Playing it Safe:
Recognizing Secure Territories in Computer Go
by Using Static Rules and Search

Martin Miiller
Informatik, ETH Zurich
mueller@inf.ethz.ch

Abstract

Determining whether stones are safe from cap-
ture, and whether territories are protected
against an invasion, are two fundamental tasks
in Go evaluation.

In general, safety cannot be proven by static
evaluation; it must be decided by searching.
However, good static evaluation functions can
greatly speed up a search by making early eval-
uation possible. In addition, static analysis can
decompose a search problem into independent
subtasks, which yields an exponential speedup.

The new algorithms for proving safety devel-
oped in this paper are closely related to stan-
dard Life&Death search methods. However,
there are two important differences. First,
searches are local: they are restricted to a sin-
gle enclosed region. Second, the search space
for proving the safety of large territories is po-
tentially huge. Therefore powerful static eval-
uation and search decomposition becomes very
important.

1 The Safety of Blocks and Territories

In Computer Go programs, the safety of blocks and ter-
ritories is usually estimated by a heuristic evaluation
function enhanced by tactical searches. Heuristics, often
based on an influence function, decide whether 1t 1s nec-
essary to make a defensive move. In dangerous looking
cases, most programs will add a move, since losing one
point is usually less problematic than risking the safety
of stones or territory. Deciding whether it is really nec-
essary to defend a territory can be very difficult. For
example, in Figure 1, White must defend her territory
on the right side at a, but the territory on the left side
at b is safe.

The safety of stones is closely tied to the safety of ad-
jacent territories. However, stones can be safe even if the
adjacent territory is not: In Figure 2, the black stones

are safe, but the area is not territory because White can
still make sek: by playing at a. Heuristics cannot be ex-
pected to reliably decide such problems. Search seems
the only way to resolve them in general. This paper
presents some first steps in that direction.

Figure 2: Safe stones, unsafe territory

1.1 Rules, Blocks, Regions

The algorithms in this paper are not very sensitive to
the particular kind of rules used. However, suicide is
forbidden, since otherwise not even Benson’s criteria for
unconditional safety are valid [1; 3].

The following terminology for blocks and regions is
standard. A block is a maximal connected set of stones
on the Go board. Each block has a number of adjacent

empty points called liberties. A block that loses its last
liberty is captured, i.e. removed from the board.

A region is a connected set of points on the Go board
which is surrounded by blocks of the same color. A block
is called enclosing block of a region if it has at least one
adjacent point that belongs to the region, and at least
one adjacent point that does not belong to the region.
The color of enclosing blocks is called the defender, the
other color is called the attacker.

The interior of a region is the subset of points not ad-
Jjacent to an enclosing block. There may be both attacker
and defender stones in the interior. Figure 3 shows a 15
point region surrounded by enclosing blocks a, b and e.
The interior consists of four points marked <. Some of
the interior is occupied by stones of blocks ¢ and d.

Figure 3: Blocks and regions

2 Procedures for Proving Safety

The following hierarchy of increasingly powerful proce-
dures allows more and more general methods for proving
the safety of blocks and territories:

Unconditional safety (Benson)

Safety by locally alternating play

Nonlocal safety by two sure liberties

Safety by other means

Benson’s classic definition of blocks that are uncon-
ditionally alive [1] provides a starting point for finding
safe blocks and territories. It finds sets of blocks that are
safe even if the attacker can play an unlimited number
of moves in a row. All blocks and regions on the 5 x 5
board in Figure 4 are unconditionally safe for Black.

This paper mainly deals with proving safety by locally
alternating play. In this case, safety can be ensured by
playing each region independently, letting the attacker
move first in each region and also yielding all ko fights
to her. Figure 5 shows an example where Black is not un-
conditionally alive, but safe by locally alternating play.

Figure 6 shows an example of nonlocal safety by two
sure liberties. Black cannot survive by locally alternating

Figure 4: Unconditional safety

play. He must reply to White’s attack at a by playing b
in a different region.

Finally, there are several possibilities to survive with-
out two sure liberties. In double ko, as in Figure 7,
both players dynamically retain two liberties by captur-
ing single stones. However, neither player can safely keep
a liberty at a or b.

It can also happen that stones are in atari, but the
attacker does not gain anything by capturing them. The
most frequent case is snapback, shown in Figure 8. More
complex situations where stones could be captured, but
it is not profitable to do so, are given in texts on rules
such as Ikeda [2]. If the safety of stones depends on
winning a ko fight, they are not considered safe here.

.«
®
00

000
o0

Figure 5: Safety by locally alternating play

o0

—O00000
o { 00 @

o] . [39,
000, 000 000
00000 00000
@] . OO0 L 39,

Q - Q0@ b

Q
0000000000000
00000 O0000O

Figure 6: Nonlocal safety

e08es
QOQQOO
| (0@ @
000 0

Figure 7: Safety by double ko

Figure 8: Safe single stone in atari

2.1 Benson’s Unconditional Life

The following definition of unconditional life in terms
of liberty counts is equivalent to the one in Benson’s
classical paper [1]. The reformulation is useful for the
extensions of the method in subsequent sections.

A small color-enclosed region either has no interior,
or its interior is filled with attacker stones. In Figure
9, region a is small in the diagram on the right but not
small in the diagram on the left. In both cases, the
interior of region a consists of the single point in the top
right corner.

A small color-enclosed region is called healthy for a
block if the block is adjacent to all empty points of the
region. In Figure 9 in the left diagram, regions b, ¢ and
d are healthy for block X, but only region b is healthy
for block Y. In the right diagram, a is also healthy for
Y.

Given a set B of blocks, a region r is vital to a block

be Bif
e 7 is healthy for b
e All enclosing blocks of r are contained in B

Benson’s Sure Liberty Count of a block b in a region r
with respect to a set of blocks B is defined as

o SLCBenson(b,r, B) = 1if r is vital to b in B
e SLCRenson (b, 7, B) = 0 otherwise

Figure 9: Small and healthy regions

Definition 1:

A set B of blocks is called unconditionally alive in a set
of regions R if

Vb € B Z SLCBenson (b, r, B) Z 2
reER

3 Safety under Alternating Play

In contrast to the previous discussion, the topic of the
following sections are blocks and territories that are safe
under alternating play. The algorithms are local, they
analyze one region at a time. Both static and search-
based characterizations of safe blocks and territories are
presented.

The algorithms find blocks that will eventually achieve
two sure liberties. During play, the liberty count of these
blocks might go to 1, but it will ultimately be 2 or more.

Regions can provide either one or two liberties for an
enclosing block. The Sure Liberty Count of a block b in a
region r is computed under the assumption of alternating
play, with the attacker moving first and winning all ko
fights. This work generalizes the notions of 1-vital and
2-vital regions introduced in [3].

Definition 2:
SLC(b,r,B) =k, k=1...2, if b is an enclosing block
of r and there is a strategy for defender that guarantees
the following invariant:
e Either all blocks enclosing r have at least k liberties
n r,

® Or

— some blocks have k& — 1 liberties

— and 1t 1s the defender’s turn

This definition implies that defender can regain & lib-
erties for all his blocks enclosing » with his next move in
r. With this definition, there is a simple definition of life
under alternating play which is analogous to Benson’s:

Definition 3:

A set B of blocks is alive under alternating play in a set
of regions R if

Vbe B > SLC(b,r,B) >2
reER

Note that this ensures that blocks will never be cap-
tured: by construction, each block in B has at least one
liberty overall after any attacker move and two liberties
after the defender’s local reply. An example is shown in
Figure 5.

3.1 Extension to Chains

Unfortunately, definition 3 does not work very well in
practice, since blocks are often only adjacent to a region
that provides one sure liberty. These blocks obtain their
second liberty by connecting to another block that has
more sure liberties elsewhere. Figure 10 shows a typi-
cal example. Definitions 4 and 5 cover chains of safely
connected blocks instead of single blocks.

OO—@—00
00001 ed
oo L Jo 1 e

900000

Figure 10: Definition 3 does not suffice to prove safety

Definition 4: Chains and the Chain Condition
A chain is a set of blocks and a set of chain conditions
for connecting the blocks together.

A strategy for defender in region r fulfills the chain
condition for a set of defender blocks C' if it guarantees
the following invariant:

Either all elements of C' have been merged into a single

block,
or it 1s defender’s turn
or all blocks in C' have at least one liberty in 7.

Note that the chain condition is independent of the
problem of finding sure liberties. Blocks can be con-
nected by a chain condition in one region, but have their
sure liberties in other regions. However, all chain condi-
tions and all sure liberties must be maintained simulta-
neously.

Definition 5:

Let a set B of blocks be partitioned into a set of chains

Cg={e1,...,cn},ci CB

Let the sure liberty count of a chain ¢ in a region r be

defined as

SLC(e,r, B) = rilaxSLC'(b, r, B)
€Ec

where the computations of SLC'(b, v, B) are restricted to
strategies that maintain all chain conditions of ¢ in . B
is called alive under alternating play in a set of regions
R if there exists a partition C'p of B such that

Vee Cp Y SLC(c,r,B) > 2
reER

4 Static Recognition of Sure Liberties

This section develops some static criteria for recognizing
one or two sure liberties for enclosing blocks in a region.
The definitions are extensions of those given in [3], pp.

62-64.

4.1 Auxiliary Definitions

The following terms will be used for the static recogni-
tion of sure liberties. The accessible liberties of a region
AL(r) is the set of liberties of all enclosing blocks in the
region. Given a region r, the attacker’s surroundable
area ASA(r) is the set of interior points that are not oc-
cupied by the attacker. A point p in a region is called a
potential attacker eye point if the attacker could make an
eye there, provided the defender passes locally. The set
of potential attacker eye points is called the attacker’s
eye area. It 1s a subset of the attacker’s surroundable
area.

An ntersection point of a region is an empty point p
such that region —{p} is not connected and p is adjacent
to all enclosing blocks. Figure 11 shows some examples.

T@ a2 a a

Figure 11: Accessible liberties (a), potential attacker eye
points (b), attacker’s surroundable area (b+c), and in-
tersection points (d)

4.2 Static Recognition of One Sure Liberty

A region r with exactly one enclosing block has SLC' > 1
under following conditions:

1. each defender block in ASA(r) can be uniquely as-
signed two adjacent accessible liberties.

2. After step 1, all liberties of interior defender blocks
are added to the set of accessible liberties.

3. All empty points in ASA(r) which are not adjacent
to a defender block can be uniquely assigned two
adjacent accessible liberties.

Uniquely assigned means that in the whole process,
each liberty can only be used once. The result of the
assignment is a set of triples (p,{1,l2), where p is a de-
fender block or an empty interior point and /; and [5 are
liberties.

The following simple miai strategy ensures one liberty
for the defender: If the attacker occupies an empty point
pin a rule (p,{1,13), the rule is deleted and no action is
taken. If the attacker plays {; or ls in a rule (p,{1,{2),
the defender responds at the other liberty (/2 or 1), and
the rule is deleted. Following this strategy ensures that
the attacker cannot surround any of the interior points,
therefore the defender keeps a liberty in the region.

Figure 12 illustrates the construction of a miai strat-
egy. The diagram on the left shows a region and its
interior. The diagram on the right shows a miai strat-
egy that provides 1 sure liberty. In step 1, moves a; and
ay provide a connection for block a. In step 2, the two
liberties e; and es of block a are added to the acces-
sible liberty set. In step 3, two accessible liberties are
found for the remaining interior points b, ¢, d and e. The
complete strategy 1s given by the set of triples

(Cl, ay, Clz), (ba bla bZ)a (Ca C1, CZ)a (da dla dZ)a (6, €1, 62)

Benson’s healthy regions correspond to the special
case where ASA(r) is the empty set and the miai strat-
egy consists of an empty set of triples.

Om—l— 000 -
o b1 c1 @@
—O O Q@22 @
OO O @ el

Q2201 @
32‘
o

Figure 12: One sure liberty

More Than One Surrounding Block

In the case of a region with more than one surrounding
block, blocks are joined by miai connection strategies
before testing condition 1 above. Such a strategy is just
a pair of liberties ({1,l2), where defender responds to
an attacker move on one liberty by taking the other.

In Figure 13, three miai strategies (a1, as), (b1,b2) and
(¢1,c¢2) connect the four enclosing blocks.

Figure 13: Connecting enclosing blocks

Longer Connection Chains for Interior Blocks
Condition 1 above can be generalized in the following
way: blocks for which a miai connection strategy has
been found are merged into a chain, and the whole pro-
cess 1s repeated, respecting the liberties used so far. The
condition evaluates to true if all enclosing and interior
defender blocks are eventually connected by miai strate-
gies. Figure 14 shows some examples.

00000
o d—f
o0

o o
b:a:b‘: @ ° @
o OQ%—.a——. b @

00000008 “coeceeos

Figure 14: Connecting many interior blocks

4.3 Static Recognition: Two Sure Liberties

Definition 6:

A region r has SLC(b,r) > 2 for all its enclosing blocks
b if all empty points in the region are accessible liber-
ties and if the region has two intersection points. Each
such region can be split into two regions ri,rs with
SLC(b,r) > 1 and SLC(b,72) > 1 by playing a miai
strategy on the two intersection points. Figure 15 shows
two examples.

5 Search for Sure Liberties

Search for both one and two sure liberties makes use of
the static recognition methods developed in the previous
section. Search may be constrained by chain conditions
on some sets of blocks. Players move alternately in the
same region. The attacker moves first and wins all ko
fights. Play ends as soon as the static evaluation can
decide whether one or two liberties can be reached locally

by defender.

al a2
i
900

Figure 15: Two sure liberties

The search procedures use standard game tree search
techniques: alpha-beta minmax search with iterative
deepening, a transposition table and standard enhance-
ments. The only task-specific procedures are move gen-
eration and evaluation.

5.1 Move Generation

Move generation is currently very simple: all legal lo-
cal moves, plus a pass move, are generated. In addi-
tion, attacker is allowed to immediately recapture a ko.
Move generation could easily be improved by recognizing
forced moves during the search, such as answering when
a block’s local liberty count decreases critically.

5.2 Evaluation

Evaluation returns three possible values: success, failure
and unknown. Success for the defender is decided by the
static evaluation. Defender fails if a boundary block loses
its last local liberty, or if a chain condition is violated. If
the last two moves were both passes, the real local liberty
count 1s used as the sure liberty count. In all other cases,
the value unknown is returned by evaluation. Success
and failure of the attacker are computed by negating the
defender’s evaluation.

6 Proving the Safety of Regions

The static methods of sections 2.1 and 4 simultaneously
prove the safety of blocks and regions. When sure lib-
erties are proven by search, as in section 5, the safety
of regions does not follow automatically: a region can
provide sure liberties for an enclosing block because the
attacker does not have a good move. This can happen
even if the liberties are shared with the attacker in seki.
In Figure 16, both black blocks have two sure liberties
locally. However, it does not follow that the area is black
territory. If Black does not have further sure liberties on
the outside, it 1s a seki and the two liberties are also sure
for the white block inside.

6.1 Regions Surrounded by Safe Blocks

Once the safety of some blocks has been established, it
becomes easier to prove the safety of further adjacent

)
00000

Figure 16: Two sure liberties in possible seki

regions since these regions need not provide sure liberties
for these blocks. It is sufficient to prove that the attacker
cannot live inside the region. In Figure 17, the safety of
the black blocks has already been proven by using regions
a and b. If White cannot make two eyes in the top left,
it proves that the area is black territory. Both static
and search-based methods are considered for proving the
safety of regions surrounded by safe blocks.

OT000

-0

O_
0000:0

Figure 17: Proving the safety of regions

Static Recognition of Safe Regions

The attacker cannot live inside a region surrounded by
safe blocks if there are no two nonadjacent potential at-
tacker eye points, or if the attacker eye area forms a
nakade shape.

6.2 Areas Adjacent to Some Safe Stones

Consider the case where the safety of some but not all en-
closing blocks has been established already. These blocks
have two safe external liberties. Some of the other stones
may have one safe external liberty, or external connec-
tion possibilities. Such cases can be handled by a com-
bination of the search algorithms discussed above.

7 Results

The performance of both static and search-based
algorithms has been tested on the problem set
IG5 31 _counted from the Computer Go Test Collection
[4]. This set contains 31 games played by amateur dan
players. The games have been played to completion and
counted.

7.1 Test on Final Positions from Games

This test was performed on the final positions of the 31
games. The goal was to prove the safety of stones and
territories in each position. An ideal algorithm should
classify 100% of the points in this test set. The table

shows the number of points and blocks that could be
proven safe using Benson’s, the static and the search-
based algorithms. It also shows the number of points
that were proven to be dame, using the algorithm from

(3], p. 64.

Test Results

The test set contains 31 x 361 = 11191 points and 1123
blocks. Our preliminary implementation used a subset
of the methods described in section 4. The depth limit
for iterative deepening was set to 6 ply. Three different
kinds of searches were performed:

e recognize 1 sure liberty
e recognize 2 sure liberties

e prove the safety of regions surrounded by safe stones

Method ‘ Points ‘ Blocks ‘ Dame ‘
Benson | 1886 (16%) | 103 (9%) | 16 ‘
Static 2481 (22%) | 168 (14%) | 22

Search | 2954 (26%) | 198 (17%) | 24

Figure 18 shows the best and the worst results. The
shaded regions have been proven to be safe territory. In
the best case (92% of points classified), there are many
small regions, and almost all of them can be resolved.
In the worst case (0%), the board contains only a few
huge territories. Current algorithms have no chance of
proving them safe. This situation occurred in 5 of the
31 test positions.

et 176! ']
FOOOO @O 0]
0000

Bl to! (e MED
OO0
o 3 S%f’
0800
O®
000
'Y tob
OO0O0®
ogaﬁfﬁﬁt_

O
0O
[1o]
0O

Rty
’)1%2 ole] 2

[
ST

s

Figure 18: Examples of good (Nr.4) and bad (Nr.9) clas-
sification

Heuristic Classification

In an informal experiment, the evaluation of the Go pro-
gram Explorer [3] was tried on the same test set. Almost
all blocks and territories were classified correctly by the
heuristic evaluation. In a few cases, Explorer thought
that a dead group was still unsettled, or that a huge ter-
ritory was not yet safe. For computer-computer games,
these assessments may be appropriate.

8 Applications of Safety Proving
Techniques

Safety proving techniques have many important applica-
tions in Computer Go, and will probably become stan-
dard ingredients of programs as they approach dan level.
Some cases where safety proofs are useful are:

exact counting of the score To count the score it is
neccessary to determine which territories are al-
ready safe and which defensive moves have to be
played.

finding threats Ko threats can be found by trying
out moves against safe territories and re-checking
whether they are still safe.

board partition For the exact solution of endgames by
combinatorial game methods [3], board partition by
provably safe stones is a required first step.

seki To create or prevent seki as in Figure 2, safety of
territory must be investigated even if the tactical
safety of stones has been proven.

9 Summary and Future Work

Increasingly powerful computers make the application
of exact methods in Computer Go feasible for a growing
number of subproblems. In this paper, an exact method
for proving the safety of stones and territories was pre-
sented.

The algorithms work well if the board decomposes into
a large number of regions. To handle larger areas, the
algorithm can be improved in a number of ways: more
elaborate partition plans for big areas, heuristic evalua-
tion for move ordering, and better static tests for sure
liberties. The algorithms could also be generalized to
work in non-closed regions, make use of outside liber-
ties, and incorporate knowledge on semeai.

References

[1] David B. Benson. Life in the Game of Go. Informa-
tion Sciences, vol. 10 (1976), pp.17-29. Reprinted in
Computer Games, Levy, D.N.L. (Editor), Vol. II, pp.
203-213, Springer Verlag, New York 1988.

[2] Toshio Ikeda. On the Rules of Go. Fujitsu Ltd.,
Tokyo, Japan 1992.

[3] Martin Miiller. Computer Go as a Sum of Local
Games: An Application of Combinatorial Game The-
ory. Ph.D. thesis; ETH Zirich, 1995.

[4] Martin Miiller. CGTC, the Computer Go Test Col-
lection. http://wwwjn.inf.ethz.ch/martin/cgtc.html.
ETH Zirich, 1995.

