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Abstract

The Graph–History interaction (GHI) problem is a notorious problem that causes

game-playing programs to occasionally return incorrect solutions. This paper presents

a practical method to cure the GHI problem for the case of the df-pn algorithm. Results

in the game of Go with the situational super-ko rule show that the overhead incurred by

our method is very small, while correctness is always guaranteed.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Developing high performance game-playing programs has been the subject

of AI research for over 50 years. Game-playing programs typically employ

lookahead search to improve their move decisions. Efficient search algorithms
improve the strength of their programs. For example, Thompson showed that
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there is a strong positive correlation between the explored depth of the search

tree and the strength of a chess-playing system [12]. Therefore, programmers

have invested a large amount of resources to enhance their search engines.

One of the most valuable search enhancements is the transposition table, a

large cache that keeps results of previous search efforts. A program can reach

the same game state via different paths—a so-called transposition. If the previ-
ously cached position is explored deeply enough, the search algorithm does not

need to explore the position again, thus saving considerable search effort. How-

ever, if the search space includes cycles, cached results may be flawed because

they ignore the path used to reach the position. This is the so-called Graph–

History Interaction (GHI) problem [9]. Programmers either ignore the GHI

problem, since they do not want to degrade the performance of their programs,

or reduce the number of recognized transpositions in order to guarantee

correctness.

1.2. Description of the GHI problem

With the help of Fig. 1 we explain the GHI problem for AND/OR trees.

There are two scenarios in which the GHI problem can occur, depending on

the rules of the game.

In the first scenario, which we call first-player-loss, a repetition is a loss for

the first player (the player to play at the root node). Examples are checkmating
problems in chess and shogi (tsume-shogi), since a repetition does not help the

first player who is trying to checkmate. Assume D in the figure is a loss for the

first player, and this result is stored in the transposition table. Let G be a win

for the first player. Then searching A in the following order leads to the wrong

result:
A

B C

D

OR node AND node

F

G H

Loss

E

Fig. 1. The GHI problem.
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1. Search A! B ! E ! H! E, then a loss is stored in the table entry for H,

because the position repetition cannot be avoided.

2. Search A ! B ! D, then a loss is stored for the AND node B.

3. Expand A! C ! F! H, then a table look-up for H retrieves a loss which

is backed up to F and C.

4. A is now incorrectly labeled as a loss because losses are stored for both suc-
cessors B and C. However, A is a win by the sequence A ! C!
F ! H! E ! G.

Let a proof be a proven win, and a disproof be a proven loss. In tsume-shogi,

a repetition is considered to be a loss for the attacker (the first player). The

GHI problem only affects disproofs. Tsume-shogi programs deal with the

GHI problem by not caching disproofs caused by repetitions. That way, trans-

positions are available for most positions while the correctness of proofs is still
guaranteed. The drawback is that the programs are unable to disprove posi-

tions involving repetitions. However, in Shogi, that is of lesser practical impor-

tance than proving a position.

The other scenario for GHI, which we call current-player-loss occurs when a

repetition is defined to be a loss for the player who repeats a position. For

instance, the situational super-ko (SSK) rule in Go declares that any move that

repeats a previous board position is illegal. In this scenario, using a transposi-

tion table can lead to errors in both ways: it can change a loss into a win or a
win into a loss. For example, in Fig. 1, now assume that G is a loss for the

player to move at the root:

1. Searching A ! B ! E ! H, H is stored as a win because the opponent does

not have a legal move at H.

2. Searching A! C ! F! H backs up a win to C, based on the win stored for

H.

3. A is now incorrectly regarded as a win since C�s table entry shows a win.
However, A is a losing position, since the sequences A! B ! D,

A ! C! F ! H! E ! G, and A ! C! F ! H ! E ! H all lose.

This scenario does not occur in tsume-shogi. However, van der Werf et al.

[13] pointed out that when using the SSK rule in Go, this scenario can lead to

invalid proofs. In [13] the problem was avoided by storing a separate hash

entry for each path leading to a node. Unfortunately, this resulted in over

1000 times larger searches when solving 4 · 4 Go.

1.3. A new approach to the GHI problem

This paper presents our solution to the GHI problem for the case of df-pn

search [8]. We believe that our approach is general, and applicable to other
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game tree search algorithms. We are currently working on an implementation

for ab search. The df-pn algorithm combines properties of depth-first and best-

first search. Since GHI occurs more frequently in best-first search than in

depth-first search [4], we need to address this problem.

The GHI problem is caused by ignoring paths if a node is either proven or

disproven. To solve the problem, we add path information to the transposition
table whenever a node n is (dis)proven via a path p. If n is later reached via a

different path q, the (dis)proof for n is not used blindly. Instead, an efficient

additional search is performed to check if the (dis)proof of n via p also works

for n via q. If n is neither proven nor disproven yet, the table entry for n is

always used as a transposition.

This approach requires information on paths as well as extra memory and

additional searches. However, we will show that the overhead can be mini-

mized. Our experiments in Go with the SSK rule, a current-player-loss-sce-
nario, indicate that the overhead incurred by our solution is a very small

price to pay for guaranteeing correct solutions.

1.4. Outline

The structure of this paper is as follows:

Section 2 reviews the literature on the df-pn algorithm and the GHI prob-

lem. Section 3 describes our solution to the GHI problem. Section 4 discusses
the experimental results on Go. Section 5 concludes this paper and gives future

work on this research topic.
2. Literature review

2.1. The depth-first proof-number search algorithm

Nagai�s df-pn (depth-first proof-number) algorithm [8] turns Allis� proof-
number search (PNS) [1] into a depth-first search algorithm. As a depth-first

search, df-pn can expand less interior nodes and use a smaller amount of mem-

ory than PNS. Like PNS, it uses proof and disproof numbers and always

expands a most-proving node.

Fig. 2, adapted from [8], presents pseudo-code of the df-pn algorithm. The

code is written using the / and d notation for proof and disproof numbers. Let

pn(n) be the proof number and dn(n) be the disproof number of node n. Then

n:/ ¼
pnðnÞ if n is an OR node;

dnðnÞ if n is an AND node:

�

n:d ¼
dnðnÞ if n is an OR node;

pnðnÞ if n is an AND node:

�



Fig. 2. Pseudo-code of the df-pn algorithm.
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Df-pn utilizes iterative deepening with local thresholds for both proof and

disproof numbers. This approach is similar to recursive best-first search in sin-

gle-agent search [7]. For details, see [8].

Because df-pn is an iterative deepening method that expands interior nodes

again and again, the heart of the algorithm is its use of the transposition table.

In Fig. 2, TTstore stores proof and disproof numbers of a node in the table.
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TTlookup tries to retrieve proof and disproof numbers of a node from the

table. If no entry is found, both numbers are initialized to 1.
2.2. Previous work on the GHI problem

2.2.1. Palay�s suggestions
Palay first pointed out the GHI problem and suggested two solutions [9].

The first solution is to refrain from using transpositions. Van der Werf used

this approach to solve 4 · 4 Go with the SSK rule [13]. The drawbacks are a

large number of expansions of duplicated nodes and large space requirements.

Palay�s second solution is to continue using a graph representation but attempt

to recognize the GHI problem. When GHI is recognized, the nodes that are on

the path from a repeated node to the nodes having more than one parent are

duplicated to be able to store different results for these duplicated nodes. How-
ever, Palay did not implement this strategy, since GHI did not occur so fre-

quently in his tests. He conjectured that the second solution would take

additional time since the graph must be revised occasionally.
2.2.2. Campbell �s analysis
Campbell partially solved the GHI problem for ab search [4]. In his algo-

rithm, each transposition table entry contains a field that stores the depth

searched below a node. If a transposition is recognized and the depth stored
in the table entry is at least as deep as the depth that must be explored, the table

information is retrieved and no further search for that node is performed.

Campbell classified the GHI problem into two cases, draw-first and draw-last.

Fig. 3, adapted from [4], illustrates an example. In the draw-first case, path (1)

is explored first and a score is stored in the table entry for X. Then if Y is
X

Y

X

(1) (2)

Y

Fig. 3. Prototypical case of GHI.
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searched via path (2), Y might be incorrectly computed because of the table

entry for X. In the draw-last case, (2) is explored first and Y�s incorrect score
is used when reaching Y via (1). This happens because of the implementation

of the transposition table. When reaching X via (1), the search depth for X

via (2) is shallower than via (1). Therefore, X via (1) must be explored. On

the other hand, if Y is reached via (2) first, Y is already explored deeply enough
via (1) to reuse the table information on Y.

Campbell noted that draw-first GHI is curable by not storing scores that

might cause the GHI problem, while draw-last is incurable. However, in prac-

tice most GHI problems can be avoided by combining the ab algorithm with

iterative deepening. Experimentally, the GHI problem appears much less

frequently in iterative deepening ab search than in best-first search.

2.2.3. Breuker’s base-twin algorithm

Breuker et al. proposed the base-twin algorithm (BTA) for solving the GHI

problem in proof-number search [3]. BTA is described for a 3-valued evalua-

tion model with values win, loss, and draw. If a draw is considered a disproof

as in their experiments, this model is the same as the first-player-loss scenario in

our framework.

BTA uses a possible-draw mark combined with the depth of a node to rec-

ognize repetitions. To find out which level of the node causes repetitions, BTA

utilizes two kinds of nodes: a base node to be explored and twin nodes that
have different parents, link to their base node, but are not explored. When

more than one path reaches identical positions, these positions are not repre-

sented by a single node, but split into one base node and one or more twin

nodes, which can have different values (i.e. possible-draw marks) than the base

node. Whenever a most-proving node is selected, BTA also checks if possible-

draw marks can be stored by recognizing repetitions. Possible-draw marks are

passed back to parents and when the root of the subtree that causes repetitions

is detected, then a real draw is stored in that root. See [3] for details of the
algorithm.

Although Breuker et al. claim that BTA is a general solution to the GHI

problem for best-first search, there are three issues that must be addressed:

1. Since BTA was implemented for a best-first search algorithm that keeps an

explicit graph in memory, it is an open question if BTA is applicable to

depth-first search algorithms with limited memory. They concluded in [3]

‘‘What remains is solving the GHI problem for depth-first search. This will
need a different approach, storing additional information in transposition

tables rather than in the search tree/graph in memory. However, Campbell

already noted that in depth-first search the frequency of GHI problems is

considerably smaller than in best-first search [4]. The solution of the GHI

problem for depth-first search remains a nearly theoretical exercise’’.
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Fig. 4. An example where BTA fails with the current-player-loss scenario.
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However, curing the GHI problem for depth-first search algorithms using

proof and disproof numbers is necessary, because these algorithms combine

properties of best-first search and depth-first search, and GHI occurs more

frequently than in iterative deepening ab.
2. The cycle detection scheme in BTA does not work with the current-player-

loss scenario. Fig. 4 illustrates an example. Assume that B has not been

expanded, and it is currently unknown whether B has child D. Then assume
that BTA explores A ! C! D ! C. Since this repetition occurs at C, a

score (disproof in this case) is saved in C�s transposition table entry without

any condition. Then, assume that path A! B ! D is searched, and recog-

nizes D as a child of B. Next, BTA reaches C by expanding D. In BTA,

C�s entry has a disproof and a disproof is retrieved from the entry. However,

this is incorrect, since the second player cannot make a move at C if it is

reached via A! B ! D ! C.

3. All the possible-draw marks are removed for each iteration of proof-number
search. The deletion of possible-draw marks is necessary in BTA since it is

path-dependent information (see Appendix A for details). Therefore, as long

as real draws are not stored, the nodes causing repetitions must be explored

again and again to mark possible-draws, resulting in much tree expansion

overhead.

2.2.4. Nagai’s approach

Nagai proposed a solution to the GHI problem for df-pn [8]. He applied this

modified df-pn to tsume-shogi problems (a first-player-loss scenario). In his

algorithm, df-pn first sets large thresholds of proof and disproof numbers at

the root. These thresholds are not 1 as in the original df-pn, but 1 � 1. In

case of a repetition, df-pn simply returns to the parent node without storing

a disproof. If a proof for the root is found, the proof tree is guaranteed to

not contain repetitions. However, if df-pn returns to the root by exceeding

one of the large thresholds of proof and disproof numbers, df-pn re-searches
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with a threshold of 1. If the root position is reached by a move, this move is

now considered disproven. A similar process is performed for all interior

nodes. If df-pn exceeds one of the large thresholds, it re-searches with a thresh-

old of 1, assuming that that node is a disproven position.

There are two drawbacks of Nagai�s approach:

1. It may take a long time for the proof or disproof numbers to exceed the

preset threshold. For example, if there is a large number of branches, the

thresholds for expanding a node are much smaller than 1 � 1, since df-

pn locally sets the thresholds based on the proof and disproof numbers of

the children. Hence, because this approach has to wait for proof or disproof

numbers of all the children to reach 1 � 1, it is impractical for detecting

disproofs with repetitions. Nagai measured the ability of his tsume-shogi

solver only with positions that can be proven. He did not measure the over-
head incurred by this approach, or the performance in positions where a

node must be disproven.

2. Nagai�s approach also does not work with the current-player-loss scenario.

Since this approach does not use any path information, it cannot store two

different path-dependent results for one node. Again, Fig. 4 serves as an

example. In this figure, D via A ! B ! D is a proven node, since

A ! B ! D ! C! D is not allowed. On the other hand, D via A! C ! D

is a disproven node, since A! C ! D ! C is illegal. D�s value cannot be
determined without considering the path used.

2.2.5. Other related work

According to [3], Thompson noticed that his tactical chess analyzer suffered

from the GHI problem. He cured it by using a DCG (directed cyclic graph)

representation. When a node was expanded, his analyzer took the history into

account to avoid returning an incorrect result. However, when leaf nodes were
evaluated, the history was not considered, possibly resulting in incorrect eval-

uation values.

Baum and Smith suggested a solution to the GHI problem for their best-first

search algorithm [2]. Their algorithm stores the whole DCG in memory to be

able to check all ancestors and descendants of a node. Then, if node P spawns a

child Q and Q has another parent P 0, their method checks if the ancestors of P

and the descendants of Q contain P 0. If this is the case, Q is split into two nodes

to be able to store different results. However, this idea was not implemented,
and they only concluded that a low storage algorithm would probably be

too costly.

Schijf et al. investigated proof-number search in domains where the search

graphs are DAGs (directed acyclic graphs) and DCGs [10]. They observe that

in practice it is not necessary to compute proof and disproof numbers correctly
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for DAGs, as long as correct results are returned. Three algorithms for DCGs

are presented:

1. The tree method does not use transpositions, which has the disadvantage of

not reusing results, while correctness is always guaranteed.

2. In the DAG method, two classes of moves are defined: conversion moves are
irreversible and non-conversion moves that may be reversible. The DAG

method maps identical positions to a single node for conversion moves,

while identical positions reached by non-conversion moves are treated as

different nodes. This approach is also applied in the solution of 5 · 5 Go

with Japanese and Chinese rules by van der Werf et al. [13]. This approach

can cure the GHI problem, but a disadvantage is that duplicated searches

are performed for all nodes with non-conversion moves.

3. The DCG method maps identical nodes to a single node unless a cycle is cre-
ated. If a repetition is detected, a node creating a cycle is mapped to a second

node and recognized as a disproven leaf node. Identical positions are

mapped to at most two nodes. Although the DCG method is shown to be

effective in their experiments in chess, as pointed out in [10] this approach

sometimes results in wrong disproofs.
3. A new solution to the GHI problem

The outline of our solution to the GHI problem is as follows: When a pro-

ven or disproven position stored in the transposition table is reached via a new

path, instead of blindly retrieving the result, a search is performed to verify the

result. If the proof/disproof verifies, the result can be safely reused; otherwise

the transposition table entry is treated as a different position. Kawano�s simu-
lation technique [5] is used to reduce the search overhead. For efficiency, this

approach requires a good scheme for storing and comparing paths, and a tech-

nique for minimizing the number of simulation calls. We provide details below.

3.1. Duplicating transposition table entries

Since we want to reuse the results of previous search efforts, unproven iden-

tical positions reached via different paths are considered to be transpositions,
and we reuse the proof and disproof numbers from the transposition table.

When position A is proven via path p, the transposition table entry for A is

split into a base and a first twin table entry. A proof is stored in the twin table

entry to indicate that A is proven when reaching A via p. The proof and dis-

proof numbers in the base table entry are re-initialized to 1. If A is proven

via path q, another twin table entry for q is created and a proof is stored in this

twin table entry. When reaching A via a path other than p, the proofs of the
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twin table entries are simulated (see Section 3.3). If at least one verifies that

proof is used; otherwise the proof and disproof numbers from the

unproven base table entry are used in the search. Disproofs are handled in

the same way.

3.2. Encoding paths

Since we must differentiate between identical positions reached via different

paths, we need an effective method to compute a signature of a path. A variant

of the Zobrist function, which is used to hash a position into its corresponding

transposition table key [14], can also be used to encode a path. In our imple-

mentation, each transposition table entry contains an additional 64-bit field

to encode a signature of the path from the root to a position. Let MaxMove

be the number of different moves in a game, and MaxDepth be the maximum
search depth. A random table with MaxMove · MaxDepth 64 bit integers is

prepared to encode a path. The sequence of moves to reach that position is

encoded by a similar technique to Zobrist�s method using that random table.

Let R be the random table, and the path p be (m1,m2, . . . ,mk), where mi are

moves. p is encoded as follows:

R½m1	½1	 
 R½m2	½2	 
 � � � 
 R½mk	½k	
An important property of this path-encoding scheme is that the order of

moves is not commutative, since the random table entries for identical moves

with different depths contain different values. For example, two paths

p1 = (m1,m2,m3) and p2 = (m3,m2,m1) are encoded to different 64 bit integers,

because R[m1][1] 
 R[m2][2] 
 R[m3][3] (for p1) is different from R[m1][3] 

R[m2][2] 
R[m3][1] (for p2).

We note that the size of the random table is small enough for state-of-the-art

machines. In our experiments on 19 · 19 Go, we setMaxMove = 362 andMax-

Depth = 50. The memory required for this random table was about 140KB. In

games with a large number of different moves, such as Shogi or Amazons, a

move can be split into two or three partial moves, for example by separating

the from-square information from the to-square information. This way Max-

Move can be greatly reduced, while MaxDepth increases by a factor of 2 or 3.

3.3. Invoking simulation for correctness

Tree simulation was invented by Kawano to effectively deal with useless

interposing piece drops in tsume-shogi [5]. Later, Tanase extensively applied

this idea in his ab search engine to reduce the overhead of calling the tsume-

shogi solver within the normal search [11].

In AND/OR trees, a proof tree T provides a proof that a node n is proven.

Such a proof tree has the following properties:
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1. n is contained in T.

2. For each interior OR node of T, at least one child is contained in T.

3. For each interior AND node of T, all children are contained in T.

4. All terminal nodes of T are proven.

Assume that P is a proven node and Q is a ‘‘similar’’ one that we want to
prove. Simulation borrows moves from P�s proof tree to try to find a quick

proof of Q. A proof is obtained from the transposition table by retrieving

the winning move for each OR node in the proof tree of P. A dual approach,

called dual simulation, is used to find a disproof.

Compared to a normal search, simulation requires much less effort to con-

firm whether a position is proven or not. An existing proof tree is typically

much smaller than a new search tree would be. Also, since moves are borrowed

from the transposition table at OR nodes, there is no need to invoke the move
generator. We must only check the legality of the moves, which is a much faster

operation. Furthermore, while df-pn must look up all children in the transpo-

sition table at every node, simulation does not require transposition table look-

ups for children.

Assume that A is a proven position with path p. If we reach A by a different

path q, we can check if A via q can be proven by invoking simulation. A proof

is borrowed from the twin table entry (with path p). If a proof for A via q is

verified, an additional twin table entry for A via q is created and the proof is
saved. If more than one twin table entry is available, they are tried one after

another. However, since most of the proof trees have the same shape, more

than one tree simulation happens only rarely. An analogous verification is tried

for a disproven position by invoking dual simulation.

3.4. Reducing simulation calls

Since simulation incurs extra overhead to assess the correctness of a transpo-
sition table entry, we devised a method to reduce the number of simulation calls.

If a node is (dis)proven without detecting a repetition, that node can always be

used as a transposition, since it is independent of the path that df-pn takes. In this

case, the (dis)proof is stored directly in the base table entry, without creating a

twin node. If another path leads to that position, a (dis)proof can be retrieved

directly. Therefore, our scheme first looks at the path-independent base table

entry for a position, and if the (dis)proof is found, that position is considered

to be (dis)proven. Otherwise, the twin table entry is retrieved if available.

3.5. Other implementation details

In the pseudo-code of the df-pn algorithm (see Fig. 2 again), the thresholds

of proof and disproof numbers are set to 1 at the root. This causes the GHI
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problem, since df-pn saves the thresholds in the transposition table before

expanding a node. For example, if a node explored with the threshold of the

proof number (pn) of 1 has only one child A, A is explored with the threshold

pn = 1. Before expanding A, df-pn stores pn = 1 in A�s table entry. This is

wrong, since A is not always disproven. There may be another path leading

to A without involving repetitions, resulting in a proof. Following Nagai�s
approach [8], we initialize both thresholds at the root to 1 � 1 to avoid the

above case. If our df-pn algorithm returns a proof number of 0 and a disproof

number of 1, or vice versa, it has found a correct (dis)proof. Otherwise, df-pn

returns the value unknown.

3.6. Correctness of our solution

Assume that all proven and disproven nodes are stored in the transposition
table. Although our proposed solution might compute incorrect proof and dis-

proof numbers for unproven nodes, the following theorems guarantee correct-

ness of the solutions:

Theorem 3.1. Our solution does not suffer from the draw-first case.

Proof. This theorem is proven with the help of Fig. 3. Although X is an OR

node and Y is X�s child in Fig. 3, the only assumption is that X is Y �s ancestor
and also Y�s descendant. In the draw-first scenario, if proving Y via (1) involves

repetitions related to X, X and Y are stored in the transposition table with ‘‘via

path (1)’’. Hence, if Y is reached via (2), a search is performed below Y and X in

our algorithm. The case of disproofs is similar. Thus the draw-first scenario

does not happen in our solution. h

Theorem 3.2. Our solution does not suffer from the draw-last case.

Proof. Again, in Fig. 3 with the same assumption in Theorem 3.1, assume that

path (2) is explored and X�s proof is saved in the transposition table. We have

to consider the following cases:

1. If X via (2) is proven without repetitions, Y is not included in X �s proof tree.
When X is reached via (1), a proof is immediately retrieved from X �s table
entry and this is a correct proof, since it does not contain any repetitions. Y

is never explored via (1), which would cause the draw-last case.
2. If X via (2) is proven with repetitions:

(a) If Y via (2) is proven without repetitions, X �s proof tree must not be a

part of Y �s proof tree. When reaching X via (1), X �s proof via (2) is

not retrieved because it is stored in the twin table entry via (2). Then,

when reaching Y via (1), Y�s table entry is retrieved. Because Y�s proof
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tree does not contain any repetitions such as Y ! X ! Y, Y �s proof tree
can be reused.

(b) If Y via (2) is proven with repetitions, neither X �s nor Y �s proof via (2) is
retrieved at X and Y via (1) in our algorithm. Hence, X and Y are

explored, guaranteeing a correct result.

The case of disproofs is similar. Thus we guarantee that the draw-last case

never happens in our solution. h
4. Experimental results

4.1. Setup of experiments

We implemented a solver for the one-eye problem in Go, a restricted version

of the tsume-Go problem. We use the situational super-ko (SSK) rule, a cur-

rent-player-loss scenario. The task of the one-eye problem is to (dis)prove that

one player can make an eye in an enclosed region. Our current set of 70 test

positions was created mainly by the authors. The problems can be played for

both colors going first, resulting in a total of 140 problems. The test set is avail-

able at http://www.cs.ualberta.ca/�games/go/oneeye.

To measure the effectiveness of our new method, four versions of the solver
were implemented: the first version ignores the GHI problem. The other versions

employ our new scheme with different numbers of optimizations. The experi-

ments were measured on an Athlon 2400MP with a 200MB transposition table.

All proven and disproven table entries are kept in memory in our experiments.

The game-specific and game-independent search enhancements described in [6]

are used by both solvers. The time limit was set to 5min per problem.

The following abbreviations for the methods are used:

• DUP Duplicate transposition table entries. This guarantees correctness of

the solutions.

• SIM Invoke simulation and dual simulation to reduce the overhead of

checking correctness of (dis)proven nodes.

• NOCYCLE Reduce simulation calls by detecting (dis)proofs that do not

depend on cycles.

4.2. Results

Table 1 summarizes the results in terms of the number of problems solved,

total node expansions, total node expansions by simulation, the number of sim-

ulation calls, and the number of failed simulation calls. These statistics are col-

http://www.cs.ualberta.ca/~games/go/oneeye
http://www.cs.ualberta.ca/~games/go/oneeye


Table 1

Performance comparison between ignoring and dealing with the GHI problem

Method used Number of

problems

solved

Total

nodes

Nodes

by SIM

SIM

calls

Failed

SIM

calls

Total

time

(s)

IGNORE-GHI 134 + 2 3,614,539 – – – 81

(a) DUP 134 9,411,063 – – – 256

(b) (a) + SIM 134 7,015,856 2,699,556 239,820 2956 175

(c) (b) + NOCYCLE 136 3,689,363 2813 356 156 82

All statistics are computed for the subset of 134 problems solved by all program versions.
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lected for the subset of 134 problems for which all program versions gave

solutions.

Both IGNORE-GHI and version (c) solved 136 problems. However,

IGNORE-GHI gave incorrect proof trees for two of the test positions. All

the problems solved by DUP were also solved by the other three versions. Fur-

thermore, both test positions in which IGNORE-GHI returned incorrect

proofs were solved correctly by the other three versions.

Invoking simulation and reducing simulation calls in case of transpositions
greatly improves the performance of the checking process. In particular, reduc-

ing simulation calls reduced the total node count by the factor of two, resulting

in two more problems solved within the time limit. We conclude that it is worth

adding our method to df-pn search with the following arguments:

• GHI can be checked with negligible overhead, both in terms of extra nodes

and execution time. It is worth paying this price to always guarantee

correctness.
• Even if GHI does not appear in the final proof tree, it appears in the search

occasionally. In Table 1, simulation caught 156 flawed transposition table

entries. This number is conservative, because some incorrect proofs or dis-

proofs may be stored but never retrieved.
4.3. A real example in Go with the SSK rule

We found a position that suffered from the GHI problem with the SSK rule

when we implemented the solver that ignores GHI (see Figs. 5 and 6(a)). First

the solver explored the position by tracing the move sequence in Fig. 6(b). Path

C7 ! (1) ! (3) ! A8 ! (4) in Fig. 5 corresponds to this move sequence. Then,

Black cannot play at A8, because this move leads back to the position after

move 4, shown in Fig. 6(c). Based on this result, a win for White is saved in

the table entry for position (c). However, after the sequence in Fig. 6(d), posi-
tion (c) is no longer a win for White. When the solver traced move sequence

(d), it first reached (e) and then encountered (c). However, after the sequence



(a)

(c)

(1)

(2)

(e)
A8

(3)A8

(4)

White to play Black to play

(b)

(d)

C7

Fig. 5. Repetitions in the move sequences in Fig. 6.
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(d), White cannot play a move at A8, since it leads back to position (e). Path

C7 ! (2) ! (4) ! A8 ! (3) in Fig. 5 stands for this sequence of moves. The

correct result for position (c) via Fig. 6(d) is a win for Black.

We remark that White 15 at 7 in Fig. 6(b) would be better than 15 at 1, and

White 15 at 5 would be better in Fig. 6(d), because then White can win without

repetition in both cases. However, even if adding more game-specific knowl-

edge to the one-eye solver could reduce the number of such cases, there is no

general way to always find a non-repetition proof first.
5. Conclusions

Since the overhead incurred by our new scheme is small, we conclude that it

is a practical solution for curing the GHI problem in the df-pn algorithm. Fur-

thermore, our solution is more general than previous approaches. The only

previous solution for the current-player-loss scenario, giving up all transposi-
tions, is very inefficient.

There are numerous topics to be investigated for future work. Since our

approach can be applied to the first-player-loss scenario and also seems to

be suited to proof-number search, it can be empirically compared with both

Nagai�s approach and Breuker�s BTA. Besides, since we believe that our ap-

proach is so general that it can be applicable to other search algorithms such

as ab search, implementing our approach in these algorithms will be a further



Fig. 6. An instance of the GHI problem in Go.
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extension of this research. Finally, another interesting research direction is the

relation between the GHI problem and replacement and garbage collection
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schemes in limited memory situations. Our algorithm as described in this paper

keeps all proven and disproven nodes in memory. Which nodes can be replaced

or garbage collected?
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Appendix A. Removing possible-draw marks in BTA

This appendix describes the reason why BTA has to clear possible-draw

marks every time it explores a most-proving node. Fig. 7 illustrates an example.

Assume that the first-player-loss scenario is used in Fig. 7. If path

A! B ! C! D ! c is traced down, a possible-draw mark is stored at c.

Since BTA keeps C�s depth combined with the possible-draw mark, the depth

of 2 is stored in c to indicate that C is the node involving a repetition. Then, if

the possible-draw mark at c is not deleted and c is reached via A ! B ! F ! D

via d ! c, the mark at c is passed back to d (and F). As a result, a real draw is

stored at F. However, this is incorrect, since F is a win via path F! D via

d ! C via c ! E.
A

B

C

D

c

F

d

=2

Win

E

Fig. 7. An example showing why BTA must remove possible-draw marks.
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