
FUEGO –
An Open-source Framework for Board Games

and Go Engine Based on Monte-Carlo Tree Search

Markus Enzenberger, Martin Müller, Broderick Arneson and Richard Segal

Abstract— FUEGO is both an open-source software frame-
work and a state of the art program that plays the game of
Go. The framework supports developing game engines for full-
information two-player board games, and is used successfully in
a substantial number of projects. The FUEGO Go program be-
came the first program to win a game against a top professional
player in 9×9 Go. It has won a number of strong tournaments
against other programs, and is competitive for 19× 19 as well.

This paper gives an overview of the development and
current state of the FUEGO project. It describes the reusable
components of the software framework and specific algorithms
used in the Go engine.

I. INTRODUCTION

Research in computing science is driven by the interplay
of theory and practice. Advances in theory, such as Monte-
Carlo Tree Search (MCTS) and the UCT algorithm [1], [2],
have led to breakthrough performance in computer Go, as
pioneered by the programs CRAZY STONE [1] and MOGO
[3], [4]. In turn, attempts to improve the playing strength
of these programs have led to improved algorithms, such as
RAVE and prior knowledge initialization [5]. Another crucial
advance has been the development of parallel MCTS algo-
rithms, both for shared and distributed memory architectures
[6], [7], [8]. Recently, the scope of Monte-Carlo tree search
methods has greatly expanded to include many other games
[9], [10], [11], [12], [13] as well as a number of interesting
single-agent applications [14], [15], [16], [17] and multi-
player games [18].

FUEGO is an open-source software framework for devel-
oping game engines for full-information two-player board
games, as well as a state of the art Go program. Open source
software can facilitate and accelerate research. It lowers the
overhead of getting started with research in a field, and allows
experiments with new algorithms that would not be possible
otherwise because of the cost of implementing a complete
state of the art system. Successful previous examples show
the importance of open-source software: GNU GO [19]
provided the first open source Go program with a strength
approaching that of the best classical programs. It has had a
huge impact, attracting dozens of researchers and hundreds of
hobbyists. In chess, programs such as GNU CHESS, CRAFTY
and FRUIT have popularized innovative ideas and provided
reference implementations. To give one more example, in the
field of domain-independent planning, systems with publicly

Dept. of Computing Science, University of Alberta; IBM. Corresponding
author email: mmueller@ualberta.ca.

available source code such as Hoffmann’s FF [20] have had
a similarly massive impact, and have enabled much followup
research.

FUEGO contains a game-independent, state of the art
implementation of MCTS with many standard enhancements.
It implements a coherent design, consistent with software
engineering best practices. Advanced features include a lock-
free shared memory architecture, and a flexible and general
plug-in architecture for adding domain-specific knowledge in
the game tree. The FUEGO framework has been proven in
applications to Go, Hex, Havannah and Amazons.

The main innovation of the overall FUEGO framework may
lie not in the novelty of any of its specific methods and
algorithms, but in the fact that for the first time, a state of
the art implementation of these methods is made available
freely to the public in form of a consistent, well-designed,
tested and maintained open source software.

Among comparable systems, only an executable is avail-
able for MOGO [3], [21] and for commercial programs
such as THE MANY FACES OF GO, ZEN and KCC IGO.
The reference MCTS implementations by Dailey [22] and
Boon provide a very useful starting point, but are far from a
competitive system. Similarly, Lew’s LIBEGO [23] provides
an extremely fast but limited implementation of MCTS.
Recent versions of GNU GO [19] contain a hybrid system
adding Monte-Carlo search to GNU GO. However, it is
several hundred Elo rating points weaker than state of the
art programs. Baudis’ PACHI [24] is a strong and relatively
new open source MCTS Go program. All these programs are
specialized to play the game of Go.

A. Why Focus on MCTS and on Go?

Research in computer Go has been revolutionized by
MCTS methods, and has seen more progress within the last
four years than in the two decades before. Programs are close
to perfection on 7 × 7 and have reached top human level
on the 9 × 9 board. In August 2009, FUEGO became the
first program to win an even game against a top-level 9 Dan
professional player on 9 × 9. See Section IV-A for details.
MOGO, CRAZY STONE and THE MANY FACES OF GO have
also achieved a number of successes against professional
players on 9× 9.

On 19 × 19, programs are still much weaker than top
humans, but they have achieved some success with handicaps
of 6-9 stones [25]. The top programs ZEN, THE MANY
FACES OF GO and AYA have reached amateur dan (master)

level on 19× 19. Many MCTS programs have surpassed the
strength of all classical programs. In a four stone handicap
game shown in Section IV-A, FUEGO was able to score a
lucky win against a strong 6 Dan amateur.

MCTS has greatly improved the state of the art in General
Game Playing (GGP). The first MCTS program, CADIA-
PLAYER by Finnsson and Björnsson, won both the 2007 and
2008 AAAI competitions [9]. MCTS has now been adopted
by all strong GGP programs.

The MCTS approach is being intensely investigated in
several other games as well. Recent games programming con-
ferences are dominated by papers on MCTS and applications.
In the games of Amazons and Hex, MCTS-based programs
have surpassed the strength of classical approaches [10], [11].
At the 13th International Computer Games Championship in
Beijing 2008, the MCTS-based Amazons program INVADER
won a close match against the five time defending champion,
the classical alpha-beta searcher 8 QUEENS PROBLEM, and
convincingly defended its title in Pamplona the following
year. In Hex, the current champion MOHEX, built upon
FUEGO’s MCTS implementation, remained unbeaten in Pam-
plona 2009 [12] after finishing in second place in Beijing
2008 [11]. The recently popular game of Havannah is another
success story for MCTS [13].

In games where alphabeta works very well there is natu-
rally less interest in new techniques. A paper on MCTS in
shogi has won the best paper award at the yearly workshop on
game programming in Japan, GPW, in 2008 [26]. A MCTS
analysis option is provided in the top chess program Rybka
[27].

II. THE FUEGO SOFTWARE FRAMEWORK

A. History

FUEGO builds on two previous projects: Kierulf’s SMART
GAME BOARD [28], [29] and Müller’s EXPLORER [30], [31].
SMART GAME BOARD is a workbench for game-playing
programs that has been under development since the mid
1980’s. EXPLORER is a Go-playing program built on top of
SMART GAME BOARD. It’s history goes back to Chen and
Kierulf’s first version, called GO EXPLORER, in 1988.

Motivated by the successes of CRAZY STONE and MOGO,
Enzenberger started to implement an MCTS program in
2007. This program was built on top of the SMARTGAME
and GO core routines but independent of the remaining
EXPLORER code base. This program, simply called UCT
at first, was renamed to FUEGO and in May 2008 became
an open source project.

B. Technical Description and Requirements

This paper describes version 0.4.1 of FUEGO. File down-
loads and access to the version control system are available
at the SourceForge public open-source hosting service [32].
FUEGO is distributed under the terms of the GNU Lesser
General Public License [33], version 3 or newer.

FUEGO is a software framework. In contrast to a small
library with limited functionality and a stable API, FUEGO

provides a large number of classes and functions. The API
is not stable between major releases. Porting applications
that depend on the FUEGO libraries to a new major release
can be a significant effort. For each major release a stable
branch is created, which is used for applying critical bug fixes
that do not break the API, and can be used by applications
that do not want or need to follow new developments in
the main branch. The code is divided into five libraries, and
uses a largely consistent coding style. Figure 1 shows the
dependency graph of the libraries and applications.

The code is written in C++ with portability in mind. Apart
from the standard C++ library, it uses selected parts of the
Boost libraries [34], which are available for a large number of
platforms. The required version of Boost is 1.33.1 or newer.
FUEGO compiles successfully with recent versions of gcc,
from 4.1.2 up. Older versions of gcc will probably work but
have not been tested.

Platform-dependent functionality, such as time measure-
ment or process creation, is encapsulated in classes of
the SMARTGAME library (see Section II-D). The default
implementation of those classes uses POSIX function calls.
No attempt is made to provide GUI-specific functionality.
GUIs or other controllers can interface to the game engines
by linking, if they are written in C++ or a compatible
language, or by inter-process communication using the Go
Text Protocol.

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain

Fig. 1. Libraries and applications of FUEGO

C. GTPENGINE library

GTP, the Go Text Protocol [35], is a text-based protocol
for controlling a Go engine over a command and response
stream, such as the standard I/O streams of the process,
or network sockets. It was first used by GNU GO [19]
and has gained widespread adoption in the Computer Go
community. Its many applications include connecting an
engine to graphical user interfaces, regression testing, and
setting engine parameters through configuration files written
in GTP. The protocol has been adapted via game-specific
command sets to other games such as Amazons, Othello [36],
Havannah and Hex.

FUEGO’s GTPENGINE library provides a game-
independent implementation of GTP. Concrete game
engines will typically derive from the base engine class
and register new commands and their handlers. The base
engine runs the command loop, parses commands and
invokes the command handlers. In addition, GTPENGINE
provides support for pondering, to keep the engine running
in the opponent’s time. The pondering function of a game
engine is invoked whenever it is waiting for the next
command. The base engine sets a flag when the next
command has been received to indicate to the game-specific
subclass that its pondering function needs to terminate. This
facilitates the use of pondering, because the necessary use of
multithreading is hidden in the base engine. The functions
of the subclass do not need to be thread-safe, because they
are only invoked sequentially. GTPENGINE also provides
support for the non-standard GTP extension for interrupting
commands as used by the GOGUI graphical user interface
[37]. The necessary multithreaded implementation is again
hidden in the base engine class.

D. SMARTGAME library

The SMARTGAME library contains generally useful game-
independent functionality. It includes utility classes, classes
that encapsulate non-portable platform-dependent function-
ality, and classes and functions that help to represent the
game state for two-player games on square boards. Further
classes represent, load and save game trees in Smart Game
Format (SGF) [38]. The two most complex classes are
game-independent implementations of the alpha-beta search
algorithm and Monte-Carlo tree search. Both search classes
assume that player moves can be represented by positive
integer values. This restriction could be lifted in the future by
making the move class a template parameter of the search.

1) Alpha-beta search: SMARTGAME contains a game-
independent alpha-beta search engine. It supports standard
alpha-beta search with iterative deepening, fractional ply
extensions, a transposition table, Probcut [39], and move
ordering heuristics such as the history heuristic and pre-
ordering the best move from the previous iteration. Tracing
functionality can be used to save a search tree as an SGF
file, with game-specific text information stored in nodes.

2) Monte-Carlo tree search: The base Monte-Carlo tree
search class implements the UCT search algorithm [2]
with a number of commonly used enhancements. Concrete
subclasses need to implement pure virtual functions for
representing the game state, generating and playing moves in
both the in-tree phase and the playout phase, and evaluating
terminal states.

The search can optionally use the Rapid Action Value
Estimation (RAVE) heuristic [5], an important enhancement
for games such as Go that exhibit a high correlation between
the values of the same move in different positions. RAVE
is implemented in a slightly different form than originally
used by MOGO. Instead of adding a UCT-like bias term to
the move value and the RAVE value before computing the
weighted sum, the weighted sum of the values is computed

first, and the UCT bias term is added after that. Since most
moves have only RAVE samples initially, the UCT bias
term is slightly modified by adding 1 to the number of
move samples. This avoids a division by zero with minimal
impact on the value of the bias term for larger numbers of
move samples. The weights of the move and RAVE value
are derived by treating them as independent estimators and
minimizing the mean squared error of the weighted sum [40],
[32]. The mean squared error of the move and RAVE value
are modeled with the function a/N + b with the number
of samples N and experimentally determined constants a, b.
The RAVE values can optionally be updated by weighting
the samples with a function that decreases with the number
of moves between the game states. Both move and RAVE
values can be initialized by a subclass with game-specific
prior knowledge [5].

For efficiency, the tree implementation avoids dynamic
memory allocation and stores nodes in a fixed pre-allocated
array. Nodes are never deleted during a search. If the tree
runs out of memory, the search can optionally do garbage
collection as follows: First, all nodes with a count below a
configurable threshold - 16 by default - are pruned, then the
search resumes, using the reduced tree.

Most search parameters can be changed at run-time to fa-
cilitate tuning. The search also collects statistical information
such as the average in-tree and total length of simulations,
and the number of simulations per second.

3) Multithreading in the Monte-Carlo tree search: The
search supports parallelization on a single shared memory
system using multithreading. Each thread runs the normal
Monte-Carlo tree search algorithm and has its own game
state. All threads share the same game tree; in the default
setting, all modifications of the tree are protected by a global
mutex. The maximum speedup of this parallelization method
is limited by the inverse of the time that is spent in the
phases of the simulation that needs locking (the in-tree play
phase and the tree update phase) as a percentage of the total
time for the simulation. Chaslot et al. have proposed a more
fine-grained locking mechanism that needs a separate mutex
for each node in the tree [8], but this did not work well in
practice. Usually, a large number of nodes are shared between
the in-tree move sequences of different threads; at least the
root node is always shared.

FUEGO’s lock-free multithreading mode can significantly
improve performance [41]. Since this mode depends on
hardware support for a specific memory model, it is an
optional feature of the base search class that needs to be
enabled explicitly. The lock-free implementation does not
use any mutexes. Each thread has its own node allocator.
If multiple threads expand the same node, only the children
created last are used. This causes a small memory overhead.
Move and RAVE values are stored in the nodes as counts
and incrementally updated mean values, and are updated
without protection of a mutex. This can cause updates of
the mean to be lost with or without increment of the count,
as well as updates of the mean occurring without increment

of the count. In practice, these wrong updates occur with low
probability and are intentionally ignored. The requirements
on the memory model of the platform are that writes of the
basic types size t, int, float and pointers are atomic, and
that writes by one thread are seen in the same order by
another thread. The popular IA-32 and Intel-64 architectures
guarantee these assumptions and even synchronize CPU
caches after writes [42].

Figure 2 shows the performance of locked and lock-free
multithreading with n threads in comparison to a single-
threaded search given n times more time. The experiment
used the MCTS Go engine of FUEGO 0.3 on both 9 × 9
and 19 × 19 boards, with one second per move, on a Intel
Xeon E5420 2.5 GHz dual quadcore system. Unless indicated
otherwise, all experiments in this article use this hardware
platform. Each data point shows the percentage of wins
in 1000 games against the baseline single-threaded version
using 1 sec. Locking does not scale beyond two threads on
9× 9 and three on 19× 19. The lock-free algorithm scaled
up to seven threads in this experiment. Preliminary results
on a 16 core 2.7GHz AMD system suggest that the program
continues to improve with more cores, though the gain is
marginal in the case of 9× 9. The measured win rate of 16
vs 8 threads was 69.4± 1.5% on 19× 19 and 54.4± 1.6%
on 9× 9.

Other optional features can improve the multithreaded
performance depending on the game and the number of
threads.

• The virtual loss technique [8] is very effective for Go
in FUEGO. It reduces the chance that different threads
explore the same or very similar in-tree sequences.

• Using more than one playout per simulation decreases
the percentage of time that is spent in the in-tree phase
in each simulation. It is currently not used in Go.

4) External and Persistent Knowledge in Lockfree MCTS:
Only a very small fraction of nodes in a Monte-Carlo search
tree receive a large number of simulations [43]. Therefore,
relatively expensive external knowledge can be applied to
such “heavy” nodes. The additional knowledge can be used
to prune moves from further consideration, add new moves
in a selective search, or modify the values of existing moves.

FUEGO offers a very general plug-in architecture for
applying external knowledge. Multiple sources of knowledge
can be applied at different thresholds for number of simu-
lations in a node. In multi-threaded search, care is taken to
avoid that several threads concurrently compute the same
expensive knowledge. Each node stores the threshold at
which it last computed knowledge. When a thread discovers
that a node needs to compute knowledge, it immediately
updates this value. While this does not completely eliminate
duplicate work, it works very well in practice.

The current FUEGO Go engine does not use the external
knowledge mechanism. It is the main mechanism used in
FUEGOEX (see Section II-H).

FUEGO’S MCTS engine also provides a mechanism to
apply persistent knowledge to parts of a game tree. Such

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

w
in

s

Number threads / time multiplier

9 x 9

singlethreaded
lock-free

locked

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

w
in

s

Number threads / time multiplier

19 x 19

singlethreaded
lock-free

locked

Fig. 2. Self-play performance of locked and lock-free multithreading in
comparison to a single-threaded search (1 sec per move)

knowledge remains true starting from a node N until the
end of the game. An example from the game of Hex are
dead cells which can be assigned to a specific player without
affecting the game-theoretic value of the game. If a move m
is pruned by using persistent knowledge, then the subtrees
below the remaining children of N are pruned. Since m can
appear in many locations under these children, exploring the
entire subtree and removing each node individually would be
expensive. The world champion Hex program MOHEX uses
this feature extensively, to great effect [12]. It is currently not
used by the Go engines, but could be helpful for an endgame
solver that stores persistent safe territories.

E. GO Library

The GO library builds on SMARTGAME and provides
fairly standard game-specific functionality. The most impor-
tant class is an efficient implementation of a Go board, which
keeps a history of all moves played and allows to undo them.
It incrementally keeps track of the stones and liberties of all
blocks on the board and can check moves for legality. The
commonly used ko rules - simple ko, situational superko and
positional superko - are supported. Different game-ending
conventions can be set, such as whether to remove dead
stones, and the number of passes required to end a game.

Among others, the GO library contains a base class that
implements generally useful Go-specific GTP commands. Its
two methods for detecting safe stones and territories are
Benson’s widely used algorithm for unconditional life [44]
and Müller’s extension for life under alternating play [30].

F. Opening Book

The opening book class has functions to read opening
positions from a data file in a simple text format, and match
the book against the current position. It handles rotations and
mirroring of the position. FUEGO contains one such data file
with both a 9 × 9 and a 19 × 19 opening book, plus a few
opening moves for 5 × 5 and 7 × 7. While the small board
books are hand-built, the 19 × 19 book consists of about
1300 moves from popular full-board openings extracted from
master games by Ben Lambrechts. Larger books are available
for an optional download [45].

Older versions of FUEGO used to be infamous for in-
efficient opening play. In absence of a book move, on
19 × 19 FUEGO now always occupies the 4-4 star point in
an empty corner. This is consistent with the center-oriented
playing style of MCTS programs. In self-play, this simple
rule yielded 56.9 ± 1.4% wins. FUEGO currently does not
contain a joseki book with local standard sequences.

The design principles of the hand-built 9× 9 book are to
avoid bad moves, and to keep the game as simple as possible
in favorable positions. To keep the book small, only one
move is selected per position. This makes the book easier
to maintain, but can be exploited by opponents to prepare
“killer” variations. Most of the book lines are short.

FUEGO’s small human-built book is in stark contrast to
MOGO’s massive machine-built books [46]. It would be very
interesting to compare these books, for example by swapping
the books used by FUEGO and MOGO. Another contrasting
approach is YOGO’s book, which contains a large number
of traps designed by professional 6 Dan Yu Ping. These
traps are positions that are often misplayed by current MCTS
programs.

The FUEGO book is grown by analyzing losses caused
by weak openings, and by examining winning statistics of
matches against other strong programs. Therefore it is biased
towards lines that have occurred in practice, and still has big
“holes” in other lines.

The current 9 × 9 book contains 1296 positions, which
get expanded into 10126 positions by adding rotated and
mirrored variations for fast matching. Most lines are of length
5 or shorter. In self-play the 9 × 9 opening book gives
about a 60-70 Elo points gain. Interestingly, this gain remains
roughly constant over a large range of 12 - 48000 simulations
per move. Many weaknesses addressed by the book seem
to be systematic weaknesses in FUEGO’s opening play that
cannot be discovered easily by more search. A different, less
favorable comparison test of FUEGO with and without the
opening book against GNU GO 3.8 is given in Section IV-
E.

G. Other Libraries and Applications

The FUEGO framework further includes the following
libraries: SIMPLEPLAYERS is a collection of simple Go
playing algorithms, for example a random player and a player
that maximizes an influence function by 1-ply search. These
players can be used for testing and reference purposes.

GOUCT and FUEGOMAIN are a library and application
that contain the main FUEGO Go engine and a GTP interface
to it. The main FUEGO Go engine is described in detail in
Section III.

FUEGOTEST is a GTP interface to functionality in the
SMARTGAME and GO libraries. It provides access to the
engine via additional GTP commands which need not be
included in the main FUEGO engine, for example for running
regression tests. FUEGOTEST also provides an interface for
the players in the SIMPLEPLAYERS library.

H. External Applications and Playing Engines that use
FUEGO

The following projects currently use the FUEGO frame-
work:

MOHEX is the world’s strongest Hex program [12]. It uses
the MCTS framework with persistent knowledge from the
current release of FUEGO, along with SMARTGAME utilities
such as reading and writing SGF files, random number
generation, and timers/clocks.

EXPLORER is a classical knowledge- and local search-
based Go program [30], [31]. The FUEGO modules GT-
PENGINE, SMARTGAME, GO and SIMPLEPLAYERS were
originally extracted from EXPLORER and are still used there
as well. EXPLORER is kept in sync with the development
version of FUEGO.

FUEGOEX combines some of the knowledge and local
search-based techniques of EXPLORER with the MCTS of
FUEGO. It implements three forms of external knowledge as
plug-in to FUEGO’s MCTS as discussed in Section II-D.4.
FUEGOEX uses EXPLORER’s tactical searches, bad move
filters, and patterns to prune and adjust the values for nodes
above a threshold of about 200 - 250 simulations. A detailed
discussion of FUEGOEX is beyond the scope of this paper.

BLUEFUEGO is a massively parallel version of FUEGO
developed by Richard Segal at IBM. It uses MPI to share
playout information between nodes on a cluster. It has been
used successfully in the Pamplona 2009 tournament as well
as in the man-machine matches described below. Similarly,
BLUEFUEGOEX is a distributed version of FUEGOEX. The
design and performance of BLUEFUEGO will be discussed
in Section III-D.

SRI has a research team working on a DARPA-funded Go
seedling project. Their research explores machine learning
techniques for learning new patterns during self-play to
improve playing strength, as well as testing an influence
function designed by Thomas Wolf. FUEGO 0.2.1 is used as
a base to insert/interface their own players and test against
other simple players in FUEGO as well as connecting to
CGOS.

TSUMEGO EXPLORER is the world’s best Life and Death
solver for enclosed areas [47]. It uses the SMARTGAME and
GO libraries. Its code base is kept up to date with FUEGO.

RLGO is a reinforcement learning Go program [40]
built on the SMARTGAME and GO libraries from FUEGO
0.1. In addition, the tournament version of RLGO uses the
default playout policy from FUEGO 0.1 to rollout games to
completion.

ARROW is an Amazons-playing program [48]. It uses the
classical alpha-beta search and other basic functionality from
the SMARTGAME module. ARROW is kept in sync with the
FUEGO development version.

SOS implements a simple abstract Sum-of-Switches game
and is used for experiments with Monte-Carlo Tree Search
and RAVE [49]. It currently uses the UCT search framework
from FUEGO 0.3.

More research Projects Several other current and previ-
ous research projects by students at the University of Alberta
have used the FUEGO framework for topics such as com-
binatorial games [50], adversarial planning [51], MCTS in
Amazons and Havannah. Further projects involving FUEGO
are currently under way at universities such as Tokyo Institute
of Technology and UC Santa Cruz.

III. THE FUEGO GO ENGINE

The GOUCT library contains the main Go engine of
FUEGO, which performs full-board Monte-Carlo tree search.
The library contains classes that can be reused for other
Monte-Carlo tree search applications in Go, for example
local searches [51]. An extended Go-specific GTP engine
interfaces to the main FUEGO player, implements commands
for setting player and search parameters, and allows querying
information about the search. The FUEGOMAIN application
contains the top-level main function, which runs the GTP
engine over standard I/O streams.

A. Full-board Monte-Carlo Tree Search

The Go-specific MCTS class extends the SMARTGAME
MCTS class by providing a Go-specific game state. The
game state uses the regular Go board from the GO library
in the in-tree phase, and a specialized Go board for the
playout phase. The playout board is speed-optimized at the
cost of reduced functionality: it still updates information
about stones and liberties of blocks incrementally. It does
not support undoing moves, and supports only the simple ko
rule. For code reuse, many board functions are C++ templates
taking the board class as a template parameter.

The full-board MCTS class further extends the Go-specific
MCTS class. It implements a playout policy and prior
knowledge.

1) Playout Policy: FUEGO’s default playout policy has
evolved from the one originally used by MOGO [3]. At the
highest priority levels, capture moves, atari-defense moves,
and moves matching a small set of hand-selected 3 × 3
“MoGo” patterns are chosen if they are near the last move
played on the board. FUEGO-specific enhancements include
a move generator for 2-liberty blocks and pattern matching

near the second last move. If no move was selected so far,
a global capture moves are attempted next. Finally, a move
is selected randomly among all legal moves on the board.

The policy for 2-liberty blocks is applied both to the
last opponent move and to adjacent blocks of the player.
It generates moves on good liberties, which are points that
would gain liberties for that block and are not self-atari.
However, moves within simple chains such as bamboo and
diagonal connections are skipped.

A move replacement policy similar to the one in CRAZY
STONE [1] attempts to move tactically bad moves to an
adjacent point or a better liberty. Moves in one-point eyes are
suppressed unless an adjacent stone is in atari. A relatively
recent addition to FUEGO’s playout policy is a balancing rule
in conjunction with preventing mutual atari/selfatari moves
which would otherwise destroy coexistence (seki) situations.
Balancing means that the rule has to be used roughly equally
often by both players. This combination achieved about 52%
wins in self-play testing.

During a playout, a pass move is generated only if no
other moves were produced. A simulation ends either by
two consecutive passes, or through a mercy rule when the
difference in number of captured stones exceeds 30% of the
board.

A number of further heuristics is implemented in FUEGO
but disabled because of negative test results: MOGO-style
rules for nakade and fillboard, as well as several heuristics
to avoid bad shape “ clumps” of stones.

2) In-tree Child Selection: Child selection in the in-
tree phase of MCTS primarily uses the combined mean
and RAVE estimator described above, with the following
enhancements:

Prior knowledge [5] initializes moves in the tree with a
number of “virtual” wins and losses. Candidate moves from
the playout policy receive a boost. Additional bonuses are
given globally to moves matching the 3 × 3 patterns of the
playout policy, moves that put the opponent into atari, and
moves in the neighborhood of the last move. Self-atari moves
are penalized. The number of virtual wins and losses depends
on both the move class and the board size.

A move filter completely prunes moves in the root node.
This filter can run algorithms that would take too much time
if they were run at every node of the search, and can use
code that is not thread-safe. Currently, unsuccessful ladder-
defense moves are pruned in this way, because the result of
these ladders is unlikely to become visible within the search
tree on large board sizes. Moves on the first line of the board
are pruned if there is no stone closeby.

The SkipRave heuristic addresses the problem that RAVE
effectively prunes moves that are good if played right away,
but very bad “on average” if played later. In the child
selection computation, one in every N = 20 calls ignores
RAVE and selects the move based only on the mean value.
A 53% winning rate was observed in self-play testing.

3) Evaluation of Terminal Positions: The evaluation of
terminal positions in the playout phase is simple, because
a pass is only generated when no other move is available.

After two consecutive pass moves, the position is assumed to
contain only alive blocks and single-point eyes or connection
points. Therefore the score can be easily determined using
Tromp-Taylor rules. The win/loss evaluation is modified by
small bonuses that favor shorter playouts and terminal posi-
tions with a larger score. This plays more human-like moves
by preferring wins with fewer moves, and by maximizing
the score even if moves are all wins or all losses. It also
contributes with a small amount to the playing strength.
Playouts with long sequences and wins with a small score
have a larger error. Preserving a larger advantage increases
the margin of safety against errors later in the game.

Evaluation is more difficult in the in-tree phase, because
pass moves are always generated here to avoid losing sekis
in zugzwang situations. A terminal position after two passes
in the in-tree phase often contains dead blocks. However, the
search does not have information about the status of blocks.
Therefore, the score is determined using Tromp-Taylor rules:
every block is considered to be alive. Together with the
additional requirements that the two passes are both played in
the search, this will still generate the best move if Chinese
rules are used, in which dead blocks may remain on the
board, because the Tromp-Taylor score of a territory is a
lower bound to its Chinese score. The player to move will
only generate a pass move if the game is a win in case the
opponent terminates the game by also playing a pass, and the
resulting “final” position is evaluated with Tromp-Taylor.

B. The Player

The player class of the Go engine uses full-board MCTS
to generate moves and provides additional functionality. The
player sets search parameters, which may vary depending on
the current board size, such as the ones defining the RAVE
weighting function.

By default, the player chooses the most-simulated move at
the root. A few other rules such as highest mean value are
also implemented.

If pondering is enabled, the player searches the current
position while waiting for the opponent to move. The next
search of the player can be initialized with the reusable
subtree of the most recent search, either from pondering or
from the last regular search.

With the optional early pass feature, the player aborts the
search early if the value of the root node is close to a win.
In this case, it performs additional searches to check if the
position is still a safe win even after passing, and if the status
of all points on the board is determined. Determining the
status of points uses an optional feature of Fuego, where the
search computes ownership statistics for each point on the
board, averaged over all terminal positions in the playouts.
If passing seems to win with high probability, the player
passes immediately. This avoids the continuation of play in
clearly won positions and avoids losing points by playing
moves in safe territory under Japanese rules. This works
relatively well, but is not a full implementation of Japanese
rules since playouts are not adapted to that rule set. Point
ownership statistics are also used to implement the standard

GTP commands for querying the final score and the final
status of blocks.

C. Development and Debugging
FUEGO provides a number of GTP commands that are

compatible with GOGUI’s generic analyze commands [37].
These defined response types of such commands allow the
response to be displayed graphically on the GOGUI board.
This allows a visualization of the engine state or details of
the search results, which helps development and debugging.
FUEGO can visualize the search dynamically by writing
information in GOGUI’s LIVEGFX syntax to the standard
error stream. Data such as visit counts of the children of the
root node, the current main variation of the search, and point
ownership can be sent and is regularly updated on GOGUI’s
display.

Many search parameters can be changed at runtime with
GTP commands. This makes it easy to experiment with
different search parameters in a given position, and to set
up parameter tuning experiments. FUEGO can be started up
with a configuration file that contains an arbitrary sequence
of GTP commands. Such files are also used to configure the
engine for tournament play, by setting parameters such as
number of threads and memory. Since the GTP commands
for setting parameters are compatible with GOGUI’s param-
eter command type, GOGUI can automatically create edit
dialogs for them. Figure 3 shows FUEGO running in GOGUI
with a dialog for setting search parameters.

Fig. 3. FUEGO running in GOGUI.

The search tree and the history of all games played in
the simulations can be saved in SGF format. The saved
search tree contains the position and RAVE counts and values
as SGF label properties or as text information in comment
properties.

D. BLUEFUEGO

BLUEFUEGO is an extension of FUEGO developed at
IBM. It uses the standard MPI library to support multi-

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

w
in

s

Number of machines / time multiplier

19 x 19

Single Machine
Tree Synchronization

UCT Results Synchronization

Fig. 4. Scaling of BLUEFUEGO on 60 minute 19× 19 self-play games.

machine clusters. Distributed parallelism is achieved using
a new synchronization algorithm called UCT Results Syn-
chronization. Gelly et. al [6] considered and rejected Full
Results Synchronization due to its inability to scale to large
clusters. Full Results Synchronization simulates a large-
shared memory machine by broadcasting the results of each
UCT trial to all machines in a cluster. On a cluster with
N machines, each processor must handle N − 1 updates for
every one of its own. Since the cost of each update for 19×19
FUEGO is about 10% of the total cost of a trial, Full Results
Synchronization cannot scale to more than 10 machines and
would likely scale to far fewer machines due to the increased
communication cost.

UCT Results Synchronization takes advantage of the fact
that the cost of updating the UCT tree is dominated by the
cost of processing RAVE data. In UCT Results Synchroniza-
tion, only updates to the UCT statistics are broadcast. This
substantially reduces the cost of processing remote updates
and thereby makes scaling to moderately sized clusters
possible. Figure 4 compares the scaling of BLUEFUEGO’s
UCT Results Synchronization algorithm with MOGO’s Tree
Synchronization algorithm and a single machine with n
times more time. The data for each point was collected by
running five-hundred 19 × 19 self-play games on a Blue
Gene/P super computer where each player was given 60
minutes for all moves. The results show that UCT Results
Synchronization provides positive scaling up to at least 16
distributed machines. A separate experiment showed a 72%
winning rate over 50 games for BLUEFUEGO running on a
cluster of 8× 8 core Intel machines against FUEGO running
on a single 16 core machine in 9 × 9 self-play games.
These results show that UCT Results Synchronization can
be effective for both 19× 19 and 9× 9 play.

However, Figure 4 also shows that UCT Results Synchro-
nization is outperformed by MOGO’s Tree Synchronization
algorithm when running on four or more machines. UCT
Results Synchronization does not appear to offer any advan-
tage over Tree Synchronization and therefore will likely be
replaced in future versions of BLUEFUEGO. Both algorithms

with n machines fall far short of the performance of a single
machine given n times more time. This suggests that further
research on efficient parallel MCTS is needed.

IV. PERFORMANCE

The Go program FUEGO is evaluated both in play against
humans, and in matches against other programs.

A. Play against Humans

An official Human vs. Computer Program Competition
was held August 21-22 2009 on Jeju Island, Korea as part
of the FUZZ-IEEE 2009 conference. Four programs, ZEN,
MOGO, THE MANY FACES OF GO and FUEGO, were invited
to this event. FUEGO played by using BLUEFUEGO over a
cluster of 10 nodes. Each node was an 8-core shared memory
machine running one copy of FUEGO. For the 19×19 game,
an early experimental version of BLUEFUEGOEX was used.

BLUEFUEGO / BLUEFUEGOEX played a total of three
official games. Two were 9 × 9 games against the top-
ranked professional 9 Dan Zhou Junxun (his name is also
transliterated as Chou Chun-Hsun). On August 22, 2009,
BLUEFUEGO won its game playing white against Mr. Zhou
by 2.5 points, and became the first computer program to
win a 9 × 9 Go game on even terms against a world top
player. Figure 5 shows the game. According to the experts,
Mr. Zhou did not make a mistake in this game, but FUEGO’s
play was also flawless. Figure 6 plots FUEGO’s score estimate
(expressed as a winning percentage) over time. FUEGO’s
successive moves 8 and 10 created a strong position. Mr.
Zhou realized early on that he was in trouble, and spent much
time on the opening, looking for a way to change the flow of
the game. In the end, with normal play FUEGO would win
by 0.5 points, but Mr. Zhou tried a line with more potential
for confusing the program which resulted in a final score of
2.5 for FUEGO. FUEGO’s move 40 inside its own territory,
eliminating ko threats and making sure White can win the
final ko, is the only path to victory. This game represents a
milestone for Computer Go research: while programs such
as MOGO had previously won 9 × 9 games against lower
ranked professional Go players, this is the first time that a
player of Zhou’s caliber, widely regarded to be among the
top 20 players in the world, has lost an even 9× 9 game to
a computer program.

BLUEFUEGO easily lost its second game, playing Black
against Mr. Zhou, as shown in Figure 7. Move 3, played
from FUEGO’s human-built opening book, was criticized by
the experts, and although the program fought well afterwards
it did not get any chances in this game.

In the final official game, shown in Figure 8, BLUEFUE-
GOEX got an upset win on 19×19 against Mr. Chang Shen-
Su, a strong 6 Dan amateur player, with only 4 handicap
stones. BLUEFUEGOEX was completely outplayed by Mr.
Chang in the opening and middlegame. In typical Monte-
Carlo fashion, FUEGO ignored large losses in the corners and
staked everything on a wide open center position. Suddenly,
a small mistake by the human in the top center allowed the

program to close off a huge center territory on both open
sides and thereby win the game.

Fig. 5. FUEGO (White) vs. Zhou Junxun, professional 9 Dan. White wins
by 2.5 points.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

E
va

lu
at

io
n

sc
or

e

Elapsed time

Fuego

Fig. 6. FUEGO’s score estimate vs time in FUEGO (White) vs. Zhou Junxun.

FUEGO has also been tested in play against a large variety
of human players on internet Go servers. On KGS the
program has played using the handles fuego and fuego9.
It has achieved a rating of 2 kyu in 19 × 19 games. 9 × 9
games are not rated on KGS.

On the turn-based (slow play) server OGS, FUEGO has
achieved a rating of 5.7 Dan for 9× 9 [52].

B. Selected Tournament Results

FUEGO has achieved the following results in competitions
against other programs. In the list, KGS denotes the monthly
KGS Computer Go Tournament.

Fig. 7. FUEGO (Black) vs. Zhou Junxun. White wins by resignation.

Fig. 8. FUEGO (Black, 4 handicap) vs. Chang Shen-Su, amateur 6 Dan.
Black wins by resignation.

• 1st place, 55th KGS, 9× 9, 13 participants, 18 rounds,
16 wins, 2 losses, January 10, 2010.

• 2nd place, 54th KGS, 9× 9, 15 participants, 12 rounds,
9 wins, 3 losses, December 6, 2009.

• 1st place, 53rd KGS, 19×19, 9 participants, 10 rounds,
9 wins, 1 loss, November 8, 2009.

• 1st place, 14th Computer Olympiad 2009, 9× 9, Pam-
plona, Spain, 9 participants, 16 rounds double round
robin, 15 wins, 1 loss in main tournament, 2 wins
against MOGO in playoff, May 11-13, 2009.

• 2nd place, 14th Computer Olympiad 2009, 19 × 19,
Pamplona, Spain, 6 participants, 10 rounds double round
robin, 8 wins, 2 losses, May 14 and 16, 2009.

• 1st place, 45th KGS, 9 × 9, 4 participants, 12 rounds,
11 wins, 1 loss, December 7, 2008.

• 4th place, 13th International Computer Games Cham-
pionship, 19× 19, Beijing, China, October 1, 2008, 13
participants, round robin, 8 wins, 4 losses.

• 4th place, 13th International Computer Games Cham-
pionship, 9 × 9, Beijing, China, October 1, 2008, 18
participants, 9 double rounds, 11 wins, 7 losses.

• 5th place, 42nd KGS, September 14, 2008. 8 partici-
pants, 8 rounds, 4 wins, 4 losses.

• 6th place, 9 × 9 Computer Go Tournament, European
Go Congress, Leksand, Sweden, August 6, 2008. 8
participants, 5 rounds, 2 wins, 3 losses.

• 7th place, 19×19 Computer Go Tournament, European
Go Congress, Leksand, Sweden, August 6, 2008. 8
participants, 6 rounds, 2 wins, 3 losses, 1 round missed.

C. FUEGO on the Computer Go Server (CGOS)

FUEGO has been playing on the Computer Go Server
(CGOS) [53] since July 2007. CGOS is a game playing
server for Computer Go programs, which computes an in-
cremental Elo rating of the programs, as well as a Bayes Elo
rating based on the complete history of all games played.

Figure 9 shows the performance of FUEGO up to March
2010. The data is based on the Bayes Elo computation of
CGOS from March 10 2010 (16:04 UCT for 19× 19; 18:36
UCT for 9 × 9). Recent FUEGO builds, running on an 8-
core system are ranked as the 2nd-strongest program ever,
behind ZEN, and achieved a 2759 top Elo rating on 9 × 9.
The third ranked program on CGOS is MOGO running on
multinode supercomputer hardware. The strongest single-
core version of FUEGO achieved 2663 Elo, in clear second
place behind ZEN among single core versions. Regarding
the performance of BLUEFUEGO, only an indirect estimate
is currently available. Based on a measured 72% winning
rate with BLUEFUEGO on 8× 8 cores against FUEGO on a
16 core shared memory machine, and the 54% winning rate
of 16 core against 8 core (see above), the Elo rating would
be about 2950. However, such self-play experiments tend to
exaggerate playing strength increases. The performance in
man-machine matches is a more solid indicator of perfor-
mance at this high level where few meaningful comparisons
are available.

On 19 × 19, FUEGO is currently the 5th-ranked program
on CGOS with an 8-core rating of 2405 Elo, behind ZEN,
THE MANY FACES OF GO, CRAZY STONE and a multicore
version of PACHI. FUEGO’s single-core rating is 2148. The
performance details of each version including results against
individual opponents are archived on the CGOS website [53].
The web page [54] provides access to all this information.

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

01/07 04/07 07/07 10/07 01/08 04/08 07/08 10/08 01/09 04/09 07/09 10/09 01/10

E
lo

Date

9 x 9

Uct-1c
Uct-8c

Fuego-2c
Fuego-8c

 1800

 1900

 2000

 2100

 2200

 2300

 2400

01/07 07/07 01/08 07/08 01/09 07/09 01/10 07/10

E
lo

Date

19 x 19

19 x 19; Fuego-2c
19 x 19; Fuego-8c

Fig. 9. Performance on CGOS until the release of FUEGO version 0.4.1.
Early versions of the program played under the name UCT. 1c, 2c, 8c
indicate the number of CPU cores.

D. Regression and Performance Tests
A different measure of performance is provided by

collections of test problems. Such collections cannot
measure the overall playing strength, but provide in-
sight into strengths and weaknesses on specialized tasks.
The FUEGO project contains a large number of re-
gression and performance test suites which can be run
with the gogui-regress tool [37]. Some main topics are
avoiding blunders played in previous games, and testing
MCTS and static safety of territory modules. For details,
please see http://fuego.svn.sourceforge.net/
viewvc/fuego/trunk/regression/.

E. Performance Test of FUEGO MCTS against GNU GO

This test measures the scaling of MCTS in FUEGO SVN
revision 1139, a more recent development version with

characteristics similar to FUEGO 0.4.1. Figure 10 shows
the performance on 9 × 9 and 19 × 19 depending on the
number of simulated games per move. The opponent was
GNU GO 3.8 level 10 with options --never-resign
--chinese-rules --capture-all-dead. Two sets
of tests were run, with and without opening book. The effect
of the book is less pronounced than in self-play but still
visible. For reference, on an Intel Xeon E5420 2.5 GHz,
FUEGO achieves about 11000 simulations per second per
core on an empty 9 × 9 board and about 2750 simulations
on an empty 19× 19 board.

-400

-200

 0

 200

 400

 600

 800

 100 1000 10000 100000

E
lo

 d
iff

er
en

ce

Number simulations

9 x 9

With book
No book

-600

-400

-200

 0

 200

 400

 1000 10000 100000

E
lo

 d
iff

er
en

ce

Number simulations

19 x 19

Fig. 10. Performance on 9× 9 and 19× 19 against GNU GO version 3.8
depending on the number of simulated games per move.

V. FUTURE WORK AND OUTLOOK

FUEGO is a work in progress. Some of the bigger goals
for future improvements include:

• Grow the user community and increase the number of
developers and applications.

• Develop a massively parallel version of BLUEFUEGO.
• Apply FUEGO’s MCTS engine to other games such as

Amazons or Havannah.
• Further develop FUEGO on 19× 19.

ACKNOWLEDGEMENTS

A large number of people have contributed to the FUEGO
project: Anders Kierulf and Ken Chen developed the original
SMART GAME BOARD and EXPLORER, parts of which still
survive in the FUEGO framework in some form. Contributors
at the University of Alberta include Adi Botea, Tim Furtak,
Akihiro Kishimoto, Xiaozhen Niu, Arpad Rimmel, David
Silver, David Tom and Ling Zhao. Gerry Tesauro at IBM
was involved in many aspects of this work. Ben Lambrechts
created and maintains the large opening books as well as
the port to Windows. DARPA, iCORE, NSERC, IBM and
Jonathan Schaeffer provided financial and hardware support.
Finally, thanks go to the contributors to the fuego-devel mail-
ing list, and to the many members of the worldwide computer
Go community for sharing their ideas, encouragement and
friendly rivalry.

REFERENCES

[1] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proceedings of the 5th International Conference
on Computer and Games, ser. Lecture Notes in Computer Science,
J. van den Herik, P. Ciancarini, and H. Donkers, Eds., vol. 4630/2007.
Turin, Italy: Springer, June 2006, pp. 72–83. [Online]. Available:
http://remi.coulom.free.fr/CG2006/CG2006.pdf

[2] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Machine Learning: ECML 2006, ser. Lecture Notes in Computer
Science, vol. 4212. Springer, 2006, pp. 282–293.

[3] S. Gelly, “A contribution to reinforcement learning; application to
Computer-Go,” Ph.D. dissertation, Université Paris-Sud, 2007. [On-
line]. Available: http://www.lri.fr/∼gelly/paper/SylvainGellyThesis.pdf

[4] G. Chaslot, C. Fiter, J.-B. Hoock, A. Rimmel, and O. Teytaud, “Adding
expert knowledge and exploration in Monte-Carlo Tree Search,” in Ad-
vances in Computer Games, ser. Lecture Notes in Computer Science,
J. van den Herik and P. Spronck, Eds., vol. 6048. Pamplona, Spain:
Springer Verlag, 2010, pp. 1–13.

[5] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” in ICML ’07: Proceedings of the 24th international conference
on Machine learning. ACM, 2007, pp. 273–280. [Online]. Available:
http://dx.doi.org/10.1145/1273496.1273531

[6] S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian,
“The parallelization of Monte-Carlo planning - parallelization of MC-
planning,” in ICINCO-ICSO, J. Filipe, J. Andrade-Cetto, and J.-L.
Ferrier, Eds. INSTICC Press, 2008, pp. 244–249.

[7] T. Cazenave and N. Jouandeau, “A parallel Monte-Carlo tree search
algorithm,” in Computers and Games, ser. Lecture Notes in Computer
Science, J. van den Herik, X. Xu, Z. Ma, and M. Winands, Eds., vol.
5131. Springer, 2008, pp. 72–80.

[8] G. Chaslot, M. Winands, and J. van den Herik, “Parallel
Monte-Carlo tree search,” in Proceedings of the 6th International
Conference on Computer and Games, ser. Lecture Notes in Computer
Science, vol. 5131. Springer, 2008, pp. 60–71. [Online]. Available:
http://www.cs.unimaas.nl/g.chaslot/papers/parallelMCTS.pdf

[9] Y. Bjornsson and H. Finnsson, “Cadiaplayer: A simulation-based
general game player,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 1, no. 1, pp. 4–15, March 2009. [Online].
Available: http://dx.doi.org/10.1109/TCIAIG.2009.2018702

[10] R. Lorentz, “Amazons discover Monte-Carlo,” in Computers and
Games, ser. Lecture Notes in Computer Science, J. van den Herik,
X. Xu, Z. Ma, and M. Winands, Eds., vol. 5131. Springer, 2008, pp.
13–24.

[11] B. Arneson, R. Hayward, and P. Henderson, “Wolve wins Hex tour-
nament,” ICGA Journal, vol. 32, no. 1, pp. 48–53, 2009.

[12] ——, “Mohex wins Hex tournament,” ICGA Journal, vol. 32, no. 2,
pp. 114–116, 2009.

[13] F. Teytaud and O. Teytaud, “Creating an Upper-Confidence-Tree
program for Havannah,” in Advances in Computer Games, ser. Lecture
Notes in Computer Science, J. van den Herik and P. Spronck, Eds.,
vol. 6048. Pamplona, Spain: Springer Verlag, 2010, pp. 65–74.

[14] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel, “Bandit-
based optimization on graphs with application to library performance
tuning,” in ICML, ser. ACM International Conference Proceeding
Series, A. P. Danyluk, L. Bottou, and M. L. Littman, Eds., vol. 382.
ACM, 2009, p. 92.

[15] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. Chaslot,
and J. W. H. M. Uiterwijk, “Single-player Monte-Carlo tree search,”
in Computers and Games, ser. Lecture Notes in Computer Science,
J. van den Herik, X. Xu, Z. Ma, and M. Winands, Eds., vol. 5131.
Springer, 2008, pp. 1–12.

[16] A. Rimmel, “Bandit-based optimization on graphs with application to
library performance tuning,” Ph.D. dissertation, Université Paris-Sud,
Ecole doctorale d’informatique, December 2009.

[17] H. Nakhost and M. Müller, “Monte-Carlo exploration for deterministic
planning,” in Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI-09), Pasadena, California, USA, 2009, pp. 1766–
1771.

[18] N. Sturtevant, “An analysis of UCT in multi-player games,” in Com-
puters and Games, ser. Lecture Notes in Computer Science, J. van den
Herik, X. Xu, Z. Ma, and M. Winands, Eds., vol. 5131. Springer,
2008, pp. 37–49.

[19] Free Software Foundation, “GNU Go,” 2009, date retrieved: January
2, 2009. [Online]. Available: http://www.gnu.org/software/gnugo/

[20] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research (JAIR), vol. 14, pp. 253–302, 2001.

[21] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” 2006, technical Report RR-6062.
[Online]. Available: http://hal.inria.fr/inria-00117266/en

[22] D. Dailey, “Simple MC reference bot and specification,” 2008, date
retrieved: April 30, 2009. [Online]. Available: http://computer-go.org/
pipermail/computer-go/2008-October/016624.html

[23] L. Lew, “Library of effective Go routines,” 2010, date retrieved: March
10, 2010. [Online]. Available: http://github.com/lukaszlew/libego

[24] P. Baudis, “Pachi simple Go/baduk/weiqi bot,” 2010, date retrieved:
March 10, 2010. [Online]. Available: http://repo.or.cz/w/pachi.git

[25] N. Wedd, “Human-computer Go challenges,” 2009, date retrieved:
April 1, 2009. [Online]. Available: http://www.computer-go.info/h-c/
index.html

[26] Y. Sato and D. Takahashi, “A shogi program based on Monte-Carlo
tree search,” in 13th Game Programming Workshop (GPW-08), 2008,
pp. 1–8.

[27] S. Lopez, “Rybka’s Monte Carlo analysis,” 2008, date retrieved:
March 17, 2010. [Online]. Available: http://www.chessbase.com/
newsdetail.asp?newsid=5075

[28] A. Kierulf, “Smart Game Board: a workbench for game-playing
programs, with Go and Othello as case studies,” Ph.D. dissertation,
ETH Zürich, 1990.

[29] A. Kierulf, R. Gasser, P. M. Geiser, M. Müller, J. Nievergelt, and
C. Wirth, “Every interactive system evolves into hyperspace: The case
of the Smart Game Board,” in Hypertext/Hypermedia, ser. Informatik-
Fachberichte, H. Maurer, Ed., vol. 276. Springer, 1991, pp. 174–180.

[30] M. Müller, “Computer Go as a sum of local games: An application
of combinatorial game theory,” Ph.D. dissertation, ETH Zürich, 1995,
diss. ETH Nr. 11.006.

[31] ——, “Counting the score: Position evaluation in computer Go,” ICGA
Journal, vol. 25, no. 4, pp. 219–228, 2002.

[32] M. Enzenberger and M. Müller, “Fuego homepage,” 2008, date of
publication: May 27, 2008. Date retrieved: December 22, 2008.
[Online]. Available: http://fuego.sf.net/

[33] “GNU Lesser General Public License,” 2008, date of publication: June
29, 2007. Date retrieved: December 22, 2008. [Online]. Available:
http://www.gnu.org/licenses/lgpl.html

[34] B. Dawes, “Boost C++ libraries,” 2008, date retrieved: December
22, 2008. Date last modified: April 23, 2008. [Online]. Available:
http://www.boost.org/

[35] G. Farnebäck, “GTP - Go Text Protocol,” 2008, date retrieved: January
2, 2009. [Online]. Available: http://www.lysator.liu.se/∼gunnar/gtp/

[36] P. Pogonyshev, “Quarry homepage,” 2009, date retrieved: January 2,
2009. [Online]. Available: http://home.gna.org/quarry/

[37] M. Enzenberger, “GoGui,” 2009, date retrieved: January 2, 2009.
[Online]. Available: http://gogui.sf.net/

[38] A. Hollosi, “SGF file format,” 2009, date retrieved: January 2, 2009.
[Online]. Available: http://www.red-bean.com/sgf/

[39] M. Buro, “ProbCut: An effective selective extension of the alpha-beta
algorithm,” ICCA Journal, vol. 18, no. 2, pp. 71–76, June 1995.

[40] D. Silver, “Reinforcement learning and simulation-based search in
computer Go,” Ph.D. dissertation, University of Alberta, 2009.

[41] M. Enzenberger and M. Müller, “A lock-free multithreaded Monte-
Carlo tree search algorithm,” in Advances in Computer Games, ser.
Lecture Notes in Computer Science, J. van den Herik and P. Spronck,
Eds., vol. 6048. Pamplona, Spain: Springer Verlag, 2010, pp. 14–20.

[42] Intel 64 and IA-32 Architectures Software Developer’s Manual –
Volume 3A: System Programming Guide, Part 1, Intel Corporation,
2008, order Number: 253668-029US.

[43] G. Chaslot, M. Winands, J. Uiterwijk, J. van den Herik, and B. Bouzy,
“Progressive strategies for Monte-Carlo tree search,” New Mathematics
and Natural Computation, vol. 4, no. 3, pp. 343–357, 2008.

[44] D. B. Benson, “Life in the game of Go,” Information Sciences, vol. 10,
pp. 17–29, 1976.

[45] B. Lambrechts, “Opening books for Fuego,” 2010, date retrieved:
March 10, 2010. [Online]. Available: http://gnugo.baduk.org/fuegoob.
htm

[46] P. Audouard, G. Chaslot, J.-B. Hoock, A. Rimmel, J. Perez, and
O. Teytaud, “Grid coevolution for adaptive simulations; application
to the building of opening books in the game of Go,” in Applications
of Evolutionary Computing, ser. Lecture Notes in Computer Science,
vol. 5484. Springer, 2009, pp. 323–332.

[47] A. Kishimoto, “Correct and efficient search algorithms in the presence
of repetitions,” Ph.D. dissertation, University of Alberta, 2005.

[48] M. Müller, “Solving 5×5 Amazons,” in The 6th Game Programming
Workshop (GPW 2001), ser. IPSJ Symposium Series Vol.2001, no. 14,
Hakone, Japan, 2001, pp. 64–71.

[49] D. Tom and M. Müller, “A study of UCT and its enhancements in an
artificial game,” in Advances in Computer Games, ser. Lecture Notes
in Computer Science, J. van den Herik and P. Spronck, Eds., vol.
6048. Pamplona, Spain: Springer Verlag, 2010, pp. 55–64. [Online].
Available: http://hal.inria.fr/inria-00386477/en/

[50] M. Müller and Z. Li, “Locally informed global search for sums of
combinatorial games,” in Computers and Games: 4th International
Conference, CG 2004, ser. Lecture Notes in Computer Science,
J. van den Herik, Y. Björnsson, and N. Netanyahu, Eds., vol. 3846.
Ramat-Gan, Israel: Springer, 2006, pp. 273–284.

[51] L. Zhao and M. Müller, “Using artificial boundaries in the game
of Go,” in Computer and Games. 6th International Conference, ser.
Lecture Notes in Computer Science, J. van den Herik, X. Xu, Z. Ma,
and M. Winands, Eds., vol. 5131. Beijing, China: Springer, 2008,
pp. 81–91.

[52] OGS Online Go Server, “Player Profile - Fuego9x9-1h,” 2010, date
retrieved: March 10, 2010. [Online]. Available: http://www.online-go.
com/profile.php?user=26504

[53] D. Dailey, “Computer Go Server,” 2008, date retrieved: January 19,
2009. [Online]. Available: http://cgos.boardspace.net/

[54] M. Müller, “Fuego - CGOS history,” 2010, date retrieved: June
23, 2010. [Online]. Available: http://http://webdocs.cs.ualberta.ca/
∼mmueller/fuego/cgos.html

[55] J. van den Herik and P. Spronck, Eds., Advances in Computer Games.
12th International Conference, ACG 2009, Pamplona, Spain, May 11-
13, 2009, ser. Lecture Notes in Computer Science, vol. 6048. Springer,
2010.

[56] J. van den Herik, X. Xu, Z. Ma, and M. Winands, Eds., Computers
and Games, 6th International Conference, CG 2008, Beijing, China,
September 29 - October 1, 2008. Proceedings, ser. Lecture Notes in
Computer Science, vol. 5131. Springer, 2008.

