adjacent to two or more territories:
A possibly complex adjacency graph of territories and endgames results. Again, an
independence assumption allows us to approximately analyze such situations.
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Reversibility Improves Independence


If an invader’s move can be blocked ‘in sente’, that assures that no deeper invasion
occurs in normal play.


2 1 3


A reversible move


If White plays 1, she should answer Black’s move 2 with 3, because the game after the
1-2 exchange is worse for White than the original game. This means that Black can
complete his wall either at 1 or at 2 as a ‘free’ side effect of endgame play, without
danger of losing points.


a 1


b


Reversible move as a Ko threat


Such reasoning is not applicable any longer when Ko fights are involved: In the lower
left corner Black has just taken the Ko to the right of b. Now a white move at 1 works
as a threat. If Black blocks at a, White captures at b and kills the Black group because
Black has no Ko threats. Therefore Black cannot play his ‘free’ move at a, but must
connect the Ko. White plays at a and wins the game by one point.


Splitting a Local Game


a


Black ‘a’ splits an endgame area into three parts


Moves executed during local search often cause more board partition: a local game is
split into a sum of several subgames. Split off parts are smaller, and of simpler
structure. Many parts can be statically classified as territory or dame. This
decomposition helps to fight combinatorial explosion.
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Expanding the Local Area During Search


 When search reaches the boundary between an endgame and territory we must extend
the area of the endgame.


21


Search reaches neighbor territory …


…and the endgame area expands


Formally, an extension operator ExtendArea (area, territory, move) calculates a new
area that takes the move’s effects into account. This new area:
• Contains only points of the previous area and the territory
• Is big enough to contain all follow-up moves of move
• Allows computation of a good approximate score in case search is stopped here
• Includes blocks that have become unstable because of move


The total area of a local game is defined as the union of areas of all nodes in the game
graph.


When using local games computed at earlier moves, the constant context assumption
may have been violated by moves in some area extension. That part of the game graph
has become invalid and must be re-searched in the new context. Shrinking and
expanding the area of local games affects the implementation of transposition tables
used for local search and evaluation. This topic is discussed in Chapter 7, p. 81.


4.4  Local Search Control and Move Generation


Local Search State


A local search state contains information that is needed for local search and evaluation.
It is much smaller and faster to update than the full board state.


Search Control Strategies


Search is controlled at the sum game and at the local game level. On the sum game
level, the available time is distributed over all local games. Some games will be more
important, or more complicated than others, so they need more search. Expansion of
nodes is controlled by an urgency estimate: Quiet nodes below a given urgency bound
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are not expanded further. Control repeatedly iterates over all local games using a
progressively smaller urgency bound.


ALGORITHM SearchSumGame (sum: TSumGame) (* current nodes of local games *)
BEGIN


limits.urgency := InitialUrgency ();
time := TimeLeft ();
WHILE (time > 0) AND (limits.urgency > 0) DO


sumExpanded := TRUE;


FOREACH node IN sum DO
IF NOT (IsConstantGame (node) OR HasFlag (node, allSearched)) THEN


(* search the game *)
limits.maxTime := GetTimeLimit (node, limits.urgency);
…
(* set other search limits based on urgency value *)
…
generator := SelectGenerator (node, limits);


localState := StateOfNode (node); (* context switch to local state *)
(*next iteration of local search *)
localState.Search (generator, limits);


IF NOT HasFlag (node, fullyExpanded) THEN sumExpanded := FALSE END;


FilterNodesInSubgraph (node) (* prepare subgraph for the next iteration *)
END (*IF*)


END (*FOREACH*);


time := time - TimeUsed ();
IF sumExpanded THEN limits.urgency := ReduceUrgency (limits.urgency, time) END


END (*WHILE*);
END SearchSumGame;


Expansion Urgency


Urgency is a heuristic value used for sorting moves in selective search. It is not a
measure of move quality: For example, a risky move in a tactically unstable situation
will have high urgency. If search refutes the move it gets a low evaluation.


One factor contributing to urgency is the estimated temperature of the local area: it
would be risky to evaluate a hot local position statically. A simple bound on the
temperature is the number of unstable stones plus the number of empty points that are
neither surrounded nor dame.


Selective Search Extension


It would be ideal if search could be controlled by a single urgency value. In practice,
exponential growth lurks behind every corner: No matter how well we design the ur-
gency function, there will be games where lowering the urgency by a small amount will
add uncontrollably many nodes. We control each search iteration by additional bounds
on:
• Time
• Number of node expansions
• Number of moves generated for each single node


Search stops when any of these limits is reached. During search, local nodes are marked
as:
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• Terminal node if the value of the node can be determined statically
• Unexpanded node if the node has been reached during search, but no moves have


been generated
• Partially Expanded node if some but not all moves have been generated on this


urgency level
• Fully Expanded node if all moves at the current urgency level have been generated


We call a move generator complete if search with urgency 0 is equivalent to exhaustive
search. Given enough resources, the iterative algorithm eventually lowers the urgency
to 0 and searches the full local game graph.


METHOD TLocalState.Search (generator: TGenerator; VAR limits: TLimits);
BEGIN


(* fCurrentNode is a field of TLocalState *)
IF HasFlag (fCurrentNode, fullyExpanded) THEN (* recursive call in subtree *)


FOREACH node IN Siblings (fCurrentNode) DO
ExecuteNodeMove (node); (* executing a move changes fCurrentNode *)
Search (generator, limits);
UndoMove


END (*FOREACH*)
ELSIF ExpandNode (fCurrentNode, limits) THEN


SetFlag (fCurrentNode, partExpanded);
newMoves := GenerateMoves (generator, limits);
FORSOME move IN newMoves DO


IF NOTContinueSearch () THEN ABORT (* stop FORSOME loop *)
ELSIF ExecuteMove (move) THEN


(* executing a move changes fCurrentNode *)
IF NOT HasFlag (fCurrentNode, partExpanded) THEN


(* avoid multiple expansions of same node *)
Search (generator, limits)


END (*IF*);
UndoMove


END (*IF*)
END (*FOREACH*);
IF AllMovesExpanded () THEN SetFlag (fCurrentNode, fullyExpanded) END


END (*IF*)
END Search;


4.5  Move Generation


a b
c


Selective move
generation: {a, b, c} for


White, {c} for Black


Heuristic move generation is restricted to few moves per
color, and is subject to constraints from search control: A
maximum number of moves for the node, or a minimum
urgency for a move.


Two Approaches to Move Generation


For move generation in a local game we either adapt parts
of an existing program or write new generators specialized
for local search.


Local generators (→ Chapter 2, p. 35/36) can be reused
directly. Global generators rely on full-board information that is not available locally.
According to the paradigm of replacing guesswork by search, we adapt global move
generators by removing global conditions whenever possible: We use constraints of the
local game to model the global context. We try ‘risky’ moves anyway, and rely on
search to show whether they are good.
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New move generators specialized for local search can be cleaner and faster, but need
a bigger development effort. In practice we have preferred careful review and stepwise
rewriting of old generators.


Using Constraints and other Filters in Move Generation


Endangered constraints are used as filters in move generation: if a constraint set up to
protect a territory from invasion becomes endangered, only invasion stopping moves
are generated.


Other filters prevent ‘uninteresting’ branches from being searched:
• Nodes where constraints have already been violated
• Dominated moves: If a move on an adjacent point is at least as good as a move, we


can prune the move, e.g. to secure territory on a bigger scale.
• Moves that ‘seem bad’, such as suicide, self-atari, unconnected moves, bad-move or


bad-shape pattern moves


Heuristic filters depend on the urgency level. With decreasing urgency, filters eliminate
less moves.


Imitating a Local Game: A Quick Adaptation of Goal-directed Search Modules


Local game with
Life&Death situation


approximated by a
switch


Goal-oriented minmax search, such as capture search or the
Life&Death routine, returns two success values, one for each
player going first. As an intermediate solution, these value pairs
are converted into a switch (→ Chapter 3, p. 40): If a block or a
group can be captured or saved depending on who plays first,
we construct a switch B-score | W-score: After capture, the
whole area belongs to the attacker, which gives an exact local
score.


For estimating the score after saving the block or group we
use the local territory count, which assumes that unsettled
stones are alive, as an approximation of the resulting game
value. This method is similar to Goliath’s goal-oriented approach.


4.6  Cooperation of Move Generators, Filters and Evaluators
We describe a complementary set of move generators, filters and evaluators. Search
starts with one generator, after filtering unneeded moves we apply another generator,
etc. until time runs out or search is complete.


Characteristics of Move Generators, Evaluators and Move Filters


• A Life&Death generator identifies unsettled groups and generates eye-making or
killing moves. Life&Death evaluation is perfect if the group is dead, a crude
estimate if the group lives.


• The goal of a tactical move generator is to capture or save stones. Tactical
evaluation measures the strength of blocks, it does not evaluate territory or
influence.


• An endgame move generator tries to optimize the local score, but it may overlook
Life&Death issues because of its limited scope and knowledge. Endgame evaluation
is tuned for precision.
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• A dame and cleanup move generator is an endgame generator for the very last
moves.


• A context checking filter is run before searching a graph generated at an earlier
move. It prunes all moves that are illegal or violate constraints in the current
context.


• A tactical move checker prunes tactically bad moves. It skips moves marked as a
sacrifice, e.g. eye-stealing moves from Life&Death.


ab
A territorially worthless
move affecting eye shape


In the example, White has one point of territory whoever
goes first, so endgame would not generate a play here. The
cleanup generator will eventually connect at a and fill the
dame point at b. The Life&Death generator might play on a
to make or destroy an eye if the white group is unsettled.


2 13


Endgame interaction with Life&Death


In this example, the context for endgame search assumes that the white group is
heuristically safe. When the Life&Death module re-searches the tree generated by the
endgame, it detects nodes where White is dead and the Life&Death evaluator
reevaluates them. In this case, the incentive for playing move 3 above increases
dramatically.


4.7  Dealing with Dependencies Between Local Games
This section describes several approaches to the handling of dependencies within a sum
game model.


Dependencies Between Local Games


Dependencies between games occur when the areas of local games overlap during area
expansion, and when constraints of one local game are related to another game. The
effect of such dependencies differs widely: often it is so small that independence is a
useful approximation. In cases when a move works as a double threat however,
dependency analysis is crucial.


One-way dependency of ter-
ritory on outside endgame area


We classify dependencies as one-way or two-way:
• In a one-way dependency of G on H, play in H has


an effect on G, but G does not affect H.
• In a Two-way or mutual dependency play in G


affects H, and vice versa


An example of a one-way dependency is a territory
whose size and safety depends on play on the outside.
Mutual dependency occurs between endgames
adjacent to the same potential territory. Strategies for
dealing with dependencies are:
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• Ignore the dependency, treat games as independent
• Prove that the dependency does not affect the value of the sum, or play of the sum


game
• Merge mutually dependent local games, then re-search the combined game, possibly


using previously generated information on single games
• Analyze the interaction between local games, then use a specialized theory to


compute the joint game value


Strategy 1: Ignoring Dependencies


This strategy is of course the simplest, and the most dangerous. Further research is
needed to develop good heuristics for deciding when dependencies can be ignored.


Strategy 2: Proving that Dependencies do not Affect the Sum Game


C


B


A
A
A


A


B


Berlekamp’s Problem C.8 vs. its counterpart in the Computer Go Test Collection


The endgame areas of both examples above are equivalent. Yet the marked white stones
are not immortal: if Black gets six moves in a row in endgames A, B and C, the white
stones will die. Therefore these endgames are related. We could choose to ignore this
relation, regard the marked stones as safe and independently analyze the areas A, B and
C. In this sum game, it seems impossible that the marked stones will be killed if we play
any reasonable endgame sequence. Still, such vabanque play is unsatisfactory.
Berlekamp and Wolfe [BW 94, p. 62-64] prove that the white stones can be made safe
as a ‘bonus’ during endgame play. Their analysis yields a coordinated strategy for
playing these three games such that the value is the same as if the games were
independent.


A different analysis of dependencies that are irrelevant in a specific sum game is
given in [Berlekamp/Kim 94]. Best-case and worst-case assumptions produce upper and
lower bounds on local games, which bound the effects a dependency could have. It is
shown that incentives computed using both kinds of bounds fit into the same place in
the partial order of all incentives of a sum game. Further analysis shows that the game
score is identical for both bounds, which proves that the dependency can be ignored in
the given context.


Application of these techniques in a computer program is another challenging
research topic.
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Strategy 3: Merging Games


The safest way to deal with dependencies between games is to merge the games and re-
search the merged game. In heuristic search, we want to take advantage of the infor-
mation on single games for searching the merged game. Of special interest are double
threat moves that work as a threat in two of the games to be merged.


Given games G1…Gn, we define the merged game G = Merge (G1,…,Gn) by:
Area (G) = Area (G1) ∪…∪ Area (Gn),


Constraints (G) =  Restrict (Constraints (G1) ∪…∪ Constraints (Gn),
Complement (Area (G)))


Constraints inside the area of G can be deleted: they are not external dependencies
of the merged game.


Double Threats


Several important concepts in Go are applications of the double threat theme, which can
be interpreted as an interaction between two local games. If a move has an effect on two
subgames, and the opponent can only reply in one game, we can play two moves in a
row in the other game. Many surprising tesuji can be understood as a common move of
two dependent local games.


2


1  + 
 


1


2


 → 
1!


The identical move 2 of two dependent endgames is a tesuji:
it threatens to connect in two independent ways


• A Ko threat is a local threat, and also threatens to take the Ko again by breaking the
repetition ban in the subgame containing the Ko


• A ladder breaker is both a local and a long distance threat
• Aji-exploiting moves are usually threats in both of two adjacent games


As a heuristic for move generation in merged games, we propose to search common
second moves of Black-Black or White-White sequences in two overlapping single
games and use these as candidate moves of the merged game.







58 A HEURISTIC SUM GAME MODEL FOR COMPUTER GO


a


Unconnected block invading
many corridors [BW 94, p. 80]


Strategy 4: Formal Dependency Analysis


Wolfe discusses sets of local games that are adjacent
to the same blocks [Wolfe 91a], [BW 94, Chapter
4.7]. These blocks must be saved from capture at
some stage, after liberties which are distributed over
all endgames have been taken.


For the special case of a single block invading
many corridors he develops an algorithm to determine
the value of the combined game from local game
values, without searching the merged game. These
results are extended to trees of multiple blocks with
multiple connection points (sockets).


4.8  Playing Algorithm of Explorer 5
The main program of Explorer 5 handles playing the
sum game and cleaning up in the final phase of the
game.


Generating Moves in a Sum Game


For generating a move, we must find the current local games, search them and evaluate
the resulting sum game. For selecting a move in a sum game, we can choose any of the
heuristic algorithms discussed in Chapter 4.


ALGORITHM PlayGo (state: TState; toPlay: Color; parameters: TParamaters) : MOVE;
(* Generate a move for ‘toPlay’ in the current state (board, history), *)
(* with given parameters: sum algorithm, time, memory *)
BEGIN


sum := FindMatchingNodes (DB, state); (* find precomputed local game nodes in database DB*)
sum := sum + NewGames (sum, state); (* Generate new games for rest of board *)
ExcludeConstantGames (sum); (* no effect on computations, omit for efficiency *)


SearchSumGame (sum);
EvaluateGames (sum);
IF ActiveKoBan () THEN GenerateKoThreats () END;


move := FindSumGameMove (sum, toPlay);
IF move = Pass THEN move := FindFinalMove (state, sum) END;
RETURN move


END PlayGo;


Final Moves After the Sum Game


After a sum game is over, there can still be moves that need to be played before the
corresponding Go game is really finished:
• Dame pairs and other constant games that have been removed from the sum game


computation
• Extra moves to capture dead stones and secure territory in Chinese rules


A constant game can be ‘reactivated’ by the opponent, e.g. by playing a threat or a bad
move there. In that case, the game will be reinserted in the sum after the opponent
move.
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Comparison of Playing Styles: Explorer 4 vs. Explorer 5 Prototype


With local search, the Explorer 5 prototype plays less blunders equivalent to Pass or
very small moves than Explorer 4. The biggest problem of the prototype program is
greed: it does not recognize the value of ‘thick’ moves. Maximizing territory leads to
‘thin’ positions that are vulnerable to cuts and double threats. An additional non-
territorial evaluation seems necessary to overcome this weakness.


24
23
25


29


27
26


28
22a


Game fragment: Explorer 4 (White) vs. local player prototype (Black)


This game fragment illustrates the problem. White 22 creates cutting points in Black’s
shape. After White 28, a defense by Black becomes necessary. Explorer’s static
evaluation recognizes the weakness, and it gives protecting moves such as ‘a’ a higher
evaluation than the cut at 29. The local player however fails to detect the urgency of
protecting in its shallow local search and greedily cuts at 29.


4.9  Summary: A Combinatorial Game Theory Framework for
Approximate Play of Sum Games


We propose to replace the ‘standard model’ of computer Go by a sum game model. By
combining heuristic computer Go methods with combinatorial game theory, do we get
the best of both worlds? We see the following benefits and problems of the sum game
model for computer Go:


Benefits:
• The model is well suited to the knowledge and style of current Go programs: they


concentrate on local fighting and surrounding territories.
• Locality reduces the complexity of move generation and position evaluation. With


the emphasis on evaluation, clever pruning during move generation is not as crucial
as in global search because of the reduced search space.


• Stepwise, directed expansion of search is supported. This provides more time
control than the usual iterative deepening. It is easy to use opponent’s time.


• Important Go terms can be expressed or refined in terms of the theory, and need not
be programmed separately.


• The reuse of local game analysis improves efficiency while playing a game.
• Parallelism emerges naturally on many levels: local searches are independent,


evaluation and operations on mathematical games can be parallelized.
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Problems:
• Managing incrementally changing sets of local graphs in place of a single position


adds complexity.
• Accurate board partition and recognition of dependencies is crucial.
• The usual problems of selective search appear in complicated local games: missing


crucial moves leads to wrong evaluation.
• Non-constant local games may be overlooked completely, such as insecure


‘territories’ which can be destroyed from the inside.
• In this model there is no concept of long-range full board plans. This is probably not


a big issue until programs reach amateur Dan or even professional level.







GO KNOWLEDGE FOR EXACT BOARD PARTITION 61


5
Go Knowledge for Exact Board Partition:
Determining Safe Blocks, Safe Territories


and Local Endgame Areas
To play Go endgames perfectly, we must replace heuristic methods by exact ones. We
decompose a full board position into a sum of independent local games. Independence
is guaranteed by boundaries built from immortal blocks of stones. A block is immortal
if it has two safe liberties.


Given a board partition, we can judge whether a position is solvable on current
computers, i.e. whether it decomposes into small enough fragments.


 


→ 


A Go position as a sum of local games:
its partition into safe territories and independent endgame areas


5.1  Benson’s Criterion for Unconditional Life
Benson’s classic analysis of unconditionally alive blocks [Benson 80] provides a
starting point for finding safe blocks and territories. In Benson’s definition, a region is a
connected set of points on the Go board. A color-enclosed region is a region whose
adjacent points are occupied by blocks of color. The interior of a region is the subset of
points not adjacent to an enclosing block. A small color-enclosed region has an interior
that is either the empty set or filled with opponent stones.







62 GO KNOWLEDGE FOR EXACT BOARD PARTITION


a


Y
b


X
1c


d


Benson’s flawed example A1 A similar position where Black
is unconditionally alive


In Benson’s example A1, b, c and d are small Black-enclosed regions. However, there is
an instructive error in region a: the interior, which consists of a single point in the top
right corner, is neither the empty set nor filled by white stones. Therefore a is not a
small Black-enclosed region. An example where all regions are small, that fixes
Benson’s (or the editor’s) oversight, is shown on the right side.


 A small color-enclosed region is called healthy for a block if the block is adjacent
to all empty points of the region. Regions b, c and d are healthy for block X, only region
b is healthy for block Y.


Given a set B of blocks, a region r is vital to a block b in B if
• r is healthy for b
• All blocks adjacent to r are in the set B


A set B of blocks is called unconditionally alive if each block in B has two vital regions.


1


6


2


7


3 4


8


5


9


Capturing a block that is not
unconditionally alive


Benson proves that unconditionally alive blocks cannot
be captured by the opponent even with an unlimited
number of moves in a row. On the other hand, any block
that is not unconditionally alive can be captured by the
opponent. The figure shows how to capture block Y in
Benson’s example. Note that if the upper right corner
were occupied by White, she could not fill all the
liberties in this region.


5.2  An Algorithm for Recognizing Safety
under Alternating Play


In contrast to Benson’s analysis, we are interested in
blocks and territories that are safe under alternating play,
with the opponent moving first and winning all Ko fights.
This covers a much larger class of blocks and regions.


The crucial condition for safety is that each block must be guaranteed two liberties.
In Benson’s algorithm, each healthy region provides a liberty for a block. A region can
never contribute more than one liberty, because each region can be almost-filled by op-
ponent stones, with one point providing a liberty for the opponent stones.


Under alternating play, the definition of vital regions must be changed. Vital regions
can now guarantee either one or two liberties for an adjacent block. We define a region
to be 1-vital (2-vital) for a block if the region guarantees one (two) liberties under
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alternating play, with the opponent moving first. A region can be 1-vital or 2-vital for a
block even if it is not vital in Benson’s sense. Each vital region is also 1-vital.


a
dcb


Accessible liberties of
a region


We define the accessible liberties of a region as the set of
liberties of all enclosing blocks in the region. In the example,
The top right corner is only a liberty of a block in the interior
of the region, so it is not an accessible liberty.


Static Recognition of 1-Vital Regions


In the example, White could play a, b and c to take away all
accessible liberties of the block in this region. Under
alternating play, the black block has a safe liberty here, so the
region is 1-vital.


We will call interior points that are not occupied by the


a


c
b


A region that
is not vital,
but 1-vital


opponent the potential opponent eye space. A region with one adjacent
block is 1-vital if each point in the potential opponent eye space can be
uniquely assigned two adjacent accessible liberties. If the opponent
plays one liberty, we take the other, which assures that the opponent
cannot surround any point.


Static Recognition of 2-Vital Regions


A 2-vital region provides two liberties for each adjacent block. The
following condition statically recognizes regions that are 2-vital for all
adjacent blocks:


a1


b1


a2


b2


Examples of two-vital regions


A color-enclosed region is 2-vital for all adjacent blocks if all empty points are
adjacent to some adjacent block and it has two intersection points. An intersection point
is an empty point p such that region - {p} is not connected and p is adjacent to all
blocks.


Each 2-vital region can be transformed into two vital regions in Benson’s sense in
two different ways. If the opponent plays one intersection point, we take the other. The
resulting single merged block has two vital regions.


Safety of Areas Surrounded by Safe Blocks


The regions used in the block safety proofs above are all safe territory. Safe territory
means the opponent cannot get safe stones inside. We can prove the safety of regions
surrounded by safe blocks by proving that the opponent cannot live inside. The
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opponent can live inside if the potential opponent eye space contains two points e1, e2
that are not adjacent.


a b


Can White live inside? The
potential eye space is


marked.


In the example, White can live inside by surrounding a
and b. In the area below the black wall, White’s potential
eye space is too small.


Summary of Safety-detection Algorithm


We computed a set of safe blocks and territories with
following properties:
• For each safe block there is an algorithm that


guarantees two liberties against any opponent attack
• All safe territories are surrounded by safe stones
• The opponent cannot live inside a safe territory
• Moves on non-safe points on the rest of the board


have no effect on the safe classification of points


Proving Safety by Search


A static algorithm for detecting safety can be used in a search for proving a larger class
of blocks and regions safe. The algorithm is similar to standard Life&Death search, but
may use only information on local features of the board.


Dame Points


Single dame points, with value *, are the smallest possible independent regions. The
algorithm FindDamePoints calculates a set of dame points:


a b c d e f g


Computation of dame points: unsurroundable = {d, e, f, g}, dame = {e, f}


ALGORITHM FindDamePoints (empty: POINTSET; safe: ColorSET): POINTSET;
(* given a set of empty points and sets of safe points, compute subset of dame points *)
BEGIN


unsurroundable := NeighborPoints (safe [Black]) * NeighborPoints (safe [White]) * empty;
dame := {p ∈ unsurroundable | (EmptyNeighbors (p) ⊆ unsurroundable)};
RETURN dame


END FindDamePoints;


Proof: We show that a stone on a point computed by FindDamePoints cannot possibly
contribute to a capture, or to surrounding territory. Consider any local sequence of play
that involves a move on a point p ∈ dame. Removing p from the sequence only affects
liberties of safe stones, so there is no change in which blocks are captured. It does not
change size or status of territories either: only surroundable points can become part of
territory, and all neighbors of p are unsurroundable by construction. For the same
reason, p cannot change the safety of any blocks surrounding territory.


There may be other dame points that cannot be detected by this static algorithm. The
value of playing an unsurroundable point such as d in the example is greater or equal
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than playing a dame: the stone is safe from capture, and it might help to surround own
or reduce opponent territory.


The example also illustrates that dame points are useful for board partition: The area
{a, b, c, d} is surrounded by safe blocks and dame points and therefore an independent
subgame.


5.3  Summary: Algorithm for Exact Board Partition


Board Partition


Given safe and dame points, we compute connected components of the remaining
unsafe points. Each component constitutes a local area. The play in one area cannot
affect the play or the score in other areas because the areas are separated by safe blocks.
If any area is too complex the algorithm indicates a potential complexity problem. Too
complex is an estimate of the cost of searching the area, a simple definition is:


Number of legal moves > 10


*


The constant part of a game: Safe blocks,
territories and a dame point


Endgame areas (territories are shown
dimmed)


The Algorithm for Exact Board Partition


The algorithm ExactBoardPartition computes safe and dame points, then partitions the
rest of the board into connected components. If the bigAreas list remains empty, we will
attempt to solve the endgame exactly.
ALGORITHM ExactBoardPartition ( VAR safe: ColorSET; VAR dame: POINTSET;


VAR smallAreas, bigAreas: LIST)
BEGIN


smallAreas := EmptyList ();
bigAreas := EmptyList ();
FindSafe (safe);
dame := FindDamePoints (All [Empty] - safe, safe);
FORALL area IN ConnectedComponents (AllPoints - safe [Black] - safe [White] - dame) DO


IF TooComplex (area) THEN
Append (area, bigAreas)


ELSE
Append (area, smallAreas)


END
END


END ExactBoardPartition;
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6
Local Search and Evaluation in the Endgame


Following board partition, the algorithm for converting a Go endgame into a combi-
natorial game consists of generation of local game trees, scoring of local terminal posi-
tions, and evaluation of local games as mathematical games. Finally, a move in the re-
sulting sum game must be selected, and identified with a move in the Go position.


After describing the basic algorithm, we give several enhancements, such as pruning
rules, cooling, and using incentives. The result is a program that can solve a wide range
of late Go endgames.


Safe territories and dame points are games that can be evaluated statically. Other
local games are analyzed by local game tree search. Terminal positions are evaluated,
and the values backed up in the tree, resulting in a mathematical game evaluation of
each node.


The result of search and analysis is a complete description of possible endgame
plays that makes perfect play possible. We save the results of local analysis in a
database of local positions. During play, each full board position corresponds one-to-
one to a set of local positions, one from each local game. Positions and their values are
retrieved from the database.


The value of a full board position is the sum of local position values. A sum game
evaluation algorithm selects a sufficiently good or optimal move. We also consider an
algorithm with lower memory requirements, which stores only a subset of the positions
of a local game in the database. In this case, if play reaches a position not stored in the
database, we must re-search the corresponding local game.
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6.1  Local Search


-3


-20


Local game tree with evaluation of terminal nodes


An endgame area consists of unsettled stones, and of empty points not yet surrounded
by either color. Safe stones, usually of both colors, surround the area. During endgame
play, unsettled stones either become safe or are captured. Empty points will become
occupied, safe territory or dame. A rare case are ‘untouchable’ empty points in seki.


Move Generation


We generate all legal moves for both colors, except in a terminal position or if moves
can be pruned. Examples of pruning rules are restricting the number of dame moves
generated to at most one, and pruning moves dominated by other moves. Termination
rules decide when a position can be evaluated statically, without further expanding the
tree.


Terminal Positions


We recognize the following terminal positions:
• No legal moves
• No good move (all points are territory, or dame)
• Value of position known from transposition table, pattern, or local position database


The first two types of terminal positions evaluate to a number, or number-plus-star (odd
number of dame). If the value of a position is known from another source, it is terminal
in the sense that there is no need to continue search. The value itself can be any
mathematical game value. Non-terminal positions may have a constant value as well, if
the outcome is the same no matter who plays first, but this has to be proven using
search.


Scoring


Scoring assigns a number, or number plus dame, to a terminal position. In Chinese
rules, scoring measures how many stones and empty points belong to either color. In
Japanese rules, territory and prisoners are counted. Both kinds of scoring are straight-
forward in the endgame because safe and dead stones, territories and neutral points are
known exactly.
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Scoring Positions with no Profitable Moves


Positions where all moves are useless or bad indicate either seki or territory. Games
such as {n-1 | n+1} or {n-1 |} typically appear when n point territories are not
recognized early enough. The player who moves there just loses a point under japanese
rules, or in the best case keeps the score at n, if the opponent must answer. Fortunately,
these games evaluate to n. Even in less obvious cases, we have always found the
mathematical score consistent with Go tradition. An example is the snapback in the fig-
ure below.


Seki: 22 | -8 || 24 | -6 = 0 Snapback: 4 || 6 | 0 = 5


Three Points
Without Capturing


Other games without profitable moves usually indicate seki.
The relation between scoring using different Go rules and
combinatorial game theory is discussed in detail in [BW 94].
Several examples, including the famous Three Points Without
Capturing, are analyzed there. In complicated positions with
no profitable moves our algorithm indicates a potential
scoring problem.


Exact Play on a Subset of the Board


When board partition indicates that big areas remain, or search
cannot solve all small areas, the user interface offers three options:
• Stop playing
• Ignore the unsolvable big areas
• Use heuristic play in the big areas


Even if an original position has been solved, suicidal opponents can cause problems
later: they might endanger their ‘immortal’ stones, which violates our initial assump-
tions on board partition and generates new unstable positions where optimal play might
be very complicated.


Sufficiently Good vs. Optimal Play


Sufficiently good moves guarantee at least the optimal score of the initial position. We
play optimally as long as the opponent plays well, but we might fail to exploit all
mistakes the other player makes.


Saving Results of Local Search: A Database of Local Game Positions


Positions encountered during local search are stored in a database of local games. An
important question is what to store: There is a tradeoff between recomputation time and
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required storage. For building a permanent database, it makes sense to store only
‘difficult’ moves in the database, and recalculate the rest if needed.


It is efficient to store which moves are locally good or bad, but omit refutations: the
trees proving that bad moves are inferior. Such a database is sufficient for playing
against a good opponent. Only in the unlikely case of locally bad opponent play, we
must recalculate one subtree to find a refutation. The following table lists some
possibilities:


Type of database Content
Full All positions encountered during exhaustive search
Color-complete (Black or White) All positions reachable by non-dominated moves of color


and arbitrary opponent moves (pruned bad moves of color)
Optimal At least one position corresponding to each non-dominated


option of each reachable position, guarantees optimal play
from each position in database


Ko-complete (Ko-optimal) Complete (optimal) + possible Ko threats and answers
Sufficiently good Guarantees optimal score from a starting position, might fail


to exploit some opponent mistakes


6.2  Mapping Game Trees to Mathematical Games
A local game tree with evaluated leaf nodes can be transformed into a mathematical
game by the algorithm TreeToValue. Moves are evaluated recursively and sorted by
color to find the options of a game.


ALGORITHM TreeToValue (node: NODE) : TMathGame;
VAR game, option: TMathGame; col: Color;
BEGIN


IF IsTerminal (node) THEN
game := StaticEvaluation (node)


ELSE (* inner node *)
options [Black] := []; options [White] := [];
FORALL son IN Sons (node) DO


option := TreeToValue (son);
col := NodePlayer (son);
options [col] := options [col] ∪ {option};


END (*FORALL*);
game := {options [Black] | options [White] }


END (*IF*);
RETURN game


END TreeToValue;


Pruning Game Trees


The evaluation of nodes leads to pruning the game tree: moves to dominated options are
marked as locally bad moves. With the usual domination test for ‘≥’, all but the first of
several equally good moves are pruned. A test for ‘>’ keeps the full set of equally good
moves.


6.3  Finding a Move in the Sum Game
The algorithm BruteForceFindMove finds an optimal move by computing the Minmax
score of the sum game:
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ALGORITHM BruteForceFindMove (games: LIST; toPlay: Color) : MOVE;
VAR sum, game: TMathGame; foundMove : BOOLEAN; opp: Color; move: MOVE;
BEGIN


sum := TMathGame (0);
FOREACH game IN games DO sum := sum + game END; (* compute sum *)
score := Score (sum, toPlay); (* min-max score of sum game*)


foundMove := FALSE; move := Pass;
opp := Opponent (toPlay);
FORSOME game IN games DO (* loop through games’ options …*)


FORSOME option IN Options (game, toPlay) DO (*…gives set of ‘reasonable’ moves *)
IF Score (sum - game + option, opp) = score THEN (* found an optimal move *)


move := GetMove (game, option, toPlay); (* move from game to option *)
foundMove := TRUE; (*ABORT stops FORSOME …*)
ABORT (* …iteration over options *)


END
END (*FORSOME*);
IF foundMove THEN ABORT END (* abort FORSOME over games*)


END (*FORSOME*);
RETURN move;


END BruteForceFindMove;


This method should already be more efficient than a global minmax search because
local games have been simplified, and more simplification takes place during summa-
tion. Still, direct computation of the sum of ‘hot’ endgames soon becomes prohibitively
expensive. If during sum evaluation a time or memory limit is reached, the algorithm
stops with summation failure (not shown in the algorithm above).


Faster Methods for Sum Evaluation


Processing sum games can be speeded up by omitting constant games, dame, and miai
points from the sum game. With Chinese rules, the value of dame is {1 | -1}, and they
may not be omitted. These moves will be played in a finishing phase after the sum game
is over.


Using Incentives


Two techniques of combinatorial game theory introduced in Chapter 3 help to speed up
move selection in a sum game: For games of relatively low temperature, cooling by 1
(p. 39) is very effective and allows easier computation of the sum.


The use of incentives (p. 38) is often decisive: if one option has an incentive that
dominates all other incentives of all local games, it is an optimal move that can be
played without computing the sum.
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ALGORITHM FindMoveByIncentive (games: LIST; toPlay: Color) : MOVE;
VAR sum, game: TMathGame; foundMove : BOOLEAN; opp: Color; move: MOVE;
BEGIN


best := EmptyList (); (* list of (incentive, game, option) tuples *)


FOREACH game IN games DO
FOREACH option IN Options (game, toPlay) DO


incentive := Incentive (game, option, toPlay);
IF Dominates (incentive, Incentives (best)) THEN


best := [(incentive, game, option)];
ELSIF NOT IsDominated (incentive, Incentives (best)) THEN


Append ((incentive, game, option), best);
END


END
END;


move := Pass;
IF ListLength (best) = 1 THEN


(incentive, game, option) := FirstElement (best);
move := GetMove (game, option, toPlay);


ELSIF best ≠ EmptyList THEN
move := BruteForceFindMove (games, toPlay)


END (*IF*);
RETURN move;


END FindMoveByIncentive;


The following example illustrates an exponential explosion of summation, which is
avoided by the use of incentives.


Sum game Canonical Form of Sum
1|0 1|0
1|0 + 2|0 3|2||1|0
1|0 + 2|0 + 3|0 6|5||4|3|||3|2||1|0
1|0 + 2|0 + 3|0 + 4|0 {10|9||8|7|||7|6||5|4} | {6|5||4|3|||3|2||1|0}
1|0 + 2|0 + 3|0 + 4|0 + 5|0 {15|14||13|12|||12|11||10|9} |  {11|10||9|8|||8|7||6|5} | |


{10|9||8|7|||7|6||5|4} | {6|5||4|3|||3|2||1|0}


Partial Search


Incentives of moves are a local concept, so they cannot take a specific sum game into
account. Minmax search can resolve which move is best in the context of the current
sum. Combinatorial game theory is used as a (very strong) pruning method for minmax
tree search.


Example: In the sum game 5 | 0 + 6 | 4 || 0, Left to play can either move to 5 in the
first game or to 6 | 4 in the second game. The incentives 5 - 5 | 0 and 6 | 4 - 6 | 4 || 0 are
incomparable, so we try playing out both moves:


Leftscore (sum) = Max (Rightscore (5 + 6 | 4 || 0), Rightscore (5 | 0 + 6 | 4))
= Max (5, 6) = 6.


Only the move to 6 | 4 retains the minmax score. In contrast, in the sum 2 | 0 + 5 | 0 +
6 | 4 || 0, the move to 5 would be best, assuring a Leftscore of 7 in contrast to 6 for the
other moves.
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Mapping a Move in the Abstract Game to a Go Move


As a last step, we must find a Go move corresponding to the selected option in the
abstract game. We select the first move with sufficient incentive.


Ko During Search


Loops often occur during search, even if they do not affect optimal play or the game
value. As described in Section 3.3 (p. 43/44), we compute bounds on the game score by
disallowing one player’s moves that lead to a loop (this player is said to lose all Kos). If
optimal play does not depend on Ko, upper and lower bound are identical and the game
value has been determined. Both players have an optimal strategy that does not involve
a Ko fight. If the bounds differ, the algorithm stops with a Ko-failure.


6.4  Speeding up Local Search
Ignoring illegal moves and captures, the number of possible plays in an n point area is
approximately 2n (n for each player), and play generates a n-1 point area. A rough
estimate for the size of the game tree is therefore 2n⋅2(n-1)⋅… = 2nn!


Due to this combinatorial explosion, even fairly small endgames become pro-
hibitively expensive to compute using this approach. In the following, we look at a
number of techniques for reducing the size of the search tree.


Transposition Table


A transposition table detects identical board positions, reducing the size of the search
space from ≈2nn! to 3n states. The implementation of a transposition table for local
search is described in Chapter 7, p. 81. Adaptation of search and evaluation algorithms
is straightforward.


n 2nn! 3n


1 2 3
2 8 9
3 48 27
4 384 81
5 3840 243
6 46080 729
7 645120 2187
8 10321920 6561
9 185794560 19683


10 3715891200 59049


Reduction of search space by transposition table


Pruning Moves


cba


Corridor with
unique best move


The width of the search tree can be further reduced by pruning
moves. In contrast to selective search, we may only eliminate
moves that are provably worse-or-equal than others. If a move
achieves all points of the local area, or if any other move would
give the opponent an answer which achieves the maximum score,
the move is optimal, and we can prune all other moves.


For corridors the move at the entrance of the corridor is
optimal for both players. In the example, we need only consider
move a.
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unknown


≥ dame


is-dame


≤ dame


optimal


Partial order for pruning


Dame points are recognized by the algorithm
FindDamePoints (p. 64). Comparing the incentive
of moves relative to the value of a dame move leads
to the following partial order for pruning:


A move causes pruning of all moves in lower
categories (relative to the partial order). When a
category contains a unique value, all but one move
in this category can be pruned (the is-dame and
optimal categories in this example). This rule can
easily be extended, e.g. by including
unsurroundable points (p. 64), or by recognizing
corridor values and simple switches.


6.5  Summary: Using Combinatorial Game Theory to Solve Late
Endgames by Computer


What we can do


• Perfect computer play in late endgame
• Find the game-theoretic value of a position long before the end
• Evaluate the opponent’s endgame moves
• Find moves that are good enough even with a reduced local game database


Limits of the ‘Strict’ Approach


Strict analysis of endgames is currently not possible if one of the following limits is
reached:
• Partition: too few blocks can be proven safe independent of endgame play.


Therefore some areas become too big for complete search.
• Summation: no move with dominating incentive exists, and both summing and


partial search take too long.
• Ko: Standard combinatorial game theory exploits the independence of local games.


In the case of Ko, the independence is broken (a locally bad move may be globally
best if it serves as a Ko threat). Generalizations of the theory to handle Kos are a
topic of current research.


• Added complexity in ‘obvious’ situations: In cases where the focus of play is
obvious (i.e. only one local situation is relevant), combinatorial game theory
introduces additional complexity by investigating moves for both players in this and
each other position. Reversibility (p. 38) and thermographic reversibility (not
discussed in this thesis) can be used to eliminate much of this extra complexity.
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7
The Explorer Program: Implementation Issues


We describe the implementation of selected Explorer components: pattern matching,
local games, and additions to the Smart Game Board user interface.


Pattern matching in Go is mapped to a text searching problem which is solved using
a Patricia tree index. Three optimizations important for the application to Go are
described.


The implementation of local games and their sums consists of the following parts: A
local game contains summary information on the game and game graph. Nodes of the
game graph can be found through pattern matching, after storing a pattern in a local
game database. A local state provides a context for efficient local search that supports
operations such as move generation, and fast Execute/Undo of moves.


A sum game changes incrementally during a game. By storing local game in-
formation in a database we avoid recomputation. An analogous database is also used for
caching the results of tactical minmax search.


Operations on combinatorial games are handled by Wolfe’s toolkit [Wolfe91b]
which has been ported to the Smart Game Board [Fierz 92] and adapted for use in
Explorer. A sum game contains references to nodes of local games that match a full
board position. It provides methods for sum evaluation and move selection. Besides
supporting the sum of local games model, Explorer 5 uses new mechanisms for memory
management and time control.


Support by the user interface is crucial for the exploratory kind of program devel-
opment typical of game programs [Kierulf et al. 90]. Explorer reuses and extends
components of the Smart Game Board. The tool palette of the Smart Game Board has
been extended by a pattern and local game editor, which supports building and
maintaining a pattern library and experimenting with sums of local games.


The Analyze tool tests a Go program in selected problems. Assertions input in text
form or through the graphical interface are checked during analysis. Further tools are
available that show, write, edit and check the program’s data.
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7.1  Pattern Matching


Pattern Matching in Go


1
1 1


1


1 1 1 1


1
1 1


1


1 1 1 1


The 16 orientations of a pattern


Many variants of pattern matching have been studied in computer science. In Go, we
need to match a large number of 2-dimensional patterns in 16 orientations against a
single board. It is too expensive to match each pattern against the board at each possible
location at each turn. We use a Patricia tree as a filter that reduces the set of possible
matches to a few candidates. Only candidate patterns have to be compared with the cur-
rent board position. A number of further optimizations are shown which dramatically
improve performance.


A Text Searching Algorithm for Pattern Matching


The Patricia method [Sedgewick 83, p. 219-223] is a radix trie searching method that
has been used for searching large text databases such as the Oxford English Dictionary
[Gonnet 88]. We develop an algorithm specialized for pattern matching in Go:
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Covering an irregularly
shaped pattern with 4x4


tiles


• Each pattern is covered by a grid of 4×4 tiles. For small
patterns, one tile is sufficient. Full board patterns on the
19×19 board (e.g. for openings) need 25 tiles.


• For each point in a tile, we store the value Empty,
Black, White, or DontCare (out of pattern). This takes
2 bits. The 4×4 tile size has been chosen to fit one tile
into a 32 bit word.


EEED…WBED…DBED……
MaxSize MaxSize


Converting a pattern to a sistring


• For linearization, all points in the pattern are indexed. The index of the point with
local coordinates (x, y) is MaxSize⋅x+y, with a constant MaxSize equal to the
maximum board size, e.g. 19. Unused indices correspond to DontCare points. The
result is a semi-infinite string (sistring) over the alphabet {E, B, W, D} = {Empty,
Black, White, DontCare}. All but a finite number of characters in the string are ‘D’.


D


D


D


D D D


D


DD


… …


… … …


Pattern


PatternPatternPattern


Patricia Tree


• A Patricia tree index for differentiating the
sistrings of all patterns is built. The inner nodes of
the tree contain an integer index and references to
four subtrees. Patterns contained in the same
subtree share the same color at the indexed point
of their sistrings. The leaves of the tree contain
either a reference to a sistring (pattern leaves) or
NIL, indicating that there is no matching sistring
in the library.


• For each starting location (x, y) and each ori-
entation, we perform a match: we compare the
board against the Patricia tree at the index points
of nodes. From each node, we traverse both the
subtree with matching color and the DontCare
subtree.


• Matching the board against the Patricia tree ends
in leaf nodes, which are either NIL (a mismatch
leaf) or pattern leaves. A pattern leaf contains a
reference to a pattern that matches the board at all sampling points and has to be
compared with the board. Because DontCare points in patterns match any board
state, there may be more than one matching pattern per (location, orientation) pair.
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Comparing a Pattern with the Actual Board


For comparing the board against candidate patterns, we compute tiles for each starting
location and orientation of the board. These tile boards are incrementally updated
before matching. If all pattern tiles match the board tiles, we have found a match. As
soon as two tiles mismatch, we stop the comparison with a comparison mismatch.


Factors Affecting the Speed of the Pattern Matching Algorithm


The effective running time of the pattern matching algorithm depends on many factors:
• Number and size of patterns
• Size of the Go board
• Structure of the Patricia tree
• Number of patterns
• Speed of Patricia tree and of full pattern-board comparisons
• Ratio of mismatches caught by the Patricia tree


Optimization 1: Incremental Matching


One optimization is very important for game play: The result of a single match or
mismatch, the list of matching patterns, typically depends only on a few points on the
board. After making a move, most matches stay valid. To exploit this observation we
keep a dependency set for each match, which contains all the points that were tested in
the matching process. After each move we must update only those matches whose
dependency set is affected by a move. This optimization is very effective in game play.
It has little effect when successive full board positions are unrelated, e.g. during
analysis of unrelated test positions.


In a test on complete games, namely the set ‘Pro 10 Games’ of the Computer Go
Test Collection, this optimization saved 96% of all center matches, 94% of edge
matches and 93% of corner matches. In contrary, on the test ‘Pro 1000 Positions’ of
unrelated positions, the savings were only 10%, 3% and 0.2% respectively. Most of
these ‘accidental’ savings were probably due to matching empty areas.


Optimization 2: Adaptive Tree


Hitting a mismatch leaf (NIL) in the Patricia tree is cheaper than detecting a mismatch
during the final pattern-board comparison. After such a pattern-board mismatch, the
Adaptive Tree algorithm replaces the pattern leaf with a new node branching at the
index where the pattern-board mismatch occurred. The new node has four siblings: the
pattern leaf and three NIL leaves, one of which will correspond to the board color at the
index. This way the tree grows and catches more mismatches in the tree, which saves
time if the same query occurs again.


A disadvantage of the Adaptive Tree algorithm is increased memory requirement.
Another potential disadvantage, degeneration of the tree structure, did not occur with
our data.


Optimization 3: Balancing the Patricia Tree


Analysis of Patricia trees for our pattern library showed poor balance: near the root,
most branches carried few patterns. The bulk of patterns was contained in very few
branches initially, and the tree became bushy only at about depth 10. The reason is that
we built the tree with low indices close to the root. But at low indices, most patterns
were very similar: almost all points were Empty, with occasional DontCare points.
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Ambros Marzetta implemented a tool to rotate the patterns so that a stone would
occur as soon as possible in the pattern. This simple change in data representation
effectively doubled the speed of the algorithm.


In our Best Balance algorithm we go a step further: we repeatedly find the index
with the best balance between subtrees: we maximize the number of non-NIL subtrees,
then maximize the number of patterns in the smallest non-NIL subtree.


7.2  Local Games
This section describes the implementation of local games, game graphs and their nodes,
mathematical games, and thermographs. The same implementation is used for both the
heuristic and the exact local game model.


Design Principle: Store Search Tree in Memory


In typical minmax search programs, the search tree is not stored explicitly. Results can
be reused easily through a transposition table. A single tree is searched deeper following
the actual line of play at each move. In a sum of games model, the result of local
analysis may stay valid for many moves. It is feasible and efficient to store computed
local results in memory and retrieve matching local situations during a game.


Game Graph


A A A' A"


Representation of game graph as a tree with transposition links


The game graph is a rooted, directed, possibly cyclic graph. It has been implemented
using a Smart Game Board tree plus extra transposition links. Nodes of game graphs are
accessible by traversing the graph through the tree structure and transposition links.
Loopy graphs are represented in the same way by one or more transposition links.


The transposition link approach was chosen for the simplicity of its implementation
on top of the existing tree structure. Its main disadvantage is that it leads to additional
nodes in the graph. There is no duplication of subtrees below these nodes, however.


Only one predecessor of a node is easily accessible through this structure. Access to
other immediate predecessors is not required for our application. The only operation
that traverses the graph bottom-up is finding the root node of the graph, which is sup-
ported by the underlying tree.
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A A


A'


B


B


Representation of loopy game graph


We distinguish three kinds of nodes: Interior nodes, terminal nodes, and transposition
nodes that contain only a reference to the real node.


Representation of a Local Situation: Nodes of the Local Game Graph


A node of a local game graph can be viewed as an extension of the Smart Game Board
NODE type [Kierulf 90, p. 19]. Local game specific attributes are available in addition
to standard Smart Go Board attributes:
• The area of the local game at this node
• The color of all points in the local area
• The context: prisoners, Ko status, outside liberties, connections, eyes
• Flags indicating loops in the subgraph, status of move generation, evaluation, etc.
• The quality of evaluation: Proved value, heuristic value, or entered by human
• Mathematical game evaluations: exact value, upper and lower bounds
• Mean, temperature, or a heuristic temperature estimate


Local Game


A local game is identified with the root node of a game graph. It contains information
which applies to the whole graph. Such attributes include playing rules, initial con-
straints for the game, and statistics on the game.


Local Node Database


The database stores patterns describing the nodes of local game graphs. By matching
the database against the current board we retrieve a set of matching nodes. The function
of the database is to find local game nodes which have been computed at an earlier
stage during a game. This prevents recomputation of games.
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Full board map for
local game


Local Pattern


Maps for local node patterns are defined differently from usual
pattern maps: To find all local node patterns in a single match
operation, the location and orientation of pattern maps is fixed.
All maps are extended to the full board by DontCare points.


Patterns of local nodes are stored in a database separate from
the standard pattern database. As with standard patterns, several
nodes may share the same pattern map. This happens when the
same local situation occurs in different contexts.


A Database for Caching Local Minmax Search Results


Task definitions and solutions [Kierulf 90] for tactical and
Life&Death search are also stored in a local pattern database, which replaces the fixed
size table used for this purpose in former Explorer versions.


Local State for Search and Evaluation


Local search and evaluation operate in a context which may not match the current board
position: the local game might be in a different Ko status, or search may be (re-)started
in a local situation that differs from the current board.


A local state describes the current node of a local game. It contains all information
on a local game that is needed for move generation and evaluation. For fast executing
and undoing of moves, it supports a stack that tracks incremental changes of the local
situation. This stack contains complementary information to the basic Smart Go Board
move stack, such as changes in the safety status of stones during search.


Local state information is used for creating new nodes in the game graph during
search and for traversing an existing graph during evaluation. In the read-only mode of
evaluation, trying to execute a move that is not in the graph will fail. A status field of
the local state tracks any error, such as overflow or an illegal move, that occurred
during graph traversal.


Typically one state per local game is used, though the design with a local state sepa-
rate from the local game graph allows concurrent read-only access by several local state
objects to the same local game.


Context Switch Between Local Games


The design of the Smart Game Board [Kierulf 90] encourages multiplexing all local
games on the same unique board and move stack. When switching from one local game
to another, all moves of the first game are undone, then the other game is set up from
the empty board. The root node of each local game contains information to set up the
context of the local game.


The obvious disadvantage of the multiplexing approach is that a context switch be-
tween local games is slower than keeping a separate board and move stack for each lo-
cal game. The switch causes an overhead comparable to switching between two open
games in the Smart Game Board. The main advantage is that much less memory is
needed. Timing tests showed that the context switching time is negligible compared to
the total search time. Most local games have relatively shallow search trees, which
keeps setup and undo times low.
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Hashing for a Local Node Transposition Table


When the context of a local situation remains constant, hashing is a faster alternative to
pattern matching, but it must be used carefully in conjunction with local games. For
example, the same situation may occur with a different number of captured stones,
which yields a different final score.


We use the Smart Game Board’s built-in hash table, which computes a full board
hash key [Kierulf 90]. Depending on the application, hash entries are references to
nodes or mathematical evaluations of nodes. The same position can appear in different
contexts, which must not be confused by hashing. We experimented with two different
solutions:
• A general solution is to construct a new code from a context code and the board


hash code.
• When the needed information is composed of a purely local part and a context


dependent part, we can store only the local information in the hash table and
compute the effect of context on the fly. For example, endgame evaluation can be
computed as the sum of a hashed local score and a prisoner count that is computed
incrementally during graph traversal. An advantage of this method is that more
transpositions are found than when hashing the same local situation in different con-
texts to different hash table entries.


Writing Local Games to a File


Local games can be stored as standard Smart Game Format files. Context and other
information on the local game is stored as game-specific properties in the root node.
Other nodes contain only the move, and an evaluation if one exists. Transposition links
and context information for non-root nodes are not stored in the file, but rebuilt after
reading the file. The transposition links are restored using hashing.


Sums of Local Games


Explorer’s Sum Game type is based on a collection type which has the following
operations: create empty collection, add item, delete item, find item and enumerate
items. Additional operations for sum games are summation, move selection strategies
such as Sentestrat and Thermostrat, writing and display methods and error checking.


7.3  Combinatorial Game Theory


Integrating Wolfe’s Toolkit into Explorer


David Wolfe’s toolkit [Wolfe 91b] implements mathematical games and many
functions and operations such as building a game from its options, reduction to canoni-
cal form, adding games, converting numbers to games, cooling, computing the tempera-
ture, Leftscores, Rightscores and comparing games. The toolkit also provides
conversion between games and text strings.


Werner Fierz’ port of Wolfe’s toolkit to the Smart Game Board [Fierz 92] has been
extended with interface elements to access the toolkit functions through the Smart
Game Board, a facility to store mathematical games in a Smart Game Board node and
procedures for converting an evaluated game graph into a mathematical game.
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Thermographs


For experiments with the Thermostrat algorithm, we have implemented a thermograph
data structure and display. Explorer can compute and show thermographs of a single
loopfree game, or the combined thermograph of a sum game.


The Thermograph Display


7.4  Time and Memory Management


Memory Management of Objects and Local Trees


In a program with limited memory, we need to decide which local game nodes and
other calculated results to keep, and which to dispose during the course of play. Which
items are obsolete, and which can probably be reused later? Only heuristic rules for
memory management are possible, because the future actions of the user are
unpredictable.


During the course of a game there is a gradual shift of relevance. Starting a new
game leads to radical change, just about all computed results are useless in the new
game. Some flexibility for users undoing moves should be provided.


As a solution we define a forced substate, a subset of all points on the current board.
The substate consists mainly of safe-looking stones. We delete all objects that do not
match the forced substate. For supporting undo’s, we exclude all points affected by the
last two moves from the points of the forced substate. Some items are exempt from
automatic disposal: user inputs, and objects explicitly calculated on a user’s demand.


Time Control for Tournament Play


Time control determines how much time to use for each subgame, for tactics, and for
Life&Death problems. The main time control mechanism is contained in the iterative
search method described in Chapter 4. The same algorithm with smaller time slices
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could be used for computing in opponents time. A fast mode is used in time trouble:
only minimal time is used for subproblems such as tactics calculations and Life&Death.


7.5  Extending the Smart Game Board as a Tool for Go Programmers


Game Programmers as Special Users of the Smart Game Board


Besides writing the code for a computer player, game programmers are also users of the
Smart Game Board. Playing through computer games and analyzing them, or testing
their program’s performance in collected problems is part of their everyday work.
Standard functions of the Smart Game Board yield additional benefits for programmers:
• The game tree editor can be used to store a search tree, including additional in-


formation such as evaluation of terminal nodes and backed up values.
• A multitude of views provides an excellent environment for testing and devel-


opment.
• Game collections are useful for archiving computer games and collecting test


problems.
• When the program plays a test game, all variations tried by the opponent are au-


tomatically kept for later study.
• A tester can mark critical moves and add comments for the programmer.
• Smart Go Format files can be easily exchanged by e-mail.
• Diagram printing facilitates the creation of documentation and reports.


Evolution of Smart Game Board since 1990


Christoph Wirth has implemented many extensions to the Smart Game Board since
1990 [Kierulf et al. 91]: New views are available to show the game tree in graphical
form, an overview of critical game positions, and a text protocol. Game programmers
can define game-specific properties and use the new dimmed and hidden properties for
dimming or hiding parts of the displayed board. A game can be output in the standard
Rich Text Format (RTF) complete with diagrams and annotations.


Pattern overview


The new display facilities have been used in Explorer. In the example, the overview
window shows patterns for selected moves.
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Controls


Controls view


The Controls view was built by reusing Christoph Wirth’s Preferences view. It provides
access to Explorer functions for display, operation on local games, thermographs, the
Analyze Tool, patterns and pattern matching, statistics, checking and debugging tools.


Display Tools


We use the Smart Game Board components board view, tree view, overview, protocol,
and game collection for displaying Explorer data. Displays are selected from a menu in
Controls. The display of territory, weak groups, and expected moves can be made
permanent. This information is shown in addition to the currently selected display.
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The display selected in Controls is shown in board view and protocol view


Maps showing connectable points, and urgent pattern moves


All data structures, such as Blocks, Chains, Groups, Zones, and Local Games, can be
displayed. Full board maps show sets of points that are safe, near, or junction points,
and sets of moves such as legal or pattern moves.


Extending the Analyze Tool


The Analyze tool compares the program’s computation with annotations stored in a
Smart Game Board tree. As an extension of the tool described in [Kierulf 90], we
introduce commands and assertions. Commands are used for setting parameters such as
rules and program version during analysis:


Sample Commands:
Version(local)
SumStrategy(sum)
Evaluation(territory,static)


Sample Assertions:
IsBlock(K14, dead)
IsMove(G3, good)
AreSame(group, A1, T19)


Sample commands and assertions
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Endgame position with assertion in comment view


 Assertions are statements about the current Go position, which are compared with
Explorer’s analysis. All nodes with assertions that fail are marked during analysis.
Statistics show totals over all assertions checked during analysis. Frequently used
assertions, such as IsMove (p, good), IsMove (p, best), IsMove (current, blunder) are
assigned to properties and can be entered graphically using icons in the Smart Game
Board’s panel. A complete list of commands, assertions and their corresponding
properties is given in [Müller 94].


GoodMove and BadMove properties as assertions
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8
Results


 In exact endgame play, we show examples of solved local games and full board posi-
tions. We discuss the problem of performance measurement in general and introduce
the Computer Go Test Collection as a tool to measure performance accurately.


8.1  Exact Endgame Calculations


Single Endgame Positions


Corridors [BW 94] are among the most basic exercises for an endgame program. Hash
tables and exact pruning rules lead to substantial savings even in this easy case. The
figure shows a variety of corridors, both with and without stones in the corridor.


Blocked corridor, value 1/16 Unblocked corridor, value 1/4


0|+2 Hot game with two stones in corridor,
value 2|*


In [Müller/Gasser 94], we verified the
values of the 103 node room positions with
3 to 7 empty spaces in [Wolfe 91a, BW
94]. For positions where optimal play does
not depend on Ko, we obtain identical
results. For the positions where optimal
play may depend on Ko, our program re-
turns bounds. The most complex Ko
position ‘the rogue’ and our computed
bounds are shown.


The ‘rogue’


Upper bound:
Black Wins Kos:
5|{4|||3||2|1*}|||2|1*||*
cooled: 49/16|7/4
µ = 77/32, t = 53/32


Lower bound:
White Wins Kos:
{5|||4||3|*}|||2|1*||*
 cooled: 3|3+1||7/4
µ = 76/32, t = 52/32


The following examples, also from [Müller/Gasser 94], are given with cooled game
values, mean, and the temperature of the original game (the temperature of the cooled
game is 1 less). For some nine point corner positions we obtained very complicated
bounds.
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2|1
µ: 3/2, temperature: 3/2


4|3/2
µ: 11/4, temperature: 9/4


Upper Bound: 6|{3|2}, 3–2*


µ: 17/4, temperature: 11/4


Lower Bound: 6|{3|2},{6+4|4,{4|2}|{5|4*||2*},{4,4↑*|3||3}||2}


µ: 17/4, temperature: 11/4


Upper Bound: 7|17/8,{5|3↑•2*||3*|||2}


µ: 73/16, temperature: 55/16


Lower Bound: 7||2–1|2
µ: 9/2, temperature: 7/2


Upper Bound: {5|||3↑•3||2–1||1*}|1


µ: 9/4, temperature: 9/4


Lower Bound: 3↑•3|1


µ: 2, temperature: 2


Upper Bound: 3/2↑,{3+5/2|1/2,{5/2|1/2}}|1/2


µ: 1, temperature: 3/2


Lower Bound: 9/8|1/2
µ: 13/16, temperature: 21/16
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Upper Bound:{5|5/2},5+4–1|{5|1+1|||1,{5,{5|1}|1}|1||0}, {{5||3|5/2}, 
{5|3+6+4}|5/2,{3|5/2},{3,{3|5/2}|{5/2|{5/2|1–1},
{2,{7/2|1–2*}|1–1}},{3|5/2||2|-1}}||-1}


µ: 3, temperature: 3


Lower Bound: 5|2*|||1–2||1/2|0
µ: 2, temperature: 19/8


1
2


4
3


5


Black’s clever
defense of the


corner


The value of the last position depends on interesting variations. For
example, if Black wins Kos, she has a surprising defense of the corner:
Black gives way once, then blocks at 3. If White cuts, Black plays and
wins a Ko with 5. Such sequences are easily overlooked by many
human players.


Full Board Endgame Problems


Explorer solves full board endgames that decompose into small
enough independent fragments. Appendix C of [BW 94] contains a set
of full board problems. Many of these problems can not be partitioned
properly using the exact algorithms of Chapter 5. The independence of subgames is not
immediately provable, and has to be established individually through careful analysis.
We have therefore designed a corresponding set of problems with identical local
endgame values, where the safety of surrounding blocks is easier to prove.


Berlekamp’s problem C.7, and its modification (added stones are marked)


Problem C.7 of [BW 94] is an example. The program cannot prove the safety of Black’s
top right and of White’s lower right group. In the top corner, only one eye is
independent of endgame play. In the lower right corner, there is a possible Ko fight in
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case White gets surrounded. In the modified version, both groups are absolutely alive.
The added stones do not affect the score or the local game values.


The complete table of modified problems is given in the appendix.


8.2  Performance Measurement for Heuristic Go Programs
Human players measure their Go strength on a widely accepted rating scale (→ Section
1.2, p. 9). It is possible to enter a program in a human tournament and earn a rating, but
such a number is a doubtful measure of performance [Kierulf et al. 90]. To measure a
program’s performance more accurately we consider computer analysis of master
games and test position collections, and play against a variety of opponents. Together
these tests give a more adequate overall picture of a program’s strengths and
weaknesses than one single test.


Candidates for measurements are the quality of moves, accuracy of scoring and
board partitioning, recognition of features such as eyes, connections, or dividers, or effi-
ciency in terms of speed, number of nodes searched, or memory used. Such tests are
supported by the Analyze Tool, by Smart Game Board elements such as timers, and by
an annotation format for game positions [Müller 94].


In the following, we focus on measuring the quality of moves played by a Go
program. Except in the endgame, where exact analysis is possible, the quality of moves
will be judged heuristically by a human player who is much stronger than the program.
We give examples how test results can be used for improving a program.


The Ranking Problem


The ranking obtained by playing an opponent once in a tournament cannot be compared
with a human’s ranking. People learn to exploit a program’s specific weaknesses.
Experiments show that after a few games against the same player, program performance
typically deteriorates by 10 or more levels. Although Goliath has won the 17 stone
match against humans in the 1991 International Computer Go Congress, experienced
players still beat any Go program easily on 17 handicap stones and more in 1995.


Computer vs. Computer


Computer Go tournaments give an indication of the relative strength of Go programs.
However, some features of a program do not appear in a game against another
computer:


• Current Go programs have little knowledge, so the program is tested only in the
restricted set of positions that programs can generate. For example, programs cannot
play double threats or Ko fights well, while many humans strive to create them.
Computers also fail in their judgement of situations where people rely on ‘vague’
concepts.


• Each game explores only one branch in the tree of possible moves. A program may
be lucky in a particular game, while it would collapse had the opponent tried a
different variation. Playing through one sequence in a game does not guarantee
stability of the program.


• The bug of the day often determines the eventual winner, even if the losing program
plays better Go on average. To take an extreme example, a program that fills its own
eyes at the very end will lose no matter how well it plays before that bug appears.
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The best test opponent is not always the best program: play against a very weak or
random player can uncover more program weaknesses, because unforeseen positions
come up that are beyond the program’s repertoire.


Human vs. Computer


One advantage of human opponents is that they play widely varying styles. The games
exhibit a range of positions not seen in computer vs. computer play. Another important
advantage is that players often go back in a game and try different variations, until they
finally find a gap in the program’s defenses. Protocols from such games are ideal for
solidifying a program.


Finding Suitable Test Positions


There are many ways to set up test positions:
• Specialized problem sets for Life&Death, capturing stones, the endgame etc.
• Find-the-best-move problems: Positions where a single best move has been rec-


ommended by expert players.
• Computer games: Positions in which a Go program has gone wrong before.
• Anti-Computer traps: situations where the ‘obvious’ move is wrong (e.g. a worthless


‘urgent’ pattern move)


Because the designer of a test suite has complete freedom on the set of positions in-
cluded, this testing method is very powerful. With carefully selected test sets one can
get independent measures of performance in different stages of a game, leading to a
detailed profile of program behavior. While setting up a test suite certainly takes a lot of
work, it is easy to run it over and over again automatically.


The popularity of test collections such as the Bratko-Kopec test in computer chess
[Kopec/Bratko 82] indicates the importance of a widely accepted set of test positions.
Our Computer Go Test Collection is a first step to develop such a set for computer Go.


Computer Go Test Collection


The Computer Go Test Collection is designed to test Go programs in all aspects of the
game. Details of the collection are described in the Appendix of this thesis, and the
Readme text that accompanies the files. Version 1.0 can be retrieved from the World
Wide Web at http://nobi.ethz.ch/martin/cgtc.html. We encourage all Go programmers to
try their program against the problems, publish their results, and contribute tests to
future releases of the collection.


Tests using Master Games


Ideally, the moves of a program should be analyzed by a strong player, or by the
programmer who is familiar with the playing algorithm. Such analysis takes a lot of
effort and cannot be automated. For automated testing, we can make use of expert
knowledge: In a game between master players, the overwhelming majority of moves
will be good. Comparing a program’s evaluation with these master moves yields a
measure of its knowledge and evaluation.


Testing the Static Full-Board Evaluation


In [Müller 91a] I tested Explorer’s static evaluation value on a set of 3000 moves from
randomly selected master games. For that test, Explorer sorted all legal moves by static
evaluation value. Categories 1 to 19 contain the master moves that were ranked in first
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to 19th position by the program, while category 20 contains all moves with rank 20 or
worse.


Results


The results are summarized in the figure. Explorer ranked 14% of all master moves as
its best move, 8% as second best, 6% in third position and so on. 34% of master moves
were in category 20, being ranked twentieth or worse. From the statistics, I dis-
tinguished three types of master moves:


Ranks of master moves according
to Explorer, from [Müller 91a]


• About one third of all moves were
ranked in first, second or third place. The
program correctly recognized that these
moves are very important.


• One third of all moves was ranked from
4th to 19th place. It seems that the pro-
gram ‘knew’ about these moves, but did
not recognize their full value.


• The last third of moves were ‘too
difficult’ for Explorer at the time. This
may have been due to missing
knowledge about high-level plans, or
other errors in the evaluation of the
move.


Because of changes in the move selection procedure, it is not feasible to repeat this
experiment with the current version of Explorer. Only the move ranked first is
accessible now.


A Guessing Game for Humans and Programs


For comparison, I tried a similar test on humans and several computer Go algorithms.
All participants were presented the game ‘Pro 1 Game’ from the Computer Go Test
Collection. Their task was to predict the next move. We allowed up to three tries per
position for humans. The figure below shows the performance on the 253 moves of the
game:


Player Rank 1 Rank 2 Rank 3 Rest (≥4)
Human A
(9 Kyu)


32.4% 9.9% 5.5% 52.2%


Human B
(11 Kyu)


31.2% 16.2% 6.3% 46.2%


Intellect 5.0 13.8% n.a. n.a. n.a.
a ‘Hint’ 12.3% n.a. n.a. n.a.


Explorer 4 13.4% n.a. n.a. n.a.
b Explorer 3 14% 8% 6% 72%
c Random 0.8% n.a. n.a. n.a.
d Random 0.5% 0.5% 0.5% 98.6%


Remarks:
a Intellect’s ‘Hint’ function is a faster version of Intellect, with a greatly reduced


amount of search.
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b These results were obtained on a different test set [Müller 91a] and are therefore not
directly comparable. They were included because they are the only available data on
Rank 2 and Rank 3 moves by a program.


c Result of one experiment with Explorer’s Random Player (2 correct guesses)
d Computed expected values


Interpretation of the Results of the Guessing Game


The statistics show a correlation between the percentage of correct guesses and playing
strength. It would be interesting to extend the experiment to stronger players. For
programs, the performance on specific test collections may be a better indicator of
strength.


Testing programs on master games causes some peculiarities: In a test on a complete
game such as ‘Pro 1 Game’, the program sometimes gets addicted to a particular move
and wants to play there for many moves, while both master players consistently ignore
the area. The same mistake in evaluation thus affects many positions. The problem
would not occur in sets of unrelated positions.


50 100 150 200 250


Intellect


Explorer


'Hint'


Move number


Correct predictions of master moves


The figure shows a plot of the moves that were guessed correctly by the three tested
algorithms. The program’s performances are very similar, with short periods of frequent
hits followed by long stretches of complete disorientation. Forced tactical sequences
lead to many hits, while tempting but unplayed ataries or cuts can lead the programs
astray for a while.


There are two factors which make the guessing game a bit unfair:
•  Equally good moves
• Ties in the program’s evaluation


Even if the program’s proposed move is as good as the master move, it is counted as a
miss in the guessing game. Many forcing moves can be played at any time during a long
period without affecting the final score.


Of all moves which get the same best evaluation by the program, only one can be
selected for play. This does not matter much in ‘hot’ positions, since the evaluation is
sufficiently fine-grained there, but in quiet positions many moves will get the same
evaluation. Even if the master move is one of those best-scoring moves, it is improbable
that it will be selected.


One factor that gives humans an advantage over programs in this test is context
information: Humans learn to ‘trust’ the professional player and give up on a particular
move after a few unsuccessful tries. A program will try the same move much more
often, whenever its evaluation tells it to do so.


The similarity in scores of Intellect, Intellect’s ‘Hint’ function and Explorer came as
a big surprise. It seems that knowledge about good moves is comparable. The observed
difference in playing strength must come from the kind of bad moves played, which is
not measured in this test.
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Graded Go Problems for Beginners


We measured the performance of Explorer on all problems of Graded Go Problems for
Beginners, Vol. 1 [Kano 85]. The problems were split into categories as follows:


Category Problems
Tactics 1-30, 35-40, 51-52, 61-92, 97-98, 113-115, 179-208, 212-215, 221, 237
Strategy 31-34, 50, 93-96, 216-220, 236
Life&Death 41-46, 99-112, 116, 121-178, 222-233
Endgame 56, 58, 60, 120, 238-239
Opening 47-49, 118, 234-235


Problems 53-55, 57, 59, 117, 119, 209-211 were omitted because they contain neither a
good nor a bad move that the program could check.


The table below gives the results of Explorer on this collection. The number of
positions in the table is higher than the number of problems, because many problems
contain follow-up moves and variations that are also checked in the test.


Collection # Pos. Solved %
Tactics 147 123 83.7
Strategy 17 14 82.4
Life&Death 335 224 66.9
Endgame 12 7 58.3
Opening 6 5 83.3
Total 517 373 72.1


For comparison, David Fotland claims ‘about 95% correct’ for his program Many Faces
of Go [Fotland 94]. His test was restricted to the original problems, without variations
and follow-up moves. Many Faces was set to a special problem-solving mode for the
tests.


Using the Tests to Improve Explorer


The traditional way of improving a Go program is to play through games, stop at bad
moves and try to fix them. This process is tedious and unsystematic. The Computer Go
Test Collection in conjunction with the Analyze Tool has proved helpful in finding the
following types of program errors:
• Explorer moves that are evaluated much higher than master moves indicate errors in


the evaluation function.
• Master moves with low evaluation show gaps in the program’s knowledge.


Analysis results can be used directly to debug and improve a program. One method is to
work specifically on master moves ranked second best by the program, comparing the
evaluations of the first two moves and trying to adjust parameters to reverse their
relative importance. Another way of improving the program is to analyze the moves it
misses completely and write new code to generate such moves.
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9
Thesis Summary and Future Research


We discuss the contributions of this thesis to computer science in general and computer
Go in particular. A final section suggests interesting future research topics.


9.1  Contributions of this Thesis


Contributions for Computer Science in General


• Scientists are fascinated by problems which can be stated simply, yet are hard to
solve. Computer Go is a prime example. We have brought the divide-and-conquer
approach, a fundamental paradigm of computer science, to bear on computer Go.


• The application of a sophisticated mathematical theory to computer Go provides an
example of algorithms for a nontrivial decomposition of a complex problem.


• We have established a new link between theory and practice, admittedly in an eso-
teric domain.


Contributions for Computer Go


• We have implemented a late endgame player, a niche where program play surpasses
human play in both speed and exactness. We did this by applying concepts from
combinatorial game theory to Go. The program plays a wide variety of late endgame
positions perfectly.


• We have designed a model of Go that integrates exact and heuristic types of
knowledge, closing the gap between the mathematical theory of Go and the practice
of computer Go.


• We have developed algorithms for board partition and dependency analysis. The
central idea of board partition has been used both in a program following a
traditional model, and in a program based on the sum game approach.


• Go Knowledge has been modeled in a variety of ways, including patterns,
boundaries and zones. A pattern system based on a text matching algorithm allows
to efficiently match patterns of arbitrary size and shape.


• We have refined the Smart Go Board, a powerful tool for Go programmers and Go
players with a pattern editor, tools to analyze games and problem collections, and a
variety of displays.


• We have collected a Computer Go Test Collection which provides a freely
accessible test suite for Go programmers.
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9.2  Conclusions
Go is a complex game. The board size, the number of possible moves and average
length of a game are greater than in chess or most other games. Still, human intellect
seems to handle Go well. The game has a lot of logical, geometrical and combinatorial
structure which human players can recognize and exploit. In comparison, today’s Go
programs comprehend only the most basic concepts of Go.


Combinatorial game theory captures an essential part of what Go is about. I think
that in one form or another, it will become a key component of all successful future Go
programs. To make progress, I feel it is necessary both to encode more Go-specific
knowledge and to push forward the application of theories such as combinatorial game
theory to Go. After more than 5 years of working on the subject, the depth of the game
still astounds me: it has remained as much of a mystery as ever.


9.3  Future Research Problems
As in any active research area, each answered question gives rise to new problems.
Interesting research topics encountered during work on this thesis include:


A Complete Go Program Based on the Sum Game Model


• Improve local move generation.
• Incorporate more specialized theories, and better heuristics for local games: the


better the quality of local games, the better the overall quality of play. Examples are
semeai, Life&Death, or tactical search.


• Improve algorithms for dependent games, and interaction of local games.
Specifically, search for and generate double threat moves.


• Add an evaluated library of standard sequences.
• Handle Ko and Ko threats.


An Extended Sum of Games Framework


The sum of games framework developed in this thesis can be improved in many ways:
• Investigate algorithms for the evaluation of sum games: estimate the quality and


computational complexity of different algorithms. Define a class of random Go-like
mathematical games and test the algorithms on sums of such games. Develop an
approximation scheme to calculate progressively better bounds on a game, maybe
by computing partial sums.


• Port the program to parallel computers.
• A long term goal: identify further areas where computer power is superior to human


knowledge, such as chaotic tactical fights, or other positions that need a lot of
tedious calculation.


Pattern Learning


Research on pattern learning in computer Go has unfortunately been restricted to ab-
initio learning of the most basic patterns from zero knowledge. Interactive or automatic
tuning and expansion of a state-of-the-art pattern base is another fascinating research
topic.
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Move Generation and Evaluation From Precomputed Database


Evaluations in terms of combinatorial game values could easily be added to the pattern
database containing standard sequences for the opening, midgame and endgame. Each
match will yield an accurate description of a local area without requiring any further
analysis or search.


Build a Search Index for Large Game Collections


A Patricia tree index is well suited for search in very big databases. Only the relatively
small tree must be kept in memory. The data such as patterns or full board positions can
be represented in the tree by a reference to their disk location [Peter 93]. For huge
databases, even parts of the tree could probably be swapped to disk without a big loss in
efficiency. Such a search index would be great for enhancing electronic Go books,
finding examples of textbook joseki, fuseki or tesuji in real games.


Extend the Computer Go Test Collection


Add more problems or create new types of collections to enhance the value of the
collection. Problems from standard text books on Tesuji, Life&Death and endgame
could be added.
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Appendix
The Computer Go Test Collection


A wide variety of test problems have been collected, instrumented, and made available
to the public as the Computer Go Test Collection.


Version 1.0 of the Computer Go Test Collection can be retrieved through the World
Wide Web, from http://nobi.ethz.ch/martin/cgtc.html.


A.1  General Purpose Test Sets
These tests are suitable for all-round testing of a program. Most types of collections are
available in several sizes, for fast and for thorough testing.


Name Description
Computer 100 Positions 100 unrelated positions from Computer-Computer games
Computer 1000 Positions 1000 unrelated positions from Computer-Computer games
Pro 100 Positions 100 unrelated positions from professional games
Pro 1000 Positions 1000 unrelated positions from professional games
Pro 1 Game A complete professional game
Pro 10 Games 10 complete professional games
IGS 138 Games 138 amateur Dan games played on the Internet Go Server
IGS 31 Counted Games The subset of ‘IGS 138 Games’ games that have been finished and scored


Professional and IGS games have been cleaned up by removing Pass plays at the end,
and adjusting the final count when necessary.
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A.2  Test Sets for Specific Features
These sets are designed to test a special theme or phase of the game. Collections for a
theme contain both positive and negative instances: positions where following the
theme leads to a good, or to a bad move. Collections on similar or orthogonal themes
may overlap to some degree.


Name Description
Perfect Play 1 all problems from [BW 94], Appendix C.
Node Rooms all node rooms from [BW 94], pp. 71-76.
Local Game 1 Situations for testing partition and local search
Loose Ladders 1* 10 Loose Ladder problems from textbooks
Graded Tactics 1* Stone capturing problems from [Kano 85], Vol. 1
Graded Tactics 2* Stone capturing problems from [Kano 85], Vol. 2
Graded Life&Death 1* Life&Death problems from [Kano 85], Vol. 1
Graded Life&Death 2* Life&Death problems from [Kano 85], Vol. 2
Tactics 1 Stone capturing problems from computer games
Life&Death 1 Life&Death problems from computer games
Cut&Connect 1 Cutting and connecting problems from computer games
Ko 1 Ko fights from computer games
Territory 1 Securing and invading territory from computer games
Endgame 1 Endgame problems from computer games
Threats 1 Good and bad threats from computer games
Double Threats 1 Double threats from computer games
Final 1 Final stage moves, filling dame, defend etc. from computer games
Blunder 1 Blunders from computer games


Files marked with a * are excluded from distribution because they are based on material
from copyrighted books. The Nihon Kiin’s Graded Go Problems for Beginners series
[Kano 85] provides a thorough test of tactics and Life&Death. It contains many basic
but interesting problems. Sources for further computer games are the program authors,
tournament bulletins, and the Computer Go Ladder that was recently started on IGS
[Pettersen 94].
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A.3  Table of Full Board Endgame Problems
We show modifications of the 9x9 problems from [BW 94, Appendix C], with brief
comments on the changes made. Problems C.1 and C.14 could be partitioned ‘as is’ and
no modifications were made. C.20 is not really an endgame problem and is omitted
here.


C.2: Added second eye for black group


C.4 and C.5: Needed many changes to make blocks alive and separate endgames. Had
to replace an unblocked 5 point corridor by a blocked 3 point one.


C.6: could not find a good conversion. The version shown here is equivalent regarding
endgames and territories, but it has four more white stones than the original.
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C.7 The example used in Chapter 8 C.8


C.9 C.10


C.13 C.21


C.15 and C.16 Changes to top left corner, to avoid possible Ko under Chinese rules
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Glossary
Most terms in the glossary were assigned to one or more categories:


[CGo] Computer Go
[CGT] Combinatorial game theory
[CS] Computer science
[Go] Go
[GT] Game theory
[Ex] Explorer


More detailed explanations of Go terms can be found in [Bozulich 92].


Term Description


* → Dame [CGT, Go]


Area A connected set of points on the Go board [Ex]


Awari An African board game. Many variants exist under names such as Kalah, Kalaha,
Wali, Wari etc.


Block Connected stones of the same color [Ex]


Canonical Form Loopfree games have a unique canonical form → Chapter 3, p. 38 [CGT]


Chain Connected set of blocks, joined by connections [Ex]


Chinese Rules → Rules


Connection Unbreakable link between two or more blocks [Ex]


Constraint Constraints model a dependency between a game and its context [Ex]


Context For a local game: an abstraction of relevant features on the rest of the board, and
of the history of the local game, especially prisoners and Ko status [Ex]


Cooling A technique for simplifying games by adding a ‘tax’ on every move → Chapter
3, p. 39 [CGT]


Corridor A long narrow area open at the end [CGT]


Dame A neutral point under Japanese rules, equivalent to the game {0 | 0} = * in CGT.
Under Chinese rules, the value is {1 | -1}. An odd number of dame is equivalent
to a single dame, an even number of dame has value zero. [Go]


Dan Rank for professionals and strong amateur players [Go]


Dependency Dependencies between local games occur when the areas of local Go games
overlap during area expansion, and when external constraints of one local game
are related to another game [Ex]


Divider A small gap between stones of one color, where the opponent cannot connect
through. Used to define zone boundaries [Ex]


Endangered constraint An endangered constraint can be violated by the next move [Ex]


Even elementary Go position with even parity involving no Kos or odd sekis. → [BW 94, p.
52/53]. [CGT]


Fight A cluster of weak stones [Ex]


Fuseki The opening phase of the game [Go]


Geta A loose encircling move which captures stones [Go]


Global generator Global move generators need a full board context, local generators operate on
local data only [Ex]


Global search Search on the full Go board. Not recommended in general [CGo]


Gote A move that can be ignored, that has no urgent follow-up move [Go]
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Group A non-separated set of chains of one color, contained in one opponent zone. The
unit of Life&Death considerations [Ex]


Healthy region Area providing a safe liberty for a block in Benson’s algorithm → Chapter 5, p.
62 [CGo]


‘Hot’ game Used informally for a game with high temperature [CGT]


Immortal Stones Stones which are safe independent of endgame play [CGT]


Incentive The improvement made by moving in a game. → Chapter 3, p. 38 [CGT]


Influence A heuristic measure for estimating the relative control of both players over points
on the board [CGo]


Japanese Rules → Rules


Joseki Standard opening sequence in the corner. More general, any standard sequence
(as in midgame joseki) [Go]


Kyu Rank of weaker amateur players [Go]


Life&Death Procedure to check whether a group can survive by making two eyes (or →seki)
[CGo]


Leftscore Minimax value of a game when Left plays first → Chapter 3, p. 38 [CGT]


Local game A part of the Go board that is proven or assumed independent from the rest of the
board. [CGT, Ex]


Local generator Local move generators operate on local data only [Ex]


Loopy Game Game with loops in the game graph → Chapter 3, p. 43 [CGT]


Mean How many points a game is worth on average → Chapter 3, p. 39 [CGT]


Odd Seki A seki with odd parity [CGT]


Option The positions to which a player can move in a game → Chapter 3, p. 37 [CGT]


Parity A Go position or local game has even (odd) parity when the number of empty
points plus the number of prisoners captured is even (odd). [CGT]


Pattern A local arrangement of stones and empty spaces [CGo]


Prisoner Captured stone [Go]


Region A candidate eye area in Benson’s algorithm → Chapter 5, p. 61 [CGo]


Rightscore Minimax value of a game when Right plays first → Chapter 3, p. 38 [CGT]


Rules Japanese rules count empty points and prisoners, Chinese rules count own stones
and empty points. → [Bozulich 92, BW 94] [Go]


Seki A stalemate between two or more eyeless groups [Go]


Semeai Race to capture between non-alive groups [Go]


Semi-infinite string A string with a start but no end. Used for representing Explorer’s patterns [CS, Ex]


Sente A move that is answered by the opponent. More general, a move sequence is
sente if the opponent makes the last move locally [Go]


Sente and Gote Sente and gote are relative terms and depend on the loss involved in ignoring a
‘sente’ move. Combinatorial game theory gives a more precise meaning to such
notions and can explain some rules of thumb concerning the value of such
moves. [Go, CGT]


Sentestrat An approximate algorithm for sum game play → [Berlekamp 92] [CGT]


Sidling An algorithm for improving bounds on the value of a loopy game → Chapter 3,
p. 44 [CGT]


Sistring → Semi-infinite string


Static analysis Analysis by use of knowledge, without search. [CS, GT]


Stopping Position → Terminal Position [CGT]
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Sufficiently good Move in a sum game that guarantees a score at least as good as the optimal
move score at the beginning of analysis. In contrast to an optimal move, it might not


exploit all opponent mistakes, but is easier to compute. [CGT]


Switch Simple ‘hot’ game of the form a | b → Chapter 3, p. 40 [CGT]


Temperature A measure of how urgent it is to move in a game → Chapter 3, p. 39 [CGT]


Temperature estimate A heuristic upper bound on the local game temperature [Ex]


Terminal Position A leaf in the game graph that is evaluated statically [GT]


Territory In heuristic play, a loosely surrounded area. In exact play, a safe area surrounded
by immortal blocks. Territory may contain prisoners. [Go, CGo, Ex]


Tesuji A skillful move [Go]


Thermograph A graph showing Leftscore and Rightscore of a cooled game → Chapter 3, p. 39
[CGT]


Thermostrat An algorithm for sum game play based on the thermographs of subgames →
[Berlekamp 92] [CGT]


Thick and thin Terms describing the strength of one player’s position. Thick positions are strong
(no cutting points, many liberties), thin positions are vulnerable to attacks. [Go]


Tsume Go Life&Death problems, usually in a small completely surrounded area [Go]


Zone An area surrounded by blocks and dividers of one color, a generalization of
territory [Ex]
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