
Using Abstraction for Planning in Sokoban

Adi Botea, Martin Müller, and Jonathan Schaeffer

Department of Computing Science University of Alberta, Canada
{adib,mmueller,jonathan}@cs.ualberta.ca

Abstract. Heuristic search has been successful for games like chess and
checkers, but seems to be of limited value in games such as Go and shogi,
and puzzles such as Sokoban. Other techniques are necessary to approach
the performance that humans achieve in these hard domains. This paper
explores using planning as an alternative problem-solving framework for
Sokoban. Previous attempts to express Sokoban as a planning application
led to poor performance results. Abstract Sokoban is introduced as a new
planning formulation of the domain. The approach abstracts a Sokoban
problem into rooms and tunnels. This allows for the decomposition of the
hard initial problem into several simpler sub-problems, each of which can
be solved efficiently. The experimental results show that the abstraction
has the potential for an exponential reduction in the size of the search
space explored.

1 Introduction

Heuristic search has led to impressive performance in games such as chess and
checkers. However, for some two-player games like Go and shogi, or puzzles
like Sokoban, approaches based on heuristic search seem to be of limited value.
For example, the search effort required to solve Sokoban problems increases
exponentially with the difficulty of the problem [1]. Obviously, waiting until
computers become 10-fold faster is not the best way to address this problem.
New approaches are needed to deal with such hard domains, where humans still
perform much better than the best existing programs.

Planning can be a powerful alternative to heuristic search. For example,
humans are very good at planning in games, and not quite as good at searching.
The last few years have seen major advances in the capabilities of planning
systems, in part stimulated by the planning competitions held as part of the
AIPS conference [2]. However, there are only a few results in the literature about
using planning in a game-playing program [3, 4]. Part of the explanation for this
is that the performance-driven aspect of many game-playing research efforts is
more conducive to short-term objectives (i.e., what will make an impact in the
next tournament), rather than long-term goals. In single-agent search, macro
moves can be considered as simple plans and are, arguably, the most successful
planning idea to make its way into games/puzzle practice. Macro moves are
sequences of moves that are treated as a single, more powerful move. They can
dramatically reduce the search tree by collapsing a sub-tree into a single move.

J. Schaeffer et al. (Eds.): CG 2002, LNCS 2883, pp. 360–375, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Using Abstraction for Planning in Sokoban 361

The idea has been successfully used in the sliding-tile puzzle [5]. Two of the most
effective concepts used in the Sokoban solver Rolling Stone are macro moves
(tunnel and goal macros) [1].

Sokoban is an excellent test-bed for planning research, as the domain is rec-
ognized as being hard not only for humans, but also for artificial intelligence
(AI) applications [1]. In Sokoban, a man in a maze has to push stones from
their current location to designated goal locations. The problem is difficult for a
computer for several reasons including deadlocks (positions from which no goal
state can be reached), the large branching factor (can be over 100), long opti-
mal solutions (can be over 600 moves), and an expensive lower-bound heuristic
estimator, which limits search speed. Sokoban problems are especially challeng-
ing because they are composed to be as difficult as possible. Many problems
are combinations of wonderful and subtle ideas, and finding the solution may
require substantial resources — both for humans and computers. Sokoban has
been shown to be PSPACE-complete [6]. Junghanns’ Sokoban solver Rolling
Stone is able to find solutions for two thirds of the standard 90-problem test
suite1 [1, 7]. There is also a strong Japanese Sokoban community whose best
program is written by a researcher who calls himself or herself deep green [1].

In this article we introduce a novel planning approach to the game of Sokoban,
with the goal of overcoming the limitations of previous approaches based on
heuristic search. There are at least two ways to represent Sokoban as a plan-
ning domain, and there is a huge difference in terms of efficiency between them.
The first, naive approach is to translate all the properties of the domain to a
planning representation. We call this the plain Sokoban domain representation.
For instance, a regular move in Sokoban becomes an action in the planning do-
main. Previous experiments based on this representation generated poor results
[8]. The second approach, which we will use in the paper, is to apply abstrac-
tion to the domain, so that the planner need only solve the simpler abstracted
problem. We call this the abstract Sokoban domain. Our abstract Sokoban rep-
resentation uses a preprocessing phase to decompose the puzzle into two types
of objects: rooms and tunnels. At the abstract level, the maze is reduced to a
graph of rooms linked by tunnels. The rooms are treated as black boxes. They
have abstract states that model their internal configuration. The planning ac-
tions, which are essentially macros of regular Sokoban moves, refer to moving a
stone from one object (room or tunnel) to another, rather than simply pushing
one stone to an adjacent free square. Planning is done at this high abstraction
level, which has a much smaller search space. By splitting the problem into a
local component (moves within a room) and a global component (moves between
rooms and tunnels), the initial search space is transformed into a hierarchy of
smaller spaces, each with a corresponding reduction in the search effort required.
The approach is similar to hierarchical A∗ [9].

In our approach, the abstract planning problem is solved using the standard
planner TLPlan [10]. Our initial results are very encouraging, showing a sub-
stantial reduction in the planning search effort required. In effect, the search

1 The test suite is available at http://xsokoban.lcs.mit.edu/xsokoban.html



362 Adi Botea, Martin Müller, and Jonathan Schaeffer

Fig. 1. Problem #1 in the standard 90 problem Sokoban test suite. The six goal squares
are the marked ones at the right end of the maze.

problem has been split into two much smaller searches: a local preprocessing
search and a global search.

The remainder of the paper is structured as follows: In the next section we
introduce the domain of Sokoban. Section 3 summarizes our general planning
framework for Sokoban and Sect. 4 provides details about our novel abstract
representation to the game. Section 5 presents experimental results and Sect. 6
contains conclusions and ideas for further work.

2 The Sokoban Domain

Sokoban is a single-player game created in Japan in the early 1980s. The puzzle
consists of a maze which has two types of squares: inaccessible wall squares and
accessible interior squares. Several stones are initially placed on some of the
interior squares. There is also a man that can walk around by moving from
his current position to any adjacent free interior position. A free position is an
interior square that is not occupied by either a stone or the man. If there is a
stone next to the man and the position behind the stone is free, then the man
can push the stone to that free square. The man moves forward to the initial
position of the stone. The goal of the game is to push all the stones to some
specific marked interior positions called goal squares. Figure 1 shows an example
of a Sokoban problem.

One of the most interesting features of Sokoban, which contributes to both
its hardness and its beauty, is the presence of deadlocks. A deadlock refers to an
unsolvable position, when there is at least one stone that can never be pushed to
a goal square. There are many types of deadlocks in Sokoban, from the simplest,
which affect only one stone, to some very subtle blockades, that can involve many



Using Abstraction for Planning in Sokoban 363

stones scattered over the whole puzzle. Humans who create Sokoban levels fully
exploit this property of the game to obtain difficult problems. Often, the key
issue in solving a problem is to detect some potential deadlocks and develop a
strategy that avoids them. In computer programs, the quality of the deadlock-
detection algorithm decisively affects the efficiency of the whole program. If a
deadlock is detected, then the search tree is pruned and the search effort is
significantly reduced. Since there is no goal node in the subtree of a deadlock
state, this kind of pruning is always safe. In contrast, if a deadlock exists but is
not detected, there is the danger that the corresponding node will be expanded
and the search continues in the resulting subtree for a long time, with no results.

In Sokoban, the solution length can be defined in two ways: either the man
movements or stone pushes can be counted. As a consequence, there are two types
of optimal solutions. However, since the domain is hard enough, we do not require
optimal solutions (nor do humans); any solution will do. This relaxation allows
us to define important equivalence relationships between local configurations of
the maze that lead to a simplification of the initial problem. All the equivalences
defined in this paper, which support the introduction of the key concept of
abstract states, ignore the optimality condition. If desired, non-optimal solutions
can be improved in a post-processing phase.

3 Planning in Sokoban

While many domains that are used as a test-bed for current planning systems
are quite simple, Sokoban is recognized in the planning community as a hard
planning domain. General purpose planners cannot deal with the game at a
satisfactory level. Junghanns and Schaeffer point out the limited performance
that state-of-the-art fully automated planners can achieve in Sokoban [11]. One
necessary step in improving the planners’ performance in Sokoban is to use
additional domain-specific knowledge, such as deadlock detection. This is why
we chose to use Fahiem Bacchus’ TLPlan, one of the few planners that allows
users to plug-in libraries that contain domain-specific code [10].

The main Sokoban-specific functions that we implemented deal with:

– Deadlock: Since deadlocks affect the search efficiency, we introduced a quick
test to detect local deadlock patterns. We use Junghanns’ database, which
contains all the local deadlock patterns that can occur in a 5x4 area [1].
Although this enhancement was an important gain, the problem of deadlocks
was far from being solved.

– Heuristic evaluation function: Since the heuristic function has a big impact
on the quality of the search algorithm, we used a custom heuristic, called
Minmatching, which is also used in Rolling Stone [1].

– State equivalence: The definition of equivalence of states also has a special
importance in Sokoban. For illustration, we provide the following example.
Suppose that two states have identical stone configurations but different man
positions. Suppose further that the man can walk from one position to the
other. The two states are equivalent (unless we seek optimal solutions that



364 Adi Botea, Martin Müller, and Jonathan Schaeffer

minimize man movements). We want to encode this relationship, as it leads
to an impressive reduction of the search space. For this reason TLPlan
was enhanced with functionality such that the planner now supports custom
functions to check the equivalence between states.

To enhance system performance, the plain planning representation of
Sokoban, which consists of translating the game properties into a planning lan-
guage such as STRIPS, was also replaced by a partially abstracted representa-
tion, called tunnel Sokoban. In tunnel Sokoban we identify all the tunnels present
in the maze and treat them at a high abstract level (as shown in Sect. 4). All
the possible configurations of a tunnel are reduced to a few abstract states and
planning actions such as parking a stone inside a tunnel or or pushing a stone
across a tunnel are defined.

The above modifications led to a program that is much more efficient than
plain translation with no domain-specific functions. However, the system could
not deal with even moderately complex puzzles. Only one from the standard
test suite of 90 problems can be solved by this approach. The limitations are
present because, even though the approach deals with the factors that make
Sokoban hard, it is not powerful enough to do it efficiently. The search space is
reduced by the tunnel macros, but the reduction is not big enough to achieve
reasonable performance. Moreover, although small deadlocks are detected, there
are many larger deadlock patterns that still have to be dealt with. We therefore
needed a method to further reduce the search space and deal with deadlocks more
efficiently. For this reason we introduced a new representation of the domain,
Abstract Sokoban, which uses abstraction not only for tunnels but also for the
rest of the maze.

4 Abstraction in Sokoban

Abstract Sokoban is a novel and highly abstracted representation of the game that
replaces the initial huge search space by several smaller search spaces. The search
is decomposed into several local searches and one global search. In other words,
the initial problem is transformed into several simpler problems in a divide-and-
conquer manner. In this approach planning is done at the global level, in a much
simpler abstract space. To obtain the abstraction of the problem, the first step
is to perform an initial analysis of the maze that decomposes it into objects of
two types: rooms and tunnels. The next two sub-sections provide details about
maze and problem decomposition.

4.1 Maze Decomposition

The concept of a tunnel macro was introduced in Rolling Stone [1]. In the
current version of our program, which is called Power Plan, tunnels of 7
abstract types are detected, including some trivial ones that have length 0. Figure
2 shows a few examples of tunnels.



Using Abstraction for Planning in Sokoban 365

Fig. 2. Various types of tunnels.

Tunnels are simple objects that do not need much processing. Their proper-
ties can be obtained with little computational effort. We define abstract states
for tunnels that characterize their stone configuration. While a tunnel can have
many configurations (the longer it is, the larger the number of configurations it
can have), the number of possible abstract states is very small. Depending on
its type, a tunnel can have between 1 and 3 possible legal abstract states, as we
show in the following example. Since the length of the tunnel in the lower-left
corner in Fig. 2 is 0 and therefore no stone can be temporarily parked inside it,
there is only one abstract state that the tunnel can have, corresponding to the
situation when it is empty. The straight tunnel in the upper-right corner of Fig.
2 can have two abstract states: either the tunnel is empty or there is a stone
parked inside it. In the latter case it is not important where exactly the stone is
placed — all the configurations are equivalent and they are merged into the same
abstract state. The tunnel in the upper-left corner of Fig. 2 has three possible
abstract states. One abstract state is defined for the empty tunnel. There is also
one state for the situation when a stone is pushed inside through the left end
of the tunnel. The last abstract state is for the case when a stone was pushed
inside through the right end of the tunnel. These last two abstract states have
different properties. In the first case, the stone can be taken out through the left
end only, while in the second case the same action can be done through the right
end only.

After computing tunnels, all the remaining interior points are grouped to-
gether in connected components called rooms. Two points belong to the same
room if and only if there is a connection between them that does not cross any
tunnel. We define abstract states for rooms in the following way: one abstract
state represents all the room configurations that can be obtained from each other
in such a way that neither any stone nor the man leaves or enters the room (we
say that these configurations are equivalent). We call a room that contains at



366 Adi Botea, Martin Müller, and Jonathan Schaeffer

R1
R3

T1

T2R2

T3

T0R0

T3

T2R2 R3

R1

R0

T1

T0

R0 R1 R2 R3

LOCAL PROBLEMS

GLOBAL PROBLEM

Fig. 3. A problem (#6 of the test suite) is decomposed into several abstract sub-
problems. There is one global problem as well as one local problem for each room.
Rooms and tunnels are denoted by R and T , respectively.

least one goal square a goal room. We emphasize once more that the definition
of abstract states for rooms and tunnels preserves solvability but not optimality
of solutions.

4.2 Problem Decomposition

Once the maze is split into rooms and tunnels, the initial problem can be de-
composed into several smaller ones, as shown in Fig. 3. At the global level, a
search problem is transformed into a graph (Ri, Tj), where the nodes Ri rep-
resent rooms and the edges Tj represent tunnels. Besides the global planning
problem, we also get several local search problems, one for each room. The com-
plexity of a local problem depends on both the size and the shape of a room.
The local problem attached to the one-square room R2 is much simpler than
the one attached to the largest room R3. While the complexity of the initial
problem increases exponentially with the size of the maze, the complexity of the
local problems increase exponentially with the size of the rooms only. Moreover,
since the local computation is done only once, its results can be reused many
times during the global-level search.

Local Problems. The challenge for each room is to compute and provide quick
access to information needed at planning time. At the local level, we compute
the graph of abstract states of the room. For each abstract state, some properties
are also calculated that will be used to check action preconditions at planning
time. For instance, for an abstract state we might want to know whether we can
push one more stone into the room through a certain tunnel. Another important
result of the local computation is that all the states that contain local deadlock
patterns are detected and eliminated from the search space.



Using Abstraction for Planning in Sokoban 367

The steps of the local abstraction are summarized as follows.

Algorithm 1 Rooms Local Processing.
1: remove dead squares;
2: build local move graph;
3: mark deadlock configurations;
4: run SCC (strongly connected components) algorithm, find abstract states (AS);
5: determine properties of AS, find abstract moves (actions) for AS.

The removal of dead squares is done earlier, during maze preprocessing. Two
types of squares are marked as dead: Some squares are completely useless and
we remove them from the maze (e.g., tunnels that have one end closed). As done
in Rolling Stone [1], we also mark the stone-dead squares, where the man
can go but stones cannot be pushed because of deadlock. Next, starting from
the initial stone configuration of the room, we compute the local move graph of
all possible configurations that the room can have. We can use the local move
graph to detect all deadlock configurations that can occur locally in the room.
We consider a local position to be deadlocked if we cannot clear the room of
stones or, equivalently, if there is no path in the local move graph from that
position to the empty position. We mark positions using retrograde analysis,
starting from the empty position, which is marked as legal. After all the n-stone
configurations have been marked as either legal or deadlock, we go to the next
level and mark the (n + 1)-stone configurations: if there is a path from the
current (n + 1)-stone position to a legal n-stone or (n + 1)-stone position, then
the current position is legal too. Otherwise, it is deadlocked.

In the next step, to obtain the abstract states of the room, we run the SCC
algorithm, which computes the strongly connected components of the local move
graph. Each strongly connected component becomes an abstract state. In this
way, equivalent configurations are merged together into the same abstract state.
All deadlock states are mapped into one abstract deadlock state. To be able to
check action preconditions at the planning level, for each abstract state some
predicates are also computed (such as “can push one more stone inside the
room through entrance X”). When the value of these predicates is TRUE, we
also compute the resulting abstract states after we perform the corresponding
actions, such as pushing one stone, pulling one stone, etc.

For rooms that have up to 15 non-dead squares we are usually able to com-
plete the local processing described above. However, for large rooms it is not
feasible to compute all the possible abstract states. Our program currently han-
dles only cases where a large room is directly linked to a goal room. Given an
abstract state of the large room, first we check whether we can push a stone to
the goal room. If so, we accomplish this action and do not compute preconditions
of any other possible actions. This optimization leads to a significant reduction of
the local problem complexity. Otherwise, preconditions of other possible actions
are computed. To further speed up the computation, we store minimal deadlock



368 Adi Botea, Martin Müller, and Jonathan Schaeffer

patterns and maximal legal patterns. Any position that contains a deadlock pat-
tern is illegal. Any position that is contained in a legal pattern is legal. How to
cope with large rooms in general is still an open question and constitutes one of
our main directions for future research.

To summarize, the original problem can be abstracted into rooms and tun-
nels. The internal state of a room can be computed by retrograde analysis as part
of the preprocessing stage. Our simplistic approach to computing rooms turns
out to be the bottleneck in performance (see Sect. 5). However, it was done this
way for simplicity, since it was more important to determine the viability of
the abstraction approach than it was to maximize performance. Obviously, not
all the states computed in the preprocessing will be needed during a planning
search. A better approach would be to compute only subsets of the room’s state
as needed by the planner.

Global Problem. In the global problem, the abstraction is obtained by map-
ping the maze to a small graph of rooms connected by tunnels. This global
problem is solved by planning in abstract Sokoban. To run our experiments, we
used TLPlan enhanced with domain-specific knowledge, as described in Sect.
3. Planning actions now refer to moving one stone from one room or tunnel to
another, rather than simply pushing one stone or moving the man by one square.
Objects involved in a stone movement change their abstract states after the cor-
responding action is completed. To be able to move one stone from one room to
another, stones in both rooms may have to be re-arranged and the exact way to
do it is computed at the local level.

The solutions obtained by our system are correct, but the completeness is
not guaranteed. For instance, when moving one stone from one room to another,
we currently compute only one possible way to re-arrange stones inside the con-
sidered rooms. However, there is a theoretical chance that the way we re-arrange
stones is not the one that allows us to get the solution of the problem. To reduce
this risk, when accomplishing an action, we do as few local changes as possi-
ble and keep open as many room entrances as possible. With this optimization,
we have not encountered so far any case when the system missed the solution
because of the completeness issue.

Table 1 summarizes the action types in the 3 planning approaches discussed
in this paper: plain, tunnel, and abstract Sokoban. While the actions always refer
to pushing a stone from one node to another, the meaning of nodes is different:
regular squares in plain Sokoban, tunnels and squares in tunnel Sokoban, and
rooms and tunnels in abstract Sokoban.

The planning goal is expressed as the conjunction of the conditions that each
goal room should obey. The overall goal is reached when all goal rooms are in
the abstract state where all its goal squares are occupied by a stone. In Fig. 3,
R0 is the only goal room of the maze and it contains 8 goal squares.

Compared to plain Sokoban and tunnel Sokoban, the abstract representation
shows greater promise for addressing the game as a planning problem. As will
be shown in Sect. 5, problems that cannot be solved by the first two approaches



Using Abstraction for Planning in Sokoban 369

Table 1. A comparison of actions in the three Sokoban planning representations.

Representation

Type Nodes Actions

plain squares push(node1, node2)

Sokoban

tunnel squares + tunnels push(node1, node2)

Sokoban cross(tunnel)

abstract rooms + tunnels push(node1, node2)

Sokoban (objects)

are easily handled in the abstract one. The two main factors that explain this
important improvement are search space size and deadlock detection. In abstract
Sokoban the search space is much smaller than in plain and tunnel Sokoban.
Both branching factor and solution length are greatly reduced as a result of the
abstraction. One abstract move or action is typically composed of several normal
Sokoban moves. Planning in abstract Sokoban is also simpler because there are
less deadlocks to deal with. All the deadlocks that can occur inside one room
are handled by the local analysis. A move never goes into a local deadlock. The
only deadlocks that still have to be considered at the planning level are the large
ones that involve interactions between several rooms and tunnels.

5 Experimental Results

In this section we present experimental results for solving Sokoban using abstrac-
tion. Since it is more meaningful to run the tests on real problems (as opposed
to using toy problems), we have chosen 10 out of the 90 levels from the stan-
dard test suite for our experiments. The 10 problems, which are shown in the
Appendix, are solvable by our abstract Sokoban system. Six problems (1, 2, 6,
7, 17, 80) are composed of small rooms and therefore the local preprocessing
can be done completely. The other four (3, 4, 5, 9) contain both large and small
rooms. Our current framework for large rooms can successfully cope with these
problems. These results should be viewed as preliminary, as we scale the system
to handle the remaining 80 problems. Our system, called Power Plan, uses ab-
stract Sokoban and TLPlan. To evaluate its performance, we compared Power
Plan with two other approaches: TLPlan + tunnel Sokoban (or simply tunnel
Sokoban) and Rolling Stone, which is the best search-based Sokoban solver
available.

Figure 4 shows how the solution length is reduced in Power Plan and
Rolling Stone. SP represents the number of stone pushes in the solutions
found by Rolling Stone. These are the best values that we know of, and in
many cases they are equal to the optimal values. Since Rolling Stone uses
macro moves in its tunnel macros and goal macros, RS, which is the length of
the solution found by Rolling Stone, is smaller than SP . AS, which stands for



370 Adi Botea, Martin Müller, and Jonathan Schaeffer

0

100

200

300

7 1 6 2 3 5 17 80 2 4

So
lu

tio
n 

L
en

gt
h

Problem Number

SP
RS
AS

Fig. 4. Solution length in Power Plan (AS) and Rolling Stone (RS). SP is close
to the number of stone pushes in the optimal solution. Since both Power Plan and
Rolling Stone use macro moves, AS and RS are smaller than SP .

abstract Sokoban, is the length of the solution found by Power Plan (i.e., the
number of planning actions). AS is much smaller than SP , as one planning action
in abstract Sokoban corresponds to several regular moves. Since the solution
length reduction is a measure of how the search space is reduced, the graph
suggests that our global search space is smaller than the main search space used
in Rolling Stone. This is an important result, as it promises an exponential
reduction in the search space.

When using tunnel Sokoban, TLPlan can seldom solve a problem entirely
(in our test subset, only the simplest problem, which has 6 stones, can be solved).
For this reason, we solve sub-problems of the initial problem. A sub-problem is
obtained by removing from the initial configuration some stones as well as an
equal number of goal squares. Figure 5 reveals how the effort for solving sub-
problems of Problem #6 evolves for Rolling Stone (RS), tunnel Sokoban
(TS), and Power Plan (AS). Here the number of expanded nodes in the main
search are plotted (note the logarithmic scale). Tunnel Sokoban is only able to
solve sub-problems with 7 or less stones. For the next sub-problem (8 stones)
this system didn’t find a solution after running for more than 20 CPU hours.
Compared to Rolling Stone, Power Plan achieves a reduction by a factor
that remains stable over the whole set of sub-problems of Problem #6. This
graph also illustrates how dramatically the search effort can be reduced by the
choice of problem representation and solving method.

Table 2 presents a more detailed comparison between abstract Sokoban and
tunnel Sokoban. The data demonstrates a huge difference in terms of efficiency
between the two approaches. Even if the numbers in the PPN column seem to



Using Abstraction for Planning in Sokoban 371

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 e

xp
an

de
d 

no
de

s

Number of stones

TS
RS
AS

Fig. 5. The expanded nodes in the main search for abstract Sokoban (AS), tunnel
Sokoban (TS), and Rolling Stone (RS). The values were obtained for sub-problems
of Problem #6.

be large, the preprocessing is fast. The processing cost for a node in the local
search space is low, since there is no heuristic function to be computed.

Table 3 shows a comparison between Power Plan and Rolling Stone.
As in the case of abstract Sokoban, Rolling Stone also uses two types of
search and, to be able to perform a measurement, we consider a one-to-one
correspondence between the search spaces in the two approaches. At the global
level Rolling Stone does the so-called top-level search, whose purpose is to
find a goal state. We denote the number of searched nodes at the top level by
TLN and compare it to PlN from abstract Sokoban. There is also the pattern
search in Rolling Stone, whose main goal is to determine deadlock patterns
and find better bounds for the heuristic function [12] (PSN is the number of
expanded nodes in the pattern search). We compare pattern search in Rolling
Stone with local preprocessing in Power Plan, as they both are means to
simplify the main search.

The good news is that, for many problems, the number of planning nodes
PlN is smaller than TLN , which supports the claim that our global search space
is smaller than the one considered by Rolling Stone. In contrast, when analyz-
ing PSN and PPN , we infer that Rolling Stone is more efficient from this
perspective. Indeed, Rolling Stone is a finely tuned application, developed
over several years of effort, while there is still room to improve our local com-
putation. Although the preprocessing search is very fast, rooms can be big. We
therefore need ways to get around the performance bottleneck induced by pre-
processing. Some ideas have already been implemented in our system, as shown
in Sect. 4. Problems #3, #4, and #9, which contain large rooms, are solved



372 Adi Botea, Martin Müller, and Jonathan Schaeffer

Table 2. Abstract Sokoban vs. tunnel Sokoban. Sub-problem x(y) is obtained from
problem x by placing y stones in the maze. The sub-problems listed are the largest that
tunnel Sokoban can solve. P lN is the number of expanded nodes during the planning
search. PPN is the number of expanded nodes during the preprocessing phase. The
time is measured in seconds.

Abstract Sokoban Tunnel Sokoban

Sub-problem PlN PPN Time PlN Time

1(6) 71 1,044 1.57 10,589 126.24

2(6) 24 61,113 0.93 80,740 9,490.21

3(7) 8 482 0.12 77,919 12,248.66

4(6) 9 41,065 0.80 27,514 3,061.94

5(6) 7 404 0.20 53,141 11,733.83

6(7) 19 54,317 1.06 71,579 8,189.77

7(8) 13 26,011 0.75 132 0.88

9(6) 13 245 0.25 35,799 4,883.55

17(5) 1,047 306,224 29.63 14,189 391.42

80(6) 10 395,583 3.02 14,266 949.98

efficiently by our program. However, there are many improvements that can be
further added in order to process large rooms efficiently. Rolling Stone is also
faster than our system, with the exception of Problem #4 and Problem #9. The
overhead is determined by the local processing as well as the usage of a general
purpose planner. The version of TLPlan that we used in our experiments is
often two orders of magnitude slower than the latest experimental version of the
planner [13]. On the other hand, our method has the advantage that other plan-
ners too can be used to solve the global planning problem, whereas Rolling
Stone is a special purpose system.

Our first results confirm that our problem-solving architecture works. We
have already obtained evidence that abstract Sokoban is more efficient than
other planning representations of the game. To the best of our knowledge, no
previous planning attempts in Sokoban led to solving real problems. However,
as the comparison with Rolling Stone shows, parts of our architecture, such
as local computation, are still in an early stage. A few of the ideas about how
to improve our system’s performance are presented in Sect. 6.

6 Conclusions and Future Work

In games such as Sokoban, approaches based on heuristic search seem to be of
limited value. In this paper we have proposed an alternative problem-solving
architecture based on AI planning. Since the classical representation of Sokoban
as a planning domain did not lead to acceptable results, we introduced abstract
Sokoban, mapping the puzzle to a highly abstracted planning domain. Our first



Using Abstraction for Planning in Sokoban 373

Table 3. Abstract Sokoban vs. Rolling Stone. P lN is the number of expanded nodes
in the planning search, PPN is the number of preprocessing nodes, TLN is the number
of top-level nodes, and PSN is the number of nodes in the pattern search. The time
is measured in seconds.

Abstract Sokoban Rolling Stone

Problem PlN PPN Time TLN PSN Time

1 71 1,044 1.57 50 1,042 0.14

2 635 62,037 16.10 80 7,530 0.63

3 12 19,948 2.04 87 12,902 0.23

4 128 69,511 3.20 187 50,369 3.27

5 36 297,334 23.14 202 43,294 1.72

6 36 54,414 1.37 84 5,118 0.31

7 54 35,813 1.57 1,392 28,460 1.37

9 35 7,607 1.01 1,884 436,801 22.17

17 8,091 444,073 166.98 2,038 29,116 2.23

80 47 877,914 4.56 165 26,943 2.25

experimental results support the claim that abstract Sokoban outperforms other
planning representations of the game. Furthermore, since abstraction leads to
a huge reduction of the global search space, we are encouraged to say that
planning could be used to overcome the limitations exhibited by heuristic search
in Sokoban.

There are many directions that we plan to explore with abstract Sokoban.
Our framework does not currently handle all types of large rooms. In addition,
the rooms local computation can be further optimized. As a consequence, one of
our main future work directions is to complete and improve the local processing
for both goal and regular rooms. Another enhancement that we expect to have a
great impact on the system performance is a smarter decomposition of the maze
into rooms and tunnels. While our heuristic rule that guides this process is quite
rigid, it can be replaced by a strategy aiming to optimize several parameters (e.g.,
minimize the number of rooms and tunnels, minimize the interactions between
rooms and tunnels). Moreover, the global planning search space can be further
simplified, detecting large deadlocks that involve interactions between several
rooms and tunnels. One important future research topic is to try our ideas
in real-life planning domains (e.g., robotics related). Automatic abstraction of
planning domains can also be an interesting extension of our work.

References

1. Junghanns, A.: Pushing the Limits: New Developments in Single-Agent Search.
PhD thesis, Department of Computing Science, University of Alberta (1999)

2. Bacchus, F.: AIPS’00 planning competition. AI Magazine (2001) 47–56



374 Adi Botea, Martin Müller, and Jonathan Schaeffer

3. Shapiro, A.: Structured Induction in Expert Systems. Turing Institute Press.
Addison-Wesley (1987)

4. Wilkins, D.: Using knowledge to control tree searching. Artificial Intelligence 18
(1982) 1–51

5. Korf, R.: Macro-operators: A weak method for learning. Artificial Intelligence
26(1) (1985) 35–77

6. Culberson, J.: Sokoban is PSPACE-complete. Technical report, Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada (1997)
ftp://ftp.cs.ualberta.ca/pub/TechReports/1997/TR97-02.

7. Junghanns, A., Schaeffer, J.: Sokoban: Enhancing single-agent search using domain
knowledge. Artificial Intelligence 129 (2001) 219–251

8. McDermott, D.: Using regression-match graphs to control search in planning.
(1997) http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/mcdermott.html.

9. Holte, R., Perez, M., Zimmer, R., MacDonald, A.: Hierarchical A*: Searching
abstraction hierarchies efficiently. Technical report, University of Ottawa, TR-95-
18 (1995)

10. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence 16 (2000) 123–191

11. Junghanns, A., Schaeffer, J.: Domain-dependent single-agent search enhancements.
In: Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),
Morgan Kaufmann Publishers (1999) 570–575

12. Junghanns, A., Schaeffer, J.: Single-agent search in the presence of deadlock. In:
Fifteenth National Conference of the American Association for Artificial Intelli-
gence (AAAI-98), AAAI Press (1998) 419–424

13. Bacchus, F.: Personal communication (2002)



Using Abstraction for Planning in Sokoban 375

Appendix: The 10 Problem Test Suite

Problem #1

Problem #6Problem #5Problem #4

Problem #9 Problem #17Problem #7

Problem #80

Problem #2 Problem #3


	1 Introduction
	2 The Sokoban Domain
	3 Planning in Sokoban
	4 Abstraction in Sokoban
	4.1 Maze Decomposition
	4.2 Problem Decomposition

	5 Experimental Results
	6 Conclusions and Future Work
	References
	Appendix: The 10 Problem Test Suite



