
Locally Informed Global Search for Sums of
Combinatorial Games

Martin Müller and Zhichao Li

Department of Computing Science, University of Alberta
Edmonton, Canada T6G 2E8

mmueller@cs.ualberta.ca, zhichao@ualberta.ca

Abstract. There are two complementary approaches to playing sums of combi-
natorial games. They can be characterized as local analysis and global search.
Algorithms from combinatorial game theory such as Hotstrat and Thermostrat
[2] exploit summary information about each subgame such as its temperature or
its thermograph. These algorithms can achieve good play, with a bounded error.
Their runtime depends mainly on the complexity of analyzing individual sub-
games. Most importantly, it is not exponential in global parameters such as the
branching factor and the number of moves in the sum game. One problem of these
classic combinatorial game algorithms is that they cannot exploit extra available
computation time.
A global minimax search method such as αβ can determine the optimal result of
a sum game. However, the solution cost grows exponentially with the total size of
the sum game, even if each subgame by itself is simple. Such an approach does
not exploit the independence of subgames.
This paper explores combinations of both local and global-level analysis in order
to develop locally informed global search algorithms for sum games. The algo-
rithms utilize the subgame structure in order to reduce the runtime of a global αβ
search by orders of magnitude. In contrast to methods such as Hotstrat and Ther-
mostrat, the new algorithms exhibit improving solution quality with increasing
time limits.
Key words: sum games, minimax, combinatorial games, Hotstrat+.

1 Introduction

Combinatorial game theory studies games that can be decomposed into a sum of inde-
pendent subgames [2]. Two of many examples are endgames in the games of Go and
Amazons. Classical approaches to game tree search work on the global state, and can
not profit from the structure of local subgames. Methods for playing sums of games
using concepts from combinatorial game theory, that are based purely on local search,
have limited accuracy and cannot achieve globally optimal play in general. This paper
studies global search approaches for both optimal and approximate play of sum games
that are able to effectively utilize local information. It is organized as follows: Section
2 surveys previous work on sum game algorithms. Section 3 describes several methods
for using local information in a global search framework. Section 4 describes a simple
model for generating random abstract hot combinatorial games, and uses it to exper-
imentally evaluate and compare seven methods for playing sums of games. Section 5
concludes the paper and lists future work.

2

2 Sum Game Algorithms

Algorithms for playing sum games usually contain both a local and a global component.
On the local level, individual subgames are analyzed. On the global level, the results of
local analyses are combined into an overall strategy. In terms of running time, usu-
ally the cost of game tree search dominates all other factors. Therefore it makes sense
to distinguish between algorithms that use only local search, only global search, or a
combination of both.

2.1 Approximate Combinatorial Game Algorithms that Use Only Local Search

Computing properties of a combinatorial game position such as its canonical form, its
thermograph or its temperature, can be viewed as a local search. Typically, the entire
game tree must be expanded. Classical combinatorial game algorithms use only local
analyses of this form. On the global level, they perform a static analysis. Examples are
Thermostrat, Hotstrat, and Sentestrat [2, 10]. All these algorithms play well, but not per-
fectly. The errors of Thermostrat and Sentestrat can be bounded by the temperature of
the hottest or second-hottest subgame [10], while no such bound is known for Hotstrat.

Hotstrat+ Hotstrat is one of the simplest sum game strategies. It computes the tem-
perature of all subgames, and plays a move in the hottest subgame. A small modifica-
tion, Hotstrat+, performs slightly but consistently better in the experiments reported in
this paper. This variant computes a pseudo-temperature for each subgame and a given
player, defined as the largest t for which the thermograph is equal to its taxed option.
For example, in the sente position 10|0|| − 1, the temperature is 1 but Left can already
play at t = 5, since Left’s move to 10|0 is a threat that raises the temperature of the
game to 5. As Left, Hotstrat+ plays in this position at the pseudo-temperature t = 5,
while plain Hotstrat waits until t = 1. As Right, both strategies wait until t = 1.

Intuitively, the advantage of Hotstrat+ is that it cashes in free sente moves earlier
and reduces the opportunities for the opponent to play “reverse sente” moves such as
the move from 10|0|| − 1 to -1 in the example above.

In this paper, when the meaning is clear from the context, pseudo-temperatures
computed by Hotstrat+ will simply be called temperatures.

2.2 Decomposition Search

An exact method for solving sum games that uses a local search approach is decom-
position search [6]. In this method, local searches are used to compute the canonical
form of each subgame. From the canonical forms, incentives of all moves are derived.
An incentive measures the difference between the position before and after a move. The
incentive of a move by Left from game G to option GL is defined as GL − G, while
the incentive of a Right move from G to GR is G − GR. The asymmetric definition
implements the idea that larger incentives are always better, for either player. In combi-
natorial games, by convention Left wants to maximize the result while Right wants to
minimize it.

3

Incentives of moves are combinatorial games and as such are partially ordered [1].
If a single move with dominating incentive exists, it is proven to be optimal. In this case
the algorithm is very efficient - it found a move using only local search and comparison
of locally computed incentives of moves. The other case is when no single move with
dominating incentive exists. In this case, a globally optimal play can be found by a
combinatorial summation of all subgames. This approach is feasible if the complexity
of computing the sum does not lead to a combinatorial explosion. For example, the
cooled values of late stage Go endgames investigated by Berlekamp et al. [3, 8] often
add well and sums can be computed in a reasonable time. However, this approach is
no longer practical for sums of “hotter” Go positions that occur earlier in the game.
The complexity of computing the sum of such games quickly explodes. This is shown
experimentally in Section 4.2. Fortunately, finding an optimal move in a sum game can
be accomplished much faster than computing the sum.

2.3 Local Move Pruning for Global Minimax Search

A different approach to solving sum games is investigated in [7]. Local enhancements
for speeding up full board αβ search are used for solving the same kind of Go endgames
as in decomposition search. Several methods for local move pruning are developed and
shown to improve the search performance by orders of magnitude, compared to plain
global αβ search. However, for these late endgames, where usually a single dominated
move exists, even a global search method with many local search improvements is com-
pletely dominated by decomposition search.

2.4 Complexity Results

The complexity of solving sums of hot games grows quickly. Wolfe [9], building on
previous work by Yedwab [10] and Moews [5], showed that playing sums of simple
Go endgames of the form a||b|c is PSPACE-hard. On the other hand, the experimental
results of decomposition search indicate that if dominating moves exist, the complexity
of solving sums does not need to grow exponentially with the size of the sum. Since
there appears to be a large gap between the theoretical worst case and the typical case
in games such as Go, it is important to develop algorithms that will perform well in
practice.

3 Using Local Information in Global Search

This paper investigates practical algorithms for playing sums of games in situations
where direct summation is impractical. In this sense, the work reported here can be
seen as a natural extension of decomposition search to sums of hotter games. The most
important goals are to avoid the explicit summation of combinatorial games, and to find
fast algorithms for both optimal and approximately optimal play. The algorithms are
designed to play a sum of games where each subgame is simple enough such that a
complete analysis is possible, and local properties such as incentives, means or temper-
atures can be computed quickly.

4

3.1 Exact Search for Optimal Play

In exact search, the minimax value of a sum game for a given first player is deter-
mined by a global αβ search. The effect of using locally computed information for
move ordering and for move pruning is studied and compared against standard search
techniques.

Move Ordering In order to maximize the number of cutoffs in the search tree in αβ
search, good move ordering is essential. One of the most effective standard move or-
dering techniques is to use iterative deepening, and try the best move from the previous
iteration first. This is a generic technique that does not use any game-specific features,
or the structure of sum games.

A natural way of using information about subgames for move ordering is to compute
the temperatures of subgames and order moves starting from the hottest subgame. In the
experiments all combinations of these two move ordering techniques are compared.

Move Pruning Local analysis allows local move pruning by computing incentives
and removing moves with dominated incentives. The tradeoff between the overhead
of computing incentives and the gain from pruning dominated moves cannot easily be
determined analytically. In this paper it is evaluated empirically.

3.2 Approximate Search

Approximate search methods provide a bridge between local-only analysis methods
such as Hotstrat, which have limited accuracy, and exact global search, which may be
prohibitively expensive. Approximate search requires a heuristic evaluation function to
evaluate non-terminal leaf nodes in the global search.

Heuristic Evaluation of Sum Game Positions A heuristic evaluation function should
approximate the minimax value of a given sum game with a given first player. For
example, in the sum game **** the minimax score for left to play is ****, and the
evaluation function should predict this score as accurately as possible.

Two types of heuristic evaluation functions were investigated:

1. Static evaluation The static evaluation uses a locally computed property, the mean
of each subgame. The overall evaluation is the sum of the means of all subgames.

2. Hotstrat+ rollout A leaf node is evaluated by the final result of the game that was
completed using the Hotstrat+ strategy for both players.

The two methods have very different characteristics. Static evaluation is fast but
quite inaccurate. Hotstrat+ rollouts are usually more precise, but are much slower to
compute, especially for long games, because games have to be played out.

Many variations on these basic evaluation functions are possible, and more research
is necessary to find possible improvements. One such improvement could be an evalu-
ation bias for the player to move. Let tmax be the temperature of the hottest subgame.

5

If a sum game is an “enriched environment” [1], then the first player can achieve a
minimax score that is tmax/2 larger than the sum of the means. However, preliminary
experiments with using such a modified static evaluation function in the sum games
described below were inconclusive.

Resource-bounded αβ Search In order to use a heuristic evaluation function, a con-
trol policy must decide when to stop searching and evaluate a position statically. Two
such policies for were investigated. Both are independent of the specific choice of eval-
uation function.

1. Depth-bounded αβ search A simple way of reducing search cost is to limit the
maximum search depth. With increasing depth, the heuristic evaluation is applied in
closer-to-terminal positions, which should result in increased accuracy. In the limit,
if the search depth is sufficient to reach the end of the game along each searched
branch, the method computes the optimal result.

2. Temperature-bounded αβ search This method uses a variable depth search with
a temperature bound b. Only hot positions p with tmax(p) > b are searched deeper.
All positions with tmax(p) ≤ b are evaluated statically. For b = 0, this method is
equivalent to a full search. If b ≥ tmax(g) for the starting position g, only a static
evaluation of g is done without any search.

4 Experiments

A series of experiments was performed for both exact and approximate search, using
two parameterized test domains with sums of abstract combinatorial games. The tests
vary the complexity of individual subgames as well as the number of subgames in a
sum. 100 different randomly generated problem instances were used to generate each
data point. For exact algorithms, the total runtime (in seconds) for solving all instances
is given. For approximate algorithms, both the runtime and the aggregated loss against
an optimal player are reported.

4.1 Test Domain for Sum Games

The following simple method, similar to the one in [4], is used to generate random
instances from a restricted class of combinatorial games. Let rnd(n) be a function
generating a random integer uniformly distributed in the interval [0, n − 1]. Then a
random combinatorial game g = rcg(k, n) of level k > 0 with size parameter n > 0
can be generated as follows:

1. Build a complete binary tree with k levels below a root node. The first out-edge of
each node corresponds to a Left move, the other to a move by Right.

2. Enumerate the 2k leaf nodes from right to left, such that the right-most node is node
1 and the left-most node is node 2k.

3. Assign integers to all leaf nodes. Value vi is assigned to the i-th leaf node as fol-
lows: v1 = 0, vi+1 = vi + rnd(n).

6

Two properties of this particular generator, that do not hold for all hot combinatorial
games, are that values of leaf nodes are monotonically increasing from right to left, and
that in each nonterminal position each player has exactly one move.

The 2-level random games used in [4] correspond to games g = rcg(2, 50) +
rnd(50) in this framework. The experiments in this paper use 2-level games gener-
ated by rcg(2, 50) and 3-level games rcg(3, 50). An example of a rcg(2, 50) game is
114|66||49|0 and an example of a rcg(3, 50) game is 237|191||145|124|||97|57||32|0.
Given a subgame generator G, a random sum game with s subgames is created simply
as the sum of s random subgames generated by G.

4.2 Preliminary Experiment: Combinatorial Summation

Table 1. Time (in seconds) for solving sum games by combinatorial summation. N/C = not com-
pleted, out of memory.

Subgames 2 3 4 5
2-level 0.543 9.90 148 N/C
3-level 132 N/C - -

This preliminary experiment motivates the need to develop a practical algorithm
for playing sums of hot games. It confirms the claim from Section 2.2 of this paper
that the combinatorial summation of subgames is not a viable algorithm for playing
sums of hot games. Table 1 summarizes the results. Even for very small sums of five 2-
level or three 3-level games, the algorithm fails due to the quickly growing complexity
of computing the canonical form of these sums, and runs out of memory after a few
minutes of computation.

4.3 Experiment 1: Move Ordering

Experiments 1 and 2 use a global αβ search to solve sum games exactly. The first
experiment investigates the performance of two move ordering schemes. Sort by tem-
perature (TEMP) sorts all moves according to their temperature. Best previous first
(BEST-PREV) implements the standard technique of trying the best move from a pre-
vious iteration of iterative deepening search before any other move. A basic αβ search
without any move ordering is also included for reference.

Tables 2 and 3 show the performance for 2-level and 3-level games respectively. For
very small sums, the overhead of move ordering is greater than the gain. For larger sums,
as expected, both move ordering schemes either alone or in combination perform much
better than no ordering. It is very interesting that TEMP alone outperforms both variants
where BEST-PREV is used. Even the combination of both methods, which first orders
moves by temperature, then moves the previously best move to the front, is slightly
but consistently worse than TEMP alone. This may be very surprising to practitioners
from other games, where the BEST-PREV enhancement is considered indispensable.

7

It provides a strong indication of how well temperature works as a measure of move
urgency in hot games.

To further study the behavior of these two move ordering heuristics, detailed statis-
tics were collected for a series of 100 2-level games with 12 subgames, using the fastest
engine including incentive pruning as in Experiment 2. In 80.2% of all searched posi-
tions, both heuristics ordered the best move first. In 10.9% of positions, the first-ranked
TEMP move was optimal but the first-ranked BEST-PREV move was not. The opposite
occurred in 4.3% of all positions, where BEST-PREV had a right move but TEMP did
not. Finally, in 4.6% of all positions both heuristics favored a suboptimal move. This
result is consistent with the observed better performance of TEMP.

Table 2. Performance of move ordering for 2-level games. Best result in bold.

Subgames
Method 2 3 4 5 6 7 8 9
No ordering 0.172 0.254 0.339 0.803 2.77 13.6 85.9 1862
BEST-PREV 0.231 0.288 0.393 0.709 2.13 9.09 45.7 293
TEMP 0.204 0.260 0.448 0.766 1.90 6.81 29.5 131
BEST-PREV and TEMP 0.262 0.412 0.491 1.09 2.31 10.8 34.5 182

Table 3. Move ordering performance for 3-level games.

Subgames
Method 2 3 4 5 6
No ordering 0.347 1.55 7.80 59.8 956
BEST-PREV 0.452 1.21 2.88 18.4 152
TEMP 0.398 1.01 1.85 11.9 105
BEST-PREV and TEMP 0.502 1.11 1.92 13.0 129

4.4 Experiment 2: Move Pruning

Experiment 2 demonstrates the effect of pruning using incentives of moves. Tables 4
and 5 show the performance for 2-level and 3-level games. For comparison, the first
row contains the result obtained with TEMP but without using incentive pruning, from
line 3 in Tables 2 and 3. In the remaining rows, incentive pruning (INC) is turned on,
leading to a huge reduction in search time in all combinations. For all but the smallest
instances, the version using TEMP move ordering and INC pruning is consistently the
fastest.

8

Table 4. Incentive pruning for 2-level games.

Subgames
Method 2 3 4 5 6 7 8 9 10 11 12 13
TEMP 0.204 0.260 0.448 0.766 1.90 6.81 29.5 131 812 N/A N/A N/A
TEMP + INC 0.229 0.296 0.353 0.403 0.630 1.93 4.29 8.44 19.9 62.4 162 772
PREV + INC 0.230 0.293 0.446 0.563 0.819 2.36 5.23 11.4 26.7 88.5 221 1082
TEMP + PREV + INC 0.227 0.275 0.433 0.494 0.780 2.02 4.89 10.3 23.1 78.8 192 892

Table 5. Incentive pruning for 3-level games.

Subgames
Method 2 3 4 5 6 7 8 9
TEMP 0.398 1.01 1.85 11.9 105 1276 N/A N/A
TEMP + INC 0.424 0.782 1.22 4.15 12.2 20.4 161 791
PREV + INC 0.431 0.823 1.31 5.95 15.8 29.4 218 1210
TEMP + PREV + INC 0.440 0.815 1.30 5.34 14.0 27.0 196 901

4.5 Experiment 3: Approximation Algorithms

Experiment 3 compares the game-playing strength of different approximation algo-
rithms when pitted against a perfect opponent, namely the player using TEMP + INC
that performed best in Experiment 2. The errors given in the tables are the total loss
in points incurred by the tested algorithm against the optimal player in a series of 100
games. The smaller the error, the closer the algorithm is to playing perfectly.

This experiment measures only the quality of the players, not the time they need.
See Experiment 4 in the next section for an investigation of tradeoffs between execution
time and errors. The approximation algorithms compared in this experiment are:

1. Hotstrat / Hotstrat+ compute temperatures / pseudo-temperatures of each subgame,
and play in the hottest game as explained in Section 2.1.

2. Thermostrat uses a well-known sum-playing strategy based on thermographs [2].
3. Depth-bounded αβ search, static evaluation uses a fixed-depth 3 ply search with

static sum-of-means evaluation.
4. Depth-bounded αβ search, Hotstrat+ rollouts uses a fixed-depth 3 ply search but

with rollouts as evaluation.
5. Temperature-bounded αβ search, static evaluation The temperature bound for a

search of position p is set to b = 0.8 × tmax(p)
6. Temperature-bounded αβ search, Hotstrat+ rollouts uses the same search con-

trol as the previous method with a rollout evaluation.

The following abbreviations are used in the tables:

TEMP-αβ temperature-bounded αβ search.

9

HR Hotstrat+ rollout evaluation.
SE Static evaluation by sum of means.

Table 6. Total loss over 100 2-level games against perfect opponent. Best result in bold. Best
static method in italic. (1st) = first player uses method, (2nd) = second player uses method.

Number of Subgames
Method 2 3 4 5 6 7 8 9 10 11 12 13
Hotstrat (1st) 66 68 100 94 151 207 194 205 211 186 195 194
Hotstrat (2nd) 79 111 123 185 137 148 166 176 190 251 169 208
Hotstrat+ (1st) 68 65 93 84 136 180 158 171 199 176 178 184
Hotstrat+ (2nd) 68 82 88 147 115 118 126 138 158 215 147 188
Thermostrat (1st) 44 104 121 106 165 181 190 224 217 193 183 192
Thermostrat (2nd) 79 110 120 183 135 146 157 174 188 248 161 192
3-ply αβ, SE (1st) 26 62 68 62 122 142 148 167 189 201 183 212
3-ply αβ, SE (2nd) 0 69 42 103 102 110 130 134 143 178 202 189
3-ply αβ, HR (1st) 0 0 8 21 22 36 47 55 70 89 120 99
3-ply αβ, HR (2nd) 0 0 1 13 18 20 51 33 67 86 79 92
TEMP-αβ, SE (1st) 46 87 103 150 325 348 322 378 501 552 538 601
TEMP-αβ, SE (2nd) 33 33 93 164 202 212 288 368 432 512 542 621
TEMP-��, HR (1st) 0 0 5 17 19 25 45 43 53 61 78 81
TEMP-��, HR (2nd) 0 2 17 11 10 19 39 36 54 62 59 71

Among the static methods, Hotstrat+ is consistently the best. The differences to
plain Hotstrat and Thermostrat are rather small.

Overall, Hotstrat+ rollouts are more precise than static evaluation for the same
search depth. 3-ply search with static evaluation is better than static Hotstrat+ up to
about ten 2-level subgames, then it becomes worse. 3-ply search with Hotstrat+ roll-
outs is always better than Hotstrat+ without search. The two results for temperature-
bounded search are very different. With static evaluation, this search method does not
perform well. However, with rollouts it has the smallest total error in most tests. As the
first player in a large number of 3-level subgames, 3-ply search with rollouts also does
well.

This experiment should be considered as a first exploration of the potential of the
different methods. However, the comparison is not fair since the running times of the
methods are very different. Static methods are much faster than search-based methods,
and search using static evaluation is much faster than search using rollouts. The choice
of the search parameters depth and temperature bound in this experiment is also rather
arbitrary. The next experiment compares tradeoffs between running time and error of
the same set of algorithms.

4.6 Experiment 4: Time-Error Tradeoffs

Figure 1 plots error versus time used for the three static and four search-based algo-
rithms. The test runs used sum games consisting of twelve 2-level games. The search

10

Table 7. Total loss over 100 3-level games.

Number of Subgames
Method 2 3 4 5 6 7 8 9
Hotstrat (1st) 56 135 183 251 195 315 330 366
Hotstrat (2nd) 71 187 262 260 268 274 258 291
Hotstrat+ (1st) 55 111 152 232 182 281 295 331
Hotstrat+ (2nd) 67 162 218 229 232 212 215 248
Thermostrat (1st) 70 285 282 334 231 386 334 349
Thermostrat (2nd) 93 159 246 248 241 247 252 280
3-ply αβ, SE (1st) 54 111 120 212 202 265 278 294
3-ply αβ, SE (2nd) 4 89 135 168 181 221 234 262
3-ply αβ, HR (1st) 0 7 31 88 93 142 160 148
3-ply αβ, HR (2nd) 0 23 30 63 88 174 202 195
TEMP-αβ, SE (1st) 57 192 262 387 531 662 780 902
TEMP-αβ, SE (2nd) 26 121 202 248 431 601 735 886
TEMP-αβ, HR (1st) 0 8 30 85 72 132 189 148
TEMP-αβ, HR (2nd) 0 22 15 72 56 118 168 158

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350

E
rr

or

Time Used

Hotstrat
Hotstrat+

Thermostrat
Depth-bounded Alphabeta Search + Hotstrat Rollouts (3-ply)
Depth-bounded Alphabeta Search + Static Evaluation (3-ply)
Temperature-bounded Alphabeta Search + Hotstrat Rollouts
Temperature-bounded Alphabeta Search + Static Evaluation

Fig. 1. Decrease of errors (points lost against optimal player) over time (in seconds) for the four
search-based algorithms. For the three static methods, their single data point is shown.

11

depth of fixed-depth searches varies from 0 to 24 in increments of 1. Depth 24 rep-
resents a complete search, since each of the 12 subgames lasts at most 2 moves. For
temperature-bounded search, the bound was set to c× tmax, where c varied from 0.0 to
1.0 in increments of 0.1.

The clear winner in these experiments is the simplest method: fixed-depth search
with static evaluation. Even though the accuracy of rollouts is better for the same fixed
search depth, as shown in Experiment 3 above, that evaluation is much too slow to be
competitive. It remains unclear whether a different method can be found that achieves
some of the precision of rollouts but is much faster. For example, depth-limited partial
rollouts are an option.

Temperature-bounded search, which did very well combined with rollouts in the
untimed experiment above, was also inferior in the timed experiment. The initial error
of this method is very high. However, the slope of the error curve seems to be slanted
more than for fixed-depth search, so there is hope that this method will perform well
for more complex sums. More research is required.

5 Conclusions and Future Work

To the best of the authors’ knowledge, this paper presents the first systematic experi-
mental study of algorithms for efficiently solving sum games by search. For both exact
and heuristic search in sum games, using local information in a global search is very
effective. Move ordering by temperature works very well, and pruning of dominated
incentives leads to a huge reduction in the search space. Both of these methods greatly
improve a search-based sum game solver.

For heuristic search, a simple fixed-depth search with a sum of means static evalua-
tion function performed best in the experiments. The two other techniques investigated,
temperature-bounded search and Hotstrat+ rollout evaluation, showed promise in un-
timed trials but were not competitive in their current form.

The main intended application of this method is for endgames in combinatorial
games with many hot subgames, such as Amazons and Go. Based on the results with
artificial games reported here, it seems feasible to evaluate such endgames with high
accuracy. If the local games analysis itself is only approximate, as can be expected in
complex endgame positions, the error of approximate sum game evaluation may be
smaller than the local evaluation error in practice.

One important open question is whether real endgames behave similarly to the sums
of abstract games explored in this paper. For example, the relative speed of position
evaluation compared to the speed of sum game evaluation will certainly influence the
results. As an intermediate step, before applying the method to full-scale Go or Ama-
zons, a database of local endgame positions from such games could be built, and similar
experiments repeated with sums of local positions from real games.

Finally, the question of a better random generator for hot combinatorial games
should also be investigated. Maybe, specialized generators for more realistic “Go-like”
or “Amazons-like” random games could be developed as well.

12

Acknowledgements

The authors wish to thank NSERC (the Natural Sciences and Engineering Research
Council of Canada) for financial support. Tristan Cazenave and Jean Mehat exchanged
information about their implementation of classical sum game playing strategies.

References

1. E. Berlekamp. The economist’s view of combinatorial games. In R. Nowakowski, editor,
Games of No Chance: Combinatorial Games at MSRI, pages 365–405. Cambridge Univer-
sity Press, 1996.

2. E. Berlekamp, J. Conway, and R. Guy. Winning Ways. Academic Press, London, 1982.
Revised version published 2001-2004 by AK Peters.

3. E. Berlekamp and D. Wolfe. Mathematical Go: Chilling Gets the Last Point. A K Peters,
Wellesley, 1994.

4. T. Cazenave. Comparative evaluation of strategies based on the values of direct threats. In
Board Games in Academia V, Barcelona, 2002.

5. D.J. Moews. On Some Combinatorial Games Connected with Go. PhD thesis, University of
California at Berkeley, 1993.

6. M. Müller. Decomposition search: A combinatorial games approach to game tree search,
with applications to solving Go endgames. In IJCAI-99, pages 578–583, 1999.

7. M. Müller. Global and local game tree search. Information Sciences, 135(3–4):187–206,
2001.

8. W. Spight. Go thermography - the 4/21/98 Jiang-Rui endgame. In R. Nowakowski, editor,
More Games of No Chance, pages 89–105. Cambridge University Press, 2002.

9. D. Wolfe. Go endgames are PSPACE-hard. In R. Nowakowski, editor, More Games of No
Chance, pages 125–136. Cambridge University Press, 2002.

10. L. Yedwab. On playing well in a sum of games. Master’s thesis, MIT, 1985. MIT/LCS/TR-
348.

