Arvand: the Art of Random Walks

Martin Miiller
University of Alberta
Edmonton, Canada
mmueller @ualberta.ca

Hootan Nakhost
University of Alberta
Edmonton, Canada
nakhost@ualberta.ca

Abstract

Arvand is a stochastic planner that uses Monte Carlo random
walks (MRW) planning to balance exploration and exploita-
tion in heuristic search. Herein, we focus on the latest de-
velopments of Arvand submitted to IPC’11: smart restarts,
the online parameter learning system, and the integration of
Arvand and the postprocessing system Aras.

Introduction

Most of the state of the art heuristic planners such as FF
(Hoffmann and Nebel 2001), the top performer at IPC’00;
Fast Downward (FD) (Helmert 2006), the top performer at
IPC’04; and LAMA (Richter et al. 2008), the top performer
at IPC’08, use variations of greedy search algorithms such as
best first search and enforced hill climbing. These methods
totally exploit the heuristic information and do not do much
exploration in the search space. While this exploitive nature
contributes to very fast performance in many IPC bench-
marks, it can lead to serious inefficiencies where the heuris-
tic values are misleading. For example, most of the current
planners have poor performance on problems involving re-
source management (Nakhost et al. 2010).

Arvand (Nakhost and Miiller 2009) is among the new
wave of heuristic planners such as identidem (Coles et al.
2007) and the planner introduced by (Lopez and Borrajo
2010), that try to use more explorative search algorithms to
handle heuristic deficiencies. Arvand’s main idea is to com-
bine the exploration power of fast random walks with the
strength of the available heuristic functions. Although still
the heuristic function is the main guiding engine of the al-
gorithm, local exploration using random walks and fast tran-
sition in the search space using long jumps are significantly
helpful in regions such as plateaus where heuristic values do
not help much.

The Arvand Planner

Arvand uses a forward-chaining local search algorithm.
Each run of Arvand consists of one or more “search
episodes”. Each episode starts from the initial state, and
transitions through the search space by jumping to the states
found in the local neighborhood until a termination criterion
is met. At each transition or search step the next state s is
chosen from a set of random samples obtained by random

Fan Xie
University of Alberta
Edmonton, Canada
fxie2 @ualberta.ca

Richard Valenzano
University of Alberta
Edmonton, Canada
valenzan @ualberta.ca

walks. Before each transition, n bounded random walks,
sequences of randomly selected actions, are run and the ob-
tained states are evaluated. Since usually the heuristic eval-
uation is orders of magnitude slower than state generation,
only the endpoints of random walks are evaluated using a
heuristic function. The current Arvand uses the FF heuris-
tic function. This enables the algorithm to get a large set
of samples in a short period of time. After running n ran-
dom walks, the planner jumps to the endpoint with minimum
heuristic value. The episode terminates if either a goal state
is found, or it fails to improve the minimum heuristic value
reached for several jumps. After termination a new search
episode starts by restarting from the initial state. For the de-
tails of the algorithms that control the number and length of
random walks see (Nakhost and Miiller 2009). Arvand is
implemented based on Fast Downward (FD) code base.

Smart Restarts

In the original version of Arvand, the search always restarts
from the initial state (basic restarts). However, it is shown
that in more constrained problems a more evolved restarting
mechanism called smart restarts (SR) is helpful (Nakhost et
al. 2010). In SR a pool of most promising search episodes
are kept in the memory and each time that the algorithm
restarts, a state visited by one of the episodes in the pool
is selected as the next restarting point. Search episodes are
compared based on the minimum heuristic value they have
reached. Each time an episode fails, it can replace the worst
episode in the pool if the minimum heuristic value reached
by the new episode is lower. To select the restarting point,
first an episode e is selected from the pool randomly and
then a state visited by e is randomly selected. Therefore,
the states that are repeated in several episodes have a higher
chance to be chosen. If SR is used from the beginning, then
the information inside the pool get too biased to the first
episode. In Arvand, SR gets activated after [V restarts. Be-
fore that basic restarting is used. Therefore when SR is ac-
tivated the pool contains N episodes. The parameter /N and
the size of the pool are both set to 50 for the competition.

Biasing the Random Walks

Two different methods are used to bias the random action se-
lection inside Arvand: Monte Carlo Helpful Actions (MHA)



and Monte Carlo Deadlock Avoidance (MDA) (Nakhost and
Miiller 2009). The main idea is to use the statistics from
the earlier random walks to bias the action selection towards
more promising actions and away from non-promising ones.
MHA uses Gibbs sampling to give priority to actions that
have been more often selected as a helpful action at an end-
point. Helpful actions are computed as a by product of the
heuristic function at the endpoints. MDA keeps track of the
number of times that each action has appeared in a failed
random walk (a walk that reaches a state with no applicable
actions) and tries to sample actions with higher failure rate
less often.

Parameter Learning

(Nakhost and Miiller 2009) showed that different configura-
tions of Arvand perform well in different types of domains.
In the current version of Arvand an online learning algo-
rithm is used to find the best configuration of the parameters
for the given problem. The problem of selecting the best
configuration from a set of possible configurations C' can
be viewed as a multi-armed bandit problem, where pulling
an arm corresponds to using the corresponding configura-
tion for the next search episode of Arvand. Each time that
Arvand restarts, a bandit algorithm is used to select one of
the configurations and then based on the minimum heuris-
tic value (h,,,;,) obtained in the search episode a reward is
assigned to the corresponding arm. Let h; be the heuristic
value of the initial state, then the reward r is computed as
follows: 7 = maxz(0,1 — (h;/hmin)). Arvand uses the up-
per confidence bounds (UCB) algorithm (Auer ef al. 2002)
to balance the exploration and the exploitation in the config-
uration selection.

Currently, C' includes three configurations: two MHA
versions with initial length of random walks 1 and 10; and
one MDA with initial length 1. Since in some problems run-
ning a search episode might be quite slow, and in the initial
phase of UCB all the configurations are tried once, the best
configuration might not be selected enough times to be able
to solve the task. To remedy this problem, for the initial
episodes a smaller number of random walks n per search
step is used to speed up the learning process. Specifically,
for the first three episodes n is set to 100 and for the next
episodes n is doubled up until it reaches the maximum 2000.

Integration with Aras

Since IPC’08 there has been an emphas on the quality of
the generated plans. This has been perfectly reflected in the
competition’s scoring function: the cost of the best known
plan divided by the cost of the plan. Aras (Nakhost and
Miiller 2010) is a fast postprocessing tool that is able to im-
prove the quality of a given plan generated by any planner.
Aras uses simple fast techniques to locally search the neigh-
borhood of the given plan and works well for a wide range
of planners including LAMA, which is designed to generate
high-quality plans. The most effective technique in Aras,
called Plan Neighborhood Graph Search (PNGS), builds a
graph encapsulating the search space close to the original
plan and then finds the lowest-cost path inside the graph.

The anytime version of Aras starts with a small initial size
for the graph and then iteratively increases the size of the
graph until the memory limit is reached.

An alternation of Aras and Arvand is used to obtain high-
quality plans. First Arvand is run until a solution is found.
The solution is saved and fed into anytime Aras to be im-
proved. After Aras reaches the memory limit, which is set
to 2 GB, a new search episode of Arvand is used to find
another plan and again it is fed into Aras. This process con-
tinues until the time limit is reached. In the whole process,
as soon as a plan with better quality is found it is saved.

Arvand also uses a bounding mechanism to stop episodes
or random walks that already exceed the cost of a previously
found solution. However, the solution bound is only updated
by plans generated by Arvand itself. The reason is that usu-
ally the bounds obtained from Aras’ solution are too tight
for Arvand and significantly lower the probability of reach-
ing any solution. As the result the number and diversity of
the plans that are fed into Aras gets much lower and this has
a detrimental effect in the best quality plan reached by the
system.

Acknowledgements

We would like to thank Malte Helmert for giving us access
to the Fast Downward code. We would also like to acknowl-
edge the support of NSERC and Alberta Ingenuity.

References

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Mach.
Learn., 47:235-256, May 2002.

Andrew Coles, Maria Fox, and Amanda Smith. A new local-
search algorithm for forward-chaining planning. In Proc.
ICAPS’07, pages 89-96, 2007.

Malte Helmert. The Fast Downward planning system. JAIR,
26:191-246, 2006.

Jorg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR,
14:253-302, 2001.

Carlos Linares Lopez and Daniel Borrajo. Adding diversity
to classical heuristic planning. In Proceedings of the Third
Annual Symposium on Combinatorial Search (SOCS’10),
pages 73-80, Atlanta, USA, 2010.

Hootan Nakhost and Martin Miiller. Monte-Carlo explo-
ration for deterministic planning. In Proc. IJCAI’09, pages
1766-1771, 2009.

H. Nakhost and M. Miiller. Action elimination and plan
neighborhood graph search: Two algorithms for plan im-
provement, 2010. Accepted for ICAPS 2010.

H. Nakhost, J. Hoffmann, and M. Miiller. Improving local
search for resource-constrained planning. Technical Report
TR 10-02, Dept. of Computing Science, University of Al-
berta, Edmonton, Alberta, Canada, 2010.

Silvia Richter, Malte Helmert, and Matthias Westphal.

Landmarks revisited. In Proc. AAAI'08, pages 975-982,
2008.



