TR-99-20
Received Aug. 27, 1999

Proof-Set Search

Martin Miiller

Electrotechnical Laboratory
Complex Games TLab
Umezono 1-1-4, Tsukuba
Tharaki, JAPAN 305

Abstract

Victor Allis’ proof-number search is a powerful best-first tree search
method which can solve games by repeatedly expanding a most-proving
node in the game tree. A well-known problem of proof-number search is
that it does not handle transpositions very well. If the search builds a
directed acyclic graph instead of a tree, the same node can be counted
more than once, leading to incorrect proof and disproof numbers. While
there are exact methods for computing the proof numbers for DAG’s, they
are too slow to be practical.

Proof-set search (PSS)is a new search method which uses the same
backup scheme as proof-number search, but backs up proof and disproof
sets instead of proof and disproof numbers. While the sets computed by
proof-set. search are not be guaranteed to be of minimal size, they do
provide provably tighter bounds than is possible with proof numbers.

We study two modifications of PSS: PSS with truncated node sets,
PSSp,n, provides a well-controlled tradeoff between reduced memory re-
quirements and solution quality. Both proof-number search and PSS are
shown to be special cases of PSSp p. Another modification of PSS and
PSSp n makes use of heuristic estimates of leaf node costs, as have been
proposed for proof-number search by Allis.

1 Proof-Number Search and Transpositions

Game tree search algorithms based on the minimax principle have been con-
tinuously enhanced over the last decades. One of the most significant recent
developments has been Victor Allis’ proof-number search [1]. This method does
not. compute a minimax value based on heuristic position evaluations as other
methods do; rather its aim is to find a proof or disproof of a boolean predicate
defined for game positions p, such as IsWin(p).

Proof-number search (PNS) is a best-first method for expanding a game
tree. Tt computes proof and disproof numbers in order to find a most-proving
node, which will be expanded next in the tree search. There is a simple backup
scheme for computing proof numbers, which is correct for trees. However, when
the same backup method is used in directed acyclic graphs (DAG’s), it fails to
compute the correct proof and disproof numbers, since transpositions can cause
the same node to be counted more that once. Therefore proof-number search
can fail to identify a most-proving node, even though it is known that such a
node always exists in a DAG [3, 1].

To overcome this problem, Schijf [3, 4] has developed exact methods for
computing proof numbers in DAG’s. Unfortunately, these methods seem to
have a huge computational overhead and have turned out to be impractical
even in tests on small Tic Tac Toe game DAG’s. The new method of proof-
set search reported here lies in between proof-number search and Schijf’s exact
method, both in terms of complexity and solution quality.

The outline of the paper is as follows: the introduction continues with a short
summary of proof-number search and an example that illustrates the problems
of proof-number backup in DAG’s. Section 2 describes the new proof-set. search
method. Section 3 contains several modifications and varants of the algorithm.
Section 4 closes the paper with a short discussion of preliminary experiments
on Tic Tac Toe and future work.

1.1 Brief Summary of Proof-Number Search

Proof-number search (PNS) computes proof and disproof numbers for each node
in a game tree or DAG. These numbers are used to find a most-proving node to
expand next in a tree search. There is a simple backup scheme for computing
proof and disproof numbers, which is correct for trees.

Each search node n stores a proof number pn(n) and a disproof number
dn(n). For a frontier (or leaf) node which is unproven, set pn(n) = dn(n) = 1.
A proved frontier node is assigned pn(n) = 0,dn(n) = oo, while a disproved
node obtains pn(n) = co,dn(n) = 0. For non-frontier or interior nodes, let the
children of a node n be nq,...,n;. The backup rules for proof and disproof
numbers are as follows: In an AND node, the proof number is computed as the
sum of the proof numbers of the children. Tn an OR node, the proof number
becomes the minimum among the proof numbers of all children.

AND node: pn(n) = pn(nq) + pn(n2) + ... + pn(ng)
OR node: pn(n) = min(pn(nq), pn(nsy), . .., pn(ng))

Disproof numbers work the other way around, taking sums in OR nodes and
minima in AND nodes.

OR node: dn(n) = dn(ni) + dn(ns) + . .. + dn(ng)
AND node: dn(n) = min(dn(ny), dn(ns), ..., dn(ng))

The most-proving node to expand next is found by traversing the graph
from the root to a frontier node, selecting a child with identical proof number
at OR nodes and a child with identical disproof number at AND nodes. Detailed
explanations and algorithms can be found in [1].

After expanding a node, proof and disproof numbers must be recomputed.
In DAG’s, a change in a node must be propagated to all its parents.

1.2 Example 1: Tree-backup in a DAG Overestimates
Proof Numbers

A AND-node
/ /7 N\
B C D E OR-nodes
N\ / /N

F G AND-node

Consider a DAG with an AND-node A at the top and 4 OR-nodes B,C, D, /
as children. Furthermore, let B, C' and 1 have the same single child F, and F’s
two children be F and G.

The proof number of F, pn(F), is 1, and the proof numbers of B... F
are also 1 since they are all OR nodes, which minimize the proof number of
their children, and they all have a child with proof number 1. However, the
proof number computed for A by the tree-backup scheme is inflated. Using the
summation formula yields pn(A) = pn(B) 4+ pn(C) + pn(D) + pn(FE) = 4. The
correct value of pn(A) is 1, since proving F' proves A. Tn effect F is counted
four times. If this DAG occurs as part of a larger problem, the overestimate of
A’s proof number can be very costly. Tt can greatly delay the expansion of F,
even though F' is a very good candidate that could lead to a quick proof of A.

2 Proof-Set Search

Proof-set search, or PSS, is a new search method which uses the simple children-
to-parents propagation scheme for DAG’s, but backs up proof sets instead of
proof numbers (which are an upper bound on the size of the minimal proof sets
in a DAG). While the sets cannot be guaranteed to be minimal, they provide
tighter bounds than 1s possible with proof numbers only. The prize for better
approximation is that more memory is needed to store sets of nodes instead of
numbers.

2.1 Backup Algorithm for Proof-Set Search

The algorithms for proof-set search are similar to the ones for proof number
search [1]. Each search node n stores a proof set pset(n) and a disproof set
dset(n). For unproven frontier nodes set pset(n) = dset(n) = {n}. A proved
frontier node is assigned pset(n) = @,dset(n) = oo, while a disproved node

obtains pset(n) = oo, dset(n) = , where the overloaded symbol co stands for
an impossible (dis)proof, represented by a (dis)proof set of infinite size. For
non-frontier (interior) nodes, Let the children of a node n be ny,... , ng. The
backup rules for proof and disproof sets are as follows: ITn an AND node, the
proof set 1s defined to be the union of the proof sets of all children. Tn an OR
node, the proof set is the minimal set among the proof sets of all children.

AND node: pset(n) = pset(nq) U pset(ns) U. ..U pset(ng)
OR node: pset(n) = min(pset(ny), pset(ns),. .., pset(ng))

Disproof sets are backed up analogously, taking minima in AND nodes and
unions in OR nodes.

OR node: dset(n) = dset(ni) Udset(ny) U...Udset(ng)
AND node: dset(n) = min(dset(ny), dset(ns), ..., dset(ng))

Finding a minimal set among the sets of all children requires defining a total
ordering on sets of nodes. A natural ordering is to always prefer a smaller-sized
set to a larger one. Various tie-breaking methods for sets of the same size are
discussed in section 3.2. Another possible ordering, using node evaluation as a
heuristic measure of proof effort. [1], is given in section 3.5.

In Example 1 above, if the nodes are ordered by A < B< C < D < F <
F < (G, and tie-breaks among sets are resolved by lexicographical ordering as
in section 3.2, the computation proceeds as follows:

—_

. pset(F) = dset(F) = {F}, pset(G) = dset(G) = {G}.
2. pset(B) = min(pset(F)) = {F}. dset(B) = J(dset(F)) = {F}.

3. Tn the same way, pset(C) = pset(D) = {F} and dset(C) = dset(D) =
{F}

4. pset(E) = min({F},{G}) = {F} and dset(F) = {F}U{G} = {F,G}.
5. pset(A) = | J(pset(B), pset(C), pset(D), pset(E)) = {F}.

6. dset(A) = min(dset(B),dset(C),dset(D),dset(E)) = min({F},{F,G})
={F}.

2.2 Identifying a Most-Promising Node

Proof-number search on trees works well because a most-proving node always
exists and can easily be identified. (Dis)proving a most-proving node reduces
(dis)proof number of the root by at least one.

Schijf [3] proves the existence of a most-proving node in DAG’s and gives
theoretically correct but impractical algorithms for computing it. Since PSS 1s
a heuristic it can not always find a most-proving node. However, it computes
a most-promising node (mpn) which lies in the intersection of the proof and
disproof sets of the root node. The following theorem states that such a node
always exists.

Theorem 1 Given an unproven DAG (G and compute proof and disproof sets
using PSS. Then the intersection of pset(n) and dset(n) is nonempty for each
node n.

The induction proof is almost identical to the analogous theorem for proof
numbers in [3]:

1. The hypothesis holds for all leaf nodes n since pset(n) = dset(n) = {n}.

2. Let n be an AND node with children {ny, ..., nx}. Assume the induction
hypothesis holds for all children. Tet n; be a node such that dsef(n) =
dset(n;). Since pset(n;) Ndset(n;) is nonempty by the induction assump-
tion, let 2 be a node in the intersection. Then z € dset(n) and since
pset(n) D pset(n;), it follows that = € pset(n).

3. The proof for OR nodes is obtained by interchanging the roles of pset and
dset in step 2.

2.3 Dominance of PSS over PNS

Proof-set search dominates proof number search in the following sense:

Theorem 2 Given a DAG G, for each node n € GG the size of the proof (dis-
proof) sets computed by PSS is smaller-or-equal than the proof (disproof) number
of n computed by proof number search on G.

lpset(m)] < pn(n)
|dset(n)] < dn(n)

The proof 1s an easy consequence of the more general Theorem 6 in section
3.5, and is postponed until then.

Note that the result holds only for PSS and PNS operating on the same DAG.
It does not hold for the different DAG’s which are generated when PNS and
PSS respectively are used to select nodes to expand next. Even though PNS’s
node selection is less informed than that of PSS, using the worse heuristic might
occasionally lead to a smaller DAG being created.

2.4 Proof-Set Search Does not Always Find a Smallest
Proof Set

As mentioned in section 2.2, PSS is a heuristic, because of its locally greedy
minimum selection. Tt cannot always choose a set that will perform best when
taking unions with other sets further up in the DAG.

2.4.1 Example 2: a Case where PSS Fails to Find a Smallest Proof
Set

In the following example PSS fails to find a smallest proof set.

A AND-node

/ N\

B C OR—nodes

N\ /\
D E AND-nodes
/1\ I\

FGH I17J

Tt’s easy to see that {F, G, H} is the minimal proof set in this example. This
set 1s necessary to prove 1), which is needed to prove B, which is a required step
to prove A. On the other hand, proving 1 also proves (', which completes the
proof of A.

At node C', PSS makes the wrong choice: given the proof sets of C’s children
pset(D) = {F, G, H} and pset(FE) = {I,J}, PSS selects the smaller set {7, J}
as a proof set. Because of this choice, the proof set computed for A becomes
pset(A) = pset(B) Upset(C) = {F,G, H,1,J}, which is almost twice as large
as the optimum.

Section 3.7 discusses a variation of the algorithm that tries to improve the
likelihood of selecting a set that works together well with sets from other siblings.

3 Algorithm Details and Modifications

Tn this section we work out some details of PSS, especially in areas where it dif-
fers from PNS, such as the selection of a most-promising node, different resource
requirements and the representation of sets of nodes.

We also describe a Truncated NodeSet type with fixed memory require-
ments per set, describe PSSp p, a PSS version that uses such truncated node
sets, and prove theorems that characterize both PNS and PSS as extreme cases
of PSSpp.

In section 3.5 we describe another variant of PSS which uses heuristic eval-
uation to initialize new frontier nodes, as proposed by Allis [1] for the case of

PNS.

3.1 Ancestor Updating Algorithm

The ancestor updating algorithm must take care that all children of a node are
updated before the node itself. The simplest updating algorithm for DAG’s,
modeled after that for trees, starts with the just developed node mpn, then
adds its predecessors to a queue [3]. Here is such an algorithm for node sets:

UpdateAncestorSets(mpn)
{ updateQ = ListOf(mpn); // start with just expanded mpn
while (updateQ.NonEmpty())
{
node = updateQ.Pop(); // extract first node from queue
NodeSet 01dPS = node—>PS(), 01dDS = node->DS();
node->SetProofAndDisproofSets();
if ((01ldPS == node—>PS()) && (01ldDS == node->DS()))
{} // unchanged, do nothing
else // update parents

updateQ.Union(node->Parents());
// append parents to the queue if not yet included
}
} // UpdateAncestorSets

In the general case, this method does not guarantee a perfect order of up-
dates. Some nodes might be updated more than once, as the following example
shows.

3.1.1 Example 3: a Case where the Queue Update Algorithm Causes
Multiple Updates of the Same Node

In the example, there is a direct move from A to 1), but there is also a longer
path A— B —C — D. After updating 1, first A and then C are appended to the
queue, so A is updated before (. However, this not the final result for A, since
A precedes B and C'. After updating C' and B, A is re-added to the queue and
updated once more.

As the example shows, in the general case, the queue backup algorithm
can cause multiple updates, which slows down the computation. There are
two choices: either accept the inefficiency caused by multiple updates of the
same node, or compute a topological ordering of the DAG by an algorithm such
as [2, p.137], which marks nodes from the root downwards. We have not yet
implemented such a method, and it is unclear if an efficient incremental version
exists, which can update the ordering after each node expansion.

3.1.2 A Sufficient Condition for the Optimality of the Queue Backup
Algorithm

The ancestor relation defines a partial ordering of the nodes in the DAG. The
structure of this partial order is related to the optimality of the queue backup
algorithm in the following way:

Lemma 1 Consider the partially ordered set P(G, Anc) given by the nodes in
a DAG G and the ancestor relation Anc on G. If a rank function r exists for
P(G, Anc), then the queue backup algorithm is optimal: it expands each node at
most once.

A rank function r [5, p.99] on a partially ordered set is a function mapping
elements to integers such that r(y) = r(z) + 1 whenever y covers 2. Tn our case,
it means that r(c) = r(n) 4+ 1 for all children ¢ of a node n.

Proof of Lemma 1: We prove that the queue backup algorithm processes
nodes in order of their rank: if 2 is inserted into the queue bhefore y, then r(z) >
r(y). We prove an even stronger statement: At each stage of the algorithm, the

ranks of nodes in the queue are ordered monotonically decreasing and have at
most two distinct values » and v — 1. TIn other words, if the queue contains k
elements, ¢ = [nq,...,ng], then there exists j, 1 < j < k, such that r(n;) =
r(ny) for 1 < i< jand r(n;) = r(ny) —1for j+1 < i<k Ttis easy to see
that this is true: Tnitially, the queue contains only a single element. Each Pop()
operation maintains the condition, removing the element n; of rank r(nq). The
parents of this element, some of which may be appended to the end of the queue,
have rank r(ny) — 1.

Examples of games where a rank function exists are those where each move
adds exactly one stone to the game state, such as Connect-4, Qubic, Gomoku
or Tic Tac Toe. The number of stones on the board is a rank function for a
position in such a game.

3.1.3 Comparing the Ancestor Updating Algorithms of PNS and
PSS

Both PNS and PSS can stop updating ancestors as soon as a node’s value does
not change. However, updates in PSS are certain to propagate all the way to the
root, since the root’s proof and disprove sets contain the just expanded mpn,
which is no longer a leaf node. Usually, PSS will have to update more ancestors
than PNS, since it distinguishes between sets of the same size with different
elements. However, because of transpositions, it can also happen that a node’s
proof number changes but its proof set remains the same. This happens when a
node which is already in the set 1s re-added along a new path. This will increase
the proof number but not affect the set.

3.2 A Total Ordering for Sets of Nodes

The following rules define a simple total order on sets of nodes, which is close
to the spirit of the original PNS: A smaller set is always preferred to a larger
one. To break ties between sets of the same size, first define a total ordering of
single nodes. For example, the ordering given by a depth first traversal of the
DAG, or the order of node expansion can be chosen. As notation, let n; < no

if ny precedes ny in the chosen order. Sort each set s = {n1,...,ng} such that
ny < ny < ... < ng. Then a total ordering of sets of nodes can be defined as
follows:

1. S1 < 89]f |S1| < |82|

2. 81 < s9 1T |s1] = |sa| and s1 precedes s5 in lexicographical ordering. Tn
other words, given two sorted sets of equal size s — {ni,...,nx} and
so = {mq,...,my}, 81 < 39 iff there is an i, 1 < i < k such that n; = m;

for all 3,1 < j <1, and n; < m;.

3.3 Truncated Node Sets

Set union and assignment operations on large node sets are expensive in terms
of both memory and computation time. Therefore we propose a new data struc-
ture: a K-truncated NodeSet stores at most K nodes explicitly. For larger sets,
it stores an upper bound on the overall set size, in the same sense that proof

numbers represent an upper bound on the size of proof sets. In the PSS algo-
rithm, the only time a node set can overflow a size bound K is when computing
the union of two sets. Therefore we concentrate on detecting and handling this
case. (We assume that the union of more than two sets is computed by suc-
cessively taking unions of a two sets S and s;, where S 1s the union of all sets
so far, S = sy Usy U ... Us;_1. Computing the union in one sweep over all s;
might, be more efficient, but we did not try this.)

The truncated method attempts to compute the union in any case, and
stores the first K elements of each overflowing set, plus the bound. Example: let
K = 8, let nodes be represented by numbers, and let sy = {1,3,4,6,7,8,9,11}14
and sy = {2,3,4,5,6,9,10,11}13. For each truncated set, the first K elements
are given explicitly, and the subscript represents the bound on the set size. So
s1 represents a set of at most 16 elements, including the 8 listed. The truncated
set union is 51 U ss = {1,2,3,4,5,6,7,8}24. Tt is computed as follows: the
union of the known elements of s; U sy is {1,2,3,4,5,6,7,8,9,10,11}, which is
truncated to the first K = 8 elements. The bound on the set union size is the
size of the untruncated union plus the remaining possible elements of s; and ss,
11+ (16—8)+ (13— 8) = 24.

The next LLemma formalizes the intuitively clear fact that larger truncation
thresholds result in tighter bounds.

Lemma 2 Given two integers K > L, and sets of nodes sy ...s,. Compute
both the K —truncated and the L—truncated union of sy Uss U ... Us, by the
truncated set method and by the same sequence of two-set union operations.
Then the bound on the K—truncated union is smaller-or-equal than that on the
L.—truncated union. Furthermore, the explicit part of the L—truncated union is
a subset of the explicit part of the K —truncated union.

The (easy) proof is left to the reader.

3.4 Proof-Set Search with Truncated Node Sets

Given two integers P and D), the algorithm proof-set search with truncated node
sets, PSSp p, is obtained from standard PSS by replacing all proof sets with
P-truncated node sets, and all disproof sets with D-truncated node sets.

3.4.1 Selecting a Most Promising Node

With truncated node sets, Theorem 1, which guarantees that pset(n)Ndset(n) #
() for each node, does not guarantee that a most-promising node can be found
immediately. The problem is that none of the common nodes might be rep-
resented explicitly. The algorithm for selecting a most promising node is an
intermediate form of the respective PNS and PSS algorithms.

SelectMPN() // find most promising node with truncated node sets
{
node = root; mpn = 0;
while (IsInteriorNode(node))
{
// JointNode() returns O if no joint node found.
mpn = JointNode(pset(node), dset(node));

if (mpn != 0)
return mpn;
SetType t = ’disproof’ if ’node’ is AND node,
’proof’ if ’node’ is OR node;
node = child with same set of type t as node;
}
// reached leaf node, this must be it.
return node;
} // SelectMPN

3.4.2 Characterizing PSS and PNS as Special Cases of PSSp p

Theorem 3 PSS, « s the same algorithm as standard PSS.
Theorem 4 PSSy is the same algorithm as proof-number search.

The (easy) proofs are left to the reader. Two other special cases are inter-
esting: PSSy o combines proof sets with disproof numbers, while PSSy o, uses
proof numbers together with disproof sets.

A nice property of PSSpp is that if P < oo and 1) < oo, the required
memory remains bounded by a constant factor of what PNS would use on the
same DAG.

3.4.3 Monotonicity Theorem of PSS with Truncated Node Sets

Theorem 5 Given a DAG G and nonnegative integers P, P' . D 1. If P > P’
and D > D', then at each node n € G the size bounds for proof and disproof
sets computed by PSSp p are smaller-or-equal to those computed by PSSp: p:.

The theorem follows directly from Lemma 2. This theorem generalizes The-
orem 2, which compared the two extreme cases PSSy and PSSy o0. As in
Theorem 2, the dominance holds only when comparing the computation of the
algorithms on an identical DAG G. Tt does not hold, and is not even well-
defined, for the different DAG’s generated by actually running PSSpp and
PSSP/’])/ .

Of course, in any given problem instance PSSp: p:» might get Tucky and grow
a smaller DAG than PSSp p, but generally the DAG size should decrease with
increasing values of P and D).

3.5 Using PSS with a Heuristic Leaf Evaluation Function

Proof numbers can be viewed as a lower bound on the work required to prove a
node. The standard algorithm gives each unproven leaf node the same weight
1. However, game-specific knowledge can be used to provide different initial
weights. Allis [1] proposes to use a heuristic evaluation to initialize the proof
numbers of new frontier nodes. PSS can also be modified to use such a function.
Define a heuristic evaluation h(n) for each frontier node n as a heuristic lower
bound estimate of the work required to prove n. As in proof-number search,
the constant function h(n) = 1 results in the standard algorithm.

For aset s = {ny,...,ng}, define h(s) = > h(n;). Select a minimum among
sets as follows: min(sq, s9) = s1 if h(s1) < h(s2). T h(s1) = h(ss), break the tie

by a lexicographical ordering as in section 3.2, sorting nodes by their h() value
as the primary criterion and a suitable total order as a secondary criterion. An
adaptation to truncated node sets will be described in Section 3.6.

Theorem 6 Given a DAG G, and a positive heuristic evaluation function h()
which is defined for each position represented by a node in G. FExtend h() to
sets of nodes by h(s) = > . h(n). Then for each node n € (i, the evaluation
of the proof (disproof) sets computed by PSS is smaller-or-equal than the proof
(disproof) number of n computed by PNS with the children-to-parents backup

algorithm and leaf node initialization given by h().

Proof: by induction.

1. The theorem holds for all leaf nodes n since pset(n) = dset(n) = {n} and
h(pset(n)) = h(dset(n)) = h(n) = pn(n) = dn(n).

2. Let n be an AND node with children {ny,...,nt}. Assume the induction
hypothesis holds for all children n;: h(pset(n;)) < pn(n;).
h(pset(n)) = h(pset(n1) Upset(ns),. .., Upset(ng))

< h(pset(n1)) + h(pset(nz)) + ...+ h(pset(ny))
< pn(m) +pn(n2) + ...+ pn(nk) = pn(n).

3. Let » be an OR node with children {ny,...,ng}, and again assume the
induction hypothesis holds for the children.

h(pset(n)) = min(h(pset(nq)), h(pset(ns)), ..., h(pset(ng)))
< min(pn(nq),pn(na), ..., pn(ng)) = pn(n).

4. The claim for disproof sets is proved by swapping the AND with the OR
case in steps 2 and 3.

Setting h(n) = 1 for all n results in a proof of Theorem 2 in section 2.3,
since for every set s, h(s) =3 . 1= [s]

3.6 Combining Truncated Node Sets with Heuristic Leaf
Evaluation Functions

The two generalizations of PSS, truncated node sets and heuristic leaf initial-
ization, can be combined as follows: The heuristic evaluation of a truncated set
consists of an exact sum of the explicit nodes’ evaluation plus an upper bound
on the evaluation of the truncated part. Evaluation of a union of two sets is
computed in the obvious way by adding the exact valuation of the explicit nodes
in the union with the two bounds of the truncated parts.

Example: Given the following nodes, with their heuristic evaluation written
as a subscript: Aqq, Bis, C7, Dig, Fhg, F3g. Consider a 4-truncated node set

10

representation, with the subscript of the whole set showing the evaluation bound
for the whole set. Then s1 = Ayq U Bys U C7 = {C7, A1q, Bis}a2 and so =
A10U D1gU F1g = { A1, D16, E13}44 are examples of exactly representable sets.
However, s1 U sy overflows the truncation size 4, s; Usy = {C7, A1, Bis, D16 }es-
Different sets may share the same truncated set but have different bounds. For
example, s; U {Bm, Dis, Fasa}?o = {(77, Ao, Bis, D16}87-

The following lemma and theorem are easy generalizations of LLemma 2 and
Theorem 5 respectively.

Lemma 3 et K > I be integers, s be a node set computed by a fired series
of set unions, h() a heuristic node evaluation function and hg(s), hy,(s) be the
bounds on the evaluation of S computed using truncated node sets of size K and
L respectively. Then hg(s) < hy(s).

Theorem 7 Let K > I be integers and hg (), hr() be defined as in Lemma 3.
Let G be a DAG and compute proof sets for each node n € G using PSSk x
and PSSy, 1. Then for each node n in a DAG G

hi (pset(n)) < hy,(pset(n))

hi (dset(n)) < hy,(dset(n))

3.7 Favoring Nodes From a Given Set

Assume an OR node n is expanded, and its parents’ proof sets already contain
other nodes P = {p1,...,pr}. When computing minima at n, it is probably
better to choose nodes which are already contained in P, since they will not,
increase the sets further up in the DAG. The node evaluation can be modified
to discount such nodes: h'(z) =0if 2 € P,h'(z) = h(z) if 2 ¢ P.

A problem with this approach is that the evaluation of node sets becomes
context-dependent, and it may be inefficient or difficult to compute the necessary
sets in the right order. Also, care should be taken to always prefer a proved
node 2z with h(z) = 0 over an unproven but completely discounted node y with

h(y) # 0 but h'(y) = 0.

3.7.1 Example 3

Consider evaluating the DAG of example 2 by depth-first traversing it from left
to right.

A AND-node A AND-node

/ N\ / N\

B C OR-nodes B C OR-nodes

\ / N/ \
D AND-nodes D E AND-nodes
VARN /IN N

FGH FGH I1J

After backing up F, GG, and H, the proof sets are as follows: pset(D) =
{F,G, H}, pset(B) = pset(C) = {F,G, H}, pset(A) = {F,G, H}.

Now consider the stage when the proof set from F is propagated up to C.
Standard PSS would select the small proof set {7, .J} of F as its minimal proof

11

set, and therefore choose F as the most promising child of C'. The modified
algorithm would discount the values of F', G and H, since they are needed in
a parent of C' anyway, and therefore select /). This way, the proof set of A
remains pset(A) = {F,G, H}.

4 Discussion and Future Work

Proof-set search, or PSS, 1s a new search method which uses the simple children-
to-parents propagation scheme for DAG’s, but backs up proof sets instead of
proof numbers (which are an upper bound on the size of the minimal proof sets
in a DAG). While the sets cannot be guaranteed to be minimal, they provide
tighter bounds than 1s possible with proof numbers only. The prize for better
approximation is that more memory is needed to store sets of nodes instead of
numbers. This trade-off between the advantages of a more focused search and
the disadvantage of using more memory per node is very much dependent on
the specific search problem, and needs to be investigated carefully for each new
type of problem.

4.1 Applications

A first test on Tic Tac Toe resulted in a PSS growing a 10% smaller DAG
than PNS, with 1114 nodes against PNS’ 1237 to disprove that Tic Tac Toe
is a win for the first player. Tt now seems urgent to try applications where
PNS is known to have trouble. The original motivation to develop PSS came
from reports that some tsume shogi (shogi mating problems) are hard for proof-
number based algorithms because of transpositions. Another promising area are
tsume go (life and death problems in Go). These applications should provide a
rich set of test cases, including those that are much more complex than the Tic
Tac Toe example.

4.2 PSS for Directed Cyclic Graphs (DCG)

How to make PSS work with directed cyclic graphs (DCG)? The following ex-
ample is from Figure 5 of [4]

A OR—node
/
B AND-node
/ N\
C D OR-nodes
/ N/
E F AND-nodes

c’ OR—node

(" is a transposition of (', leading to a cycle C — F — (. Tet’s treat the
graph as a DAG and update proof sets, assuming nodes are ordered alphabeti-
cally for minimum selection. Tnitially, pset(C") = {C"} = {C}, pset(FE) = {E},
pset(F) = {C}, pset(C) = min(pset(FE),pset(C)) = {C}, pset(D) = {C},
pset(B) = pset(C) U pset(D) = {C}, pset(A) = {C}. After proving F,

12

pset(F) = 0, pset(C) = min(pset(FE),pset(C)) = . Now C is proved, and
can be propagated through the DCG, leading successively to proofs of F/, DB
and A.

PSS has no trouble solving this example. However, it is presently unknown
how PSS works on general DCG’s. Tt seems necessary to adapt the update and
propagation rules, since now the same node can be both leaf and interior node

in the DCG.

4.3 More Questions

Theoretical Properties of PSS Ts there a worst-case bound on the ratio of
the size of PSS sets versus minimal proof sets? Does the ratio depend on
depth of the DAG? Tdea: iterated version of example in section 2.4.1. Tt
is easy to see that there is no such bound for PNS: use Example 1 with n
nodes at the second level.

Find Necessary Conditions for Optimality of Queue Backup Temma 1
in Section 3.1.2 proves that a ranked ancestor relation is sufficient to ensure
optimality of the queue backup algorithm. What are necessary conditions?

Do More Efficient NodeSet Data Structures Exist? Sorted lists are sim-
ple to implement, but slow in performing most operations on large sets.
Are there applications where it is essential to deal with large sets, and if
so, are there more efficient data structures for implementing NodeSet?

Adaptive Threshold Truncation Change D, P during the search, use dif-
ferent values in different nodes.

Choices for NodeSet Truncation Values P, /D) Which values provide a good
memory-accuracy tradeoff for PSSp p?

References

[1] T..V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, University of Limburg, Maastricht, 1994.

[2] J.A. McHugh. Algorithmic Graph Theory. Prentice-Hall, 1990.

[3] M. Schijf. Proof-number search and transpositions. Master’s thesis, Univer-
sity of Leiden, 1993.

[4] M. Schijf, I..V. Allis, and J.W.H.M. Uiterwijk. Proof-number search and
transpositions. TCCA Journal, 17(2):63 74, 1994.

[6] R. Stanley. Fnumerative Combinatorics, volume 1. Cambridge University

Press, 1997.

13

