Not Like Other Games - Why Tree Search in Go is Different

Martin Muller
ETL, Tsukuba, Japan
mueller@etl.go.jp

Abstract

Large-scale minimax search has been used with great
success in many games, but not in Go. We investi-
gate the reasons for the difficulty of applying mini-
max search to Go, using late stage endgames as a test
case.

1 Minimax Tree Search in Go

Deep minimax search is the engine powering most
computer programs for two-player games with per-
fect information. It has led to overwhelming suc-
cess in many popular games, such as chess, checkers,
shogi, Othello, awari, Chinese chess, gomoku, and
Nine Men’s Morris. However, the same approach
does not work in Go, because of the large number
of possible moves in each position, the length of a
game, and the difficulty of developing an accurate
evaluation function.

This paper contains two contributions leading to-
wards a deeper understanding of minimax search in
Go: First, Section 2 identifies three factors that com-
plicate minimax search in Go: detecting terminal po-
sitions in the search, the unavoidability of generating
pass moves, and local position repetition or ko. Sec-
ond, Section 3 studies the problems of minimax tree
search in Go on hand of an example from a late stage
endgame, which is known to be efficiently solvable by
Decomposition Search [4].

1.1 Types of Minimax Search in Go

In computer Go, two different types of minimax
search are commonly used: selective global search

and goal-oriented search.

The objective of global search is to maximize the
full-board score. Because of the complex evaluation
and high branching factor of Go, full-board minimax
search is typically highly selective and shallow [2],
searching only tens or hundreds of positions per move
decision, in contrast to the hundred of thousands or
millions of nodes typically searched in other games.

Local minimax searches focus on specific tactical
goals, such as trying to capture or save a specific
block of stones, life and death problems, or testing the
safety of territory. In goal-directed search, evaluation
consists only of a simple test, which is much faster
than full evaluation. Another advantage is that the
number of moves is typically much smaller than in

full-board search.

2 Specific Problems of Mini-
max Search in Go

The following three problems are specific to minimax
search in Go:

Recognizing terminal positions In Go, it can be
very difficult to judge whether a position is ter-
minal, or whether valuable moves remain.

Pass moves In Go, there is no zugzwang: in posi-
tions where there is no good move, a player is
allowed to pass.

Local position repetition or ko Full board posi-
tion repetition is illegal in Go. However, local
position repetition occurs frequently.

2.1 Recognizing Terminal Positions

000 000
| 90, | 90,

Figure 1: Recognizing terminal positions

In many games, detecting the end of the game is
simple, for example if a specific piece such as the king
is captured or a player runs out of moves.

In Go, a position is terminal if no more points are
contested, and all points can be classified as black,
white or neutral. Such classification can be hard, as
shown by the two similar-looking examples in Figure
1: in both cases Black has completely surrounded a
corner area, including empty points and some white
stones. The example on the left is a terminal position:
Black’s area is safe. However, in the example on the
right Black needs another move to prevent a White
move at ‘a’ leading to coexistence in sek:.

2.2 Pass Moves

In most board games, passing is illegal. If a player
cannot move, the game is over and the outcome is
determined by the rules, for example a stalemate in
chess.

In contrast, a pass move must always be generated
during minimax search in Go, unless it can be proven
that at least one other good move exists. In positions
where there is no good move, players must be allowed
to pass, instead of being forced to damage their own
position. Figure 2 shows such a position where all
moves are bad. Adding pass moves can substantially
increase the size of the search space.

2.3 Ko: Local Position Repetition

Local repetition or ko is made possible by interposing
a forcing sequence outside the local scope. Ignoring

000
| 90,
| 90,

@ | @
O

Figure 2: Seki: a position without good moves

the possibility of such ko during local search gives
misleading results. In the same local position, a cru-
cial move that is currently illegal due to position rep-
etition might become legal later, if a move elsewhere
on the board has changed the position.

If the outcome of a local search depends on a player
winning a ko fight, that player usually has to pay a
price by ignoring some opponent moves on the rest
of the board. In complex ko fights, many different
outcomes and tradeoffs are possible, making exact
analysis very difficult within the framework of goal-
oriented minimax search.

2.4 Interactions Between the Three
Go-specific Problems

The interaction of the three Go-specific problems
identified above leads to further complications:

Pass and recognition of terminal positions
The number of consecutive pass moves cannot
be indefinite. Therefore, after two or three
consecutive passes the resulting position must
be statically evaluated, even if the position 1s
unsettled.

Ko and terminal positions Some ko fights are
very favorable for one player, so in practice the
other player wins them by default. However, it
is hard to formulate general rules for handling
all such cases.

Pass and ko Pass moves in conjunction with ko
fights also lead to unresolved positions.

3 Minimax Search in Go: An

Endgame Case Study

This section studies minimax search in Go on hand
of an example from the late endgame. As a search
problem, this example is simple because there are
already many safe stones and territories, there are no
ko fights, and it is easy to detect terminal positions.

3.1 Problem C.11 Revisited

OQO@® A A POBOOOD B B @B
Q@GO LOO®

@
1QJ J@®
@

2eOO® - O
z z 2 QOO
® > SOOO®® = OQ

Figure 3: Endgame problem C.11 [1]

Figure 3 shows an endgame problem equivalent to
problem C.11 in [1]. This problem is decomposable
and can therefore be solved efficiently by the method
of Decomposition Search [4], which uses local combi-
natorial game search (LCGS) to analyze each small
local area independently.

Figure 4 shows the effect of a series of enhance-
ments to alphabeta minimax search on sets of sub-
problems of this late stage Go endgame. The number
of nodes searched by LCGS is given for comparison.
The horizontal axis shows the subset of endgame ar-
eas that was searched. The vertical axis shows the
number of nodes searched on a logarithmicscale. The
following search enhancements were tested:

Move sorting (sort) sorts moves according to the
size of the local area.

Global best move pruning (global) prunes all
except one move candidate in positions where a
globally best move exists.

Local best move pruning (local) prunes other
local move candidates if a locally best move 1s
found.

Partial order move pruning (POprune) uses
pruning with a partial ordering [5] of move
classes better-than-dame, dame (not generated),
pass, and other.

3.2 Evaluation of Test Results

All four tested enhancements lead to substantial re-
ductions in the number of nodes searched. The one
outstanding improvement is the introduction of local
move pruning, which greatly reduces the branching
factor of the search. Global and partial order move
pruning are most effective in near terminal positions.
Earlier in the game they don’t help, since no pruning
move can be found by global pruning, and almost all
moves are in the other category of partial order move
pruning. Move sorting works well in every case.

4 Summary and Future Work

The game of Go has a number of properties that make
minimax search difficult even for small-size problems.
On the other hand, adding game-specific knowledge
can greatly enhance performance and reduce the size
of search trees by many orders of magnitude. Similar
experiences have been reported for the single-agent
search problem of Sokoban [3].

While global minimax search cannot compete with
the local search method used in Decomposition
Search, adding game-specific knowledge for move
pruning and using locally informed global search
greatly improves the efficiency of minimax searches.
This result points the way towards developing a com-
mon framework that combines the power of local
search methods with the generality of global mini-
max search. Such future work includes:

10000000

1000000 // / R
100000 //
/ —e—none
—-=—sort
10000 —a—global
-« global+sort
—x—local
—e—local+sort
1000 —+—local+POprune
——local+POprune+sort
—LCGS
100
10
1 T T T T T T T T T T T 1

9 10 11 12 13

Figure 4: Minimax search enhancements in Go endgames

e Use global search in the case when there are de-
pendencies between local games.

e Integrate more local game ideas into a global
search framework, such as miai: using search,
identify sets of two or more local games that
cancel each other, and can be removed from the
search process.

e Compute bounds on the value of nonterminal po-
sitions by static analysis, and use these bounds
during search.

References

[1] E. Berlekamp and D. Wolfe. Mathematical Go:
Chilling Gets the Last Point. A K Peters, Welles-

[2]

(3]

[4]

[5]

ley, 1994.

K. Chen. The move decision process of Go Intel-

lect. Computer Go, 14:9-17, 1990.
A. Junghanns and J. Schaeffer.

dependent single-agent search enhancements. In

[JCAI-99, pages 570-575, 1999.

M. Miiller. Decomposition search: A combina-
torial games approach to game tree search, with
applications to solving Go endgames. In IJCAI-
99, pages 578-583, 1999.

Domain-

M. Miller. Partial order bounding: Using par-
tial order evaluation in game tree search. Tech-
nical Report TR-99-12, Electrotechnical Labora-
tory, Tsukuba, Japan, 1999.

