DF-PN IN GO: AN APPLICATION TO THE ONE-
EYE PROBLEM

A. Kishimoto, M. Miiller

Department of Computing Science University of Alberta
Edmonton, Canada, T6G 2E8

{kishi, nmueller} @cs.ualberta.ca, http://www.cs.ualberta.ca/kishi/

Abstract Search algorithms based on the notion of proof and disproof numbers have been
shown to be effective in many games. In this paper, we modify the depth-first
proof-number search algorithm df-pn, in order to apply it to the game of Go. We
develop a solver for one-eye problems, a special case of enclosed tsume-Go [ life
and death] problems. Our results show that this approach is very promising.

Keywords:  Go, proof-number search, df-pn, one-eye problem

1. Introduction

Computer Go is one of the ultimate challenges for games researchers. Despite
alot of efforts, the best programs can still be easily beaten even by human players
of moderate skill.

One weakness of current Go programs is recognizing whether groups are
alive or dead. Such tsume-Go (life and death) problems play a critical role in
deciding the outcome of many games. Currently most Go-playing programs
rely on a combination of exact and heuristic rules to evaluate tsume-Go (Chen
and Chen, 1999; Kraszek, 1988). However, this approach does not always
guarantee the correctness of the results.

In general, search is the only way to assess correctly the life-and-death status
of stones. However, the large branching factor of Go makes it hard to apply a
purely search-based approach. For enclosed tsume-Go problems with a small to
moderate branching factor, the state of the art is already very good. GoTooLs,
the currently best tsume-Go solver, achieves high dan amateur level (Wolf,
2000). Search-based approaches have been very successful in other games such
as chess, Othello, and shogi. In particular, in tsume-shogi (shogi checkmating
problems), algorithms using proof and disproof numbers such as Seo’s PN*
and Nagai’s df-pn (Seo, 1995; Nagai, 2002) have solved all difficult problems,



126 A. Kishimoto, M. Miiller

including those with solution sequences of hundreds of plies. Their performance
far surpasses that of human players.

In this paper, we adapt the df-pn algorithm to the game of Go, and apply it to
arestricted version of tsume-Go: the problem of making one eyein an enclosed
position. This special case can be solved with a simpler evaluation function,
but retains all the search-related difficulties of tsume-Go. To our knowledge,
this is the first attempt to apply df-pn to computer Go. Our results are very
promising. Even with very modest game-specific enhancements, our df-pn-
based solver can quickly solve enclosed positions up to about 18 empty points.
This compares favourably to state of the art tsume-Go solvers, which can solve
general tsume-Go problems of up to about 14 empty points in reasonable time.

The structure of this paper is as follows. Section 2 describes the one-eye
problem in Go and related work on tsume-Go. Section 3 reviews the df-pn
algorithm. Section 4 explains a problem of df-pn in domains with position
repetition, and develops a solution. Section 5 describes the basic one-eye solver
and a few problem-specific enhancements. Section 6 deals with our current
implementation of ko threats. Section 7 discusses the experimental results.
Section 8 concludes and outlines further research directions.

2. The One-Eye Problem in Tsume-Go

The one-eye problem in Go is the question whether a player can create an
eye connected to the player’s stones in a given region. Although the problem
is simpler than full tsume-Go, it has many issues in common. For example,
every tsume-Go problem in which the group under attack already has one eye
in some region reduces to the one-eye problem on the rest of the board.

A specialized one-eye solver also promises to be useful to enhance the knowl-
edge inaheuristic Go program. Typical current programs use elaborate heuristic
rules to assign statically a number of eyes to a region of the board (Chen and
Chen, 1999; Fotland, 2002). Replacing some of these heuristics by exact results
can improve group strength estimation and thereby overall position evaluation.

A one-eye problem in a given Go position is defined by the following inputs.

= The two players, called the defender and the attacker. The defender tries
to make an eye and the attacker tries to prevent it.

= Theregion, a subset of the board. Ateach turn, a player must either make
a legal move within the region or pass.

= One or more blocks of crucial stones of the defender. The defender wins
a one-eye problem by creating an eye connected to all the crucial stones
inside the region. The attacker can win by either capturing at least one
crucial stone, or by preventing the defender from creating an eye in the
region.

m  Safe attacker stones which surround the region together with crucial de-
fender stones.



Df-pnin Go: An Application to the One-Eye Problem 127

Figure 1 shows an exam-
ple of a one-eye problem.
Black is the defender and
White is the attacker. Cru-
cial stones are marked by
triangles and the region is
marked by crosses. Black
must make an eye inside
the region, while White tries
to prevent that. There are
unsafe stones at C6, E7,
and H6. If these stones
are captured, a player might
play at such a point later,
so they are part of the re-
gion.

P N W b~ OO N 0O ©
P N W b O O N 0O ©

A B CDETFGHJ

Figurel. Example of aone-eye problem (Blackto live).

2.1 Related Work on Tsume-Go

Wolf’s (1994) GoTooLs is the currently best tsume-Go solver that spe-
cializes in solving completely enclosed positions. GoTooLs contains a so-
phisticated evaluation function that includes dynamic aspects, powerful rules
for life-and-death recognition, and learning dynamic move ordering from the
search (Wolf, 2000). Most competitive Go programs also contain a tsume-Go
module. The commercial database TSUME-GO GOLIATH uses aproof-number
search engine to check the user’s inputs.

3. Df-pn: Depth-First Proof-Number Search

In this section we give an overview of the standard df-pn algorithm. Nagai’s
(2002) thesis is available for a detailed explanation.

3.1 Proof and Disproof Numbers

Proof and disproof numbers and Allis’ proof-number search (PNS) (Allis,
Van der Meulen, and Van den Herik, 1994) are the basis of this algorithm. The
proof number of a node in an AND/OR tree is defined as the minimum number
of leaf nodes that must be proven to prove the node for the first player, while the
disproof number is the minimal number of leaf nodes that must be disproven
(proven a win for the second player) in order to disprove the node. Proof and
disproof numbers can be viewed as an estimate of how easy it is to prove or
disprove a tree.



128 A. Kishimoto, M. Miiller

Proof-number search (PNS) maintains a proof number and a disproof number
for each node. The leaf node to expand next is chosen in a best-first manner.
Starting from the root, PNS traverses the tree by continuously selecting a child
whose (dis)proof number is minimum at OR (AND) nodes, until it reaches a
leaf node called a most-proving node. PNS expands that node and recomputes
the proof and disproof numbers on the path to the root. This process continues
until the root is either proven or disproven.

3.2 The Df-pn Algorithm

Df-pn (Nagai, 2002) turns PNS into a depth-first search algorithm by gener-
alizing ideas behind Seo’s (1995) PN* algorithm. As a depth-first search, df-pn
can expand less interior nodes and use a smaller amount of memory than PNS.
Like PNS, it always expands a most-proving node.

Figure 2, adapted from Nagai (2002) , presents pseudocode of the df-pn
algorithm. Df-pn utilizes two thresholds, one for proof numbers and one for
disproof numbers. For the sake of simplicity, the code is written in the negamax
form, because disproof numbers are a dual notion of proof numbers. For each
node n, two variables ¢ and § are defined as follows:

b = pn(n) (nisan OR node)
e = dn(n) (nisan AND node)
5 — dn(n) (nisan OR node)
"9 = A pn(n) (nisan AND node)

While the iterative deepening method usually has a global threshold, df-pn’s
thresholds work as local thresholds at each recursive call. This approach is
similar to recursive best-first search (Korf, 1993). The main function Df-pn
initializes both thresholds to infinity, and then calls the recursive function MID
that iterates over nodes. When returning from MID, the root node is either
proven or disproven. MID traverses the subtree below node n in a depth-first
manner. It explores nodes while proof or disproof numbers do not exceed the
threshold, or until it finds a terminal node that determines a winner. In the code,
IsTerminal checks if » is a terminal node, while Winfor CurrentNode checks
whether a terminal node is a win or a loss. When a node n is expanded, the
best child n. in terms of proof and disproof numbers is selected by SelectChild
for a recursive call to MID with the following new thresholds: n..d is set to
the minimum of the current threshold for n and the value when n’s child with
the second smallest § becomes the most-proving node during the exploration
of n.’s subtree. Note that n.¢ corresponds to n..6 because of the negamax
formulation. n..¢ works like the cost function of the IDA* algorithm (Korf,
1985).

Because df-pn is an iterative-deepening method that expands interior nodes
again and again, the heart of the algorithm is the transposition table, a large



Df-pn in Go: An Application to the One-Eye Problem 129

/I Set up for the root node
int Df-pn(node r) {
r.p = 00; 1.0 = 00;
MID(r);
if (r.0 = o0)
return win_for_root;
else
return loss_for _root;
}

/I 1terative deepening at each node
void MID(node n) {
TTlookup(n,¢,d);
it (g <o || nd<d){
I Exceed thresholds
n.¢ = ¢, n.d =4;
return;
}

/I Terminal node
if (IsTerminal(n)) {
if (WinforCurrentNode(n)) {
n.¢ = 0; n.d = oo;
return;
}else {
n.¢ =oo; n.d =0;
return;
}
}
GenerateMoves(n);
/I Store larger proof and disproof
/I numbers to detect repetitions
TTstore(n,n.¢,n.d);
/I Iterative deepening
while (n.¢ > AMin(n) &&
n.0 > ®Sum(n)) {
n. = SelectChild(n,¢c,d¢,02);
/I Update thresholds
Ne.¢p = n.d + P - PSum(n);
ne.d = min(n.g,62 + 1);
MID(n.);

/I Store search results
n.¢ = AMin(n); n.d = ®Sum(n);
TTstore(n,n.¢,n.d);

/I Select the most promising child
node SelectChild(node n, int &¢.,
int &J., int &J2) {

for (each child ncpiia) {
TTlookup(nchiid,@,9);
/I Store the smallest and second
// smallest 6 in §. and d2
if (6 <dc){
TNbest = Nchild;

62:6c;¢‘c=¢;(5c=5;

}

eseif (6 < d2)
2 =0;

if (¢ = o0)

return npess;

return npest;

}

/I Compute the smallest é of
/I m’s children
int AMin(node n) {
int min = oo;
for (each child nchiq) {
TTIOOkup(nch“d,¢,5);
min = min(min,d);
}

return men,

}

/I Compute sum of ¢ of n’s children
int ®Sum(node n) {
int sum = 0;
for (each child ncpiia) {
TT|OOkUp(’nchud,¢,5);
sum = sum + ¢;
}

return sum,

}

Figure 2.  Pseudocode of the df-pn algorithm.



130 A. Kishimoto, M. Muller

cache storing previous search efforts, i.e., proof and disproof numbers for vis-
ited nodes. TTstore stores proof and disproof numbers of a node in the table.
TTlookup checks the table for information on proof and disproof numbers of a
node. If no result is found, both numbers are initialized to 1.

4. Computing Proof and Disproof Numbers in Domains
with Repetitions

When we tried to apply df-pn to the one-eye problem in Go, df-pn could not
solve some easy problems. The standard df-pn algorithm has a fundamental
problem when applied to adomain with repetitions. Figure 3 shows an example.
Assume F' is unknown, then the df-pn algorithm computes pn(E) = pn(A4) +
pn(F). Hence, pn(E) is larger than pn(A). Df-pn’s termination condition is
(see Figure 2):

n.¢ < AMin(n) || n.6 < dSum(n)

Usually the threshold of the proof
number is only a little bit larger than
pn(A) when exploring A’s subtree
in df-pn. Therefore, assuming that
df-pn reaches FE, df-pn exceeds the
proof number threshold, stops ex-
panding and updates A’s proof num- PREZPN(A) +pn(F) > pr(s)

ber to pn(E) = pn(A) + pn(F). '
Winfor AND

Evenif E is chosen in a later iteration,

this phenomenon continues and F' is

never explored. These repetitions of-

ten happen in Go, because passes are [ | ornode () AND node

allowed. Two consecutive passes lead

back the same position in a short loop. Figure3.  Aproblem with repetitions in df-pn.
Adding proof numbers from an ancestor to a node seems intuitively bad,

since it leads to double-counting of the leaf nodes below. In our solution to this

problem, we classify the children of a node into two types. A field minimal

distance (md) of a node n is initially set to the length of the shortest path from

the root to n, the depth of n in the search tree. We call a child n; normal if

n;.md > n.md, and old if n;.md < n.md. Among the children ny - - -, ng of

n, letny---,n; (1 <1< k) be the normal and n; 1, - - -, n, the old children.

We modify the computation of proof and disproof numbers in the following

way:

n.g = min n;.0
¢ 1<i<k



Df-pn in Go: An Application to the One-Eye Problem 131

! l
Y nig (if Y nigp #0)
=1

n.d = = il
l+r{1gl;;kni.¢ (if zzzln,qﬁ =0)

Figure 4 illustrates an example of
computing proof numbers. If F'isnei-
ther proven nor disproven, then F’s
proof number cannot be 0. Therefore
we ignore A to compute E’s proof
number, since A is an old child.

When a node has only old children,
since all normal (and possibly some
old) children have been solved, that
node itself must be considered old,
since now there is no way to prove
or disprove it without exploring old [ ] ornode () ANDnode  ma  Minimal cistance
nodes. Therefore, the md of that node
must be updated. We set it to the min-
imum of the md fields of the currently unsolved old children.

Figures 5 and 6 depict an example of updating md. In this figure, assuming
that G is proven, E now has only an old child to explore, because F is also
proven. Inthatcase £°s minimal distance is updated to A’sdistance, and pn(E)
becomes pn(A). Further, C.md is set to E.md (see Figure 6). As a result,
pn(C) is now ignored in the computation of pn(B), since C' has become an
old child.

Dealing with overcounting proof numbers caused by repetitions was essential
to make df-pn work in Go. We note that Nagai (2002) achieves impressive

Figure 4.  Df-pn with minimal distance md.

ﬂ md=2

md=0 < = pn(E)=pn(F) - > pn(E)=pn(A)

md=4

md=5 e md=5 " win for OR
Win for OR

l:, OR node O AND node md  Minimal distance I:l OR node O AND node md  Minimal distance

Figure 5.  Updating E’s minimal distance.  Figure 6.  Computing C’s minimal distance.



132 A. Kishimoto, M. Miiller

results with his tsume-shogi solver, and described the GHI problem, which
returns incorrect results involving cycles . However, this problem was not
described in his papers. One possibility is that although the same problem
could happen in shogi, it might happen much less often than in Go. Search
in Go can easily return to identical states, for example by consecutive pass
moves. Another possibility is that this problem tends to happen less frequently
with additional search enhancements. Because Nagai’s tsume-shogi solver is
enhanced with a great deal of domain-dependent knowledge, it might not occur
in his case in practice. However, in a personal communication the existence
of this problem in shogi was confirmed by Tsuruoka and Maruyama of team
GeEkIsasHI. As well, Sakuta found that df-pn did not work better than PDS
(Nagai, 1999) in his tsume-shogi solver, and gave as possible explanation the
occurrence of DCGs (Sakuta, 2001).

5. Application of Df-pn to the One-eye Problem

Below we apply the df-pn algorithm to the one-eye problem. We start with the
basic one-eye algorithm (5.1). Then we provide several game-specific search
enhancements (5.2). The section is concluded by a simulation (5.3).

5.1 The Basic One-eye Algorithm

The basic algorithm, due to Anders Kierulf, is quite simple, and has been
used as part of the tsume-Go search in the program EXPLORER for many years.
It detects single-point eyes and false eyes.

The algorithm checks for all points in the region whether they are a potential
eye point for the defender. Eyes are created by either surrounding empty points
or by capturing attacker stones. If a safe eye connected to the crucial stones can
be created in the region, the defender wins. If there is no potential eye space in
the region, the attacker wins.

Whether a point E is a potential eye point is computed as follows:

E occupied by unsafe attacker stone: yes.

E occupied by safe attacker stone: no.

E occupied by defender stone: no.

E is empty: check the neighbours and the diagonal neighbours of E.

Some direct neighbour is occupied by the attacker: no.
E is at the edge of the board and at least one diagonal neighbour

contains a safe attacker: no. ]
At least two diagonal neighbours contain a safe attacker: no.
Otherwise: yes.

A potential eye point is a safe eye if all direct neighbours and all but one di-
agonal neighbour are occupied by defender stones. All diagonal neighbours are
needed at the edge of the board. A safe eye is a defender win if the surrounding



Df-pn in Go: An Application to the One-Eye Problem 133

block is connected to crucial stones, and all crucial stones are connected. The
search generates all moves in the region, unless there are forced moves (see
below).

5.2 Game-specific Search Enhancements

Safety by Connectionsto Safe Stones.  Connectivity is a fundamental as-
pect of the game of Go. Most Go programs recognize connected blocks. We
use connections to promote unsafe attacker stones to safe, and to prove that a
defender eye is connected to crucial stones. Both types of connections help to
reduce the search depth.

Our current implementation recognizes simple miai strategies (Miiller, 1997)
and some protected liberties for connections. Figure 7 gives examples of the
strategy. In the left diagram, White has two ways (A and B) to connect. Even
if Black plays first, the white block marked with squares can connect to safe
stones. The stone at F6 is also safe now, because it has a connection either at C'
or at D. Since there is no eye space, this position can be statically evaluated as
a loss for Black. Similarly, in the right diagram in Figure 7, the connection at E
or F guarantees a win for Black. The algorithm to compute these connections
is straightforward. It checks if safe blocks S have two liberties to connect to a
block b. If this is the case, b is included in S and the two liberties are marked
to not be used for other connections. The process continues until no further
blocks can be added to S.

A B C D E F G H J A B C D E F G H J
Connection for attacker Connection for defender

Figure 7. Connections to safe stones.

o ©



134

We find more safe stones by recog-
nizing some forms of protected liber-
ties. Figure 8 shows an example. The
stone marked with a square has only
one connection point at B to a safe
white block. However, this connec-
tion is safe since the stone has another
liberty and the opponent cannot play
at B.

Forced Moves.  Forced movesare a
safe form of pruning when one player
threatens to win immediately. We
defined two kinds of forced moves,
forced attacker moves, and forced de-
fender moves, which correspondto ipl
or gil threats in Abstract Proof Search
(APS) (Cazenave, 2002).

A B C D E F G H J
Figure 9.

R N W b~ OO N 00O ©

Figure 8.

A. Kishimoto, M. Miiller

A B CDETFGHJ

P N W b~ OO N 00O ©

A B CDETFGHJ

Connection to safe stones on pro-

tected liberty.

A B C D E F G H J

Forced Moves.

The first type of forced move is on a point where the defender could complete
an eye that is connected to the crucial stones. The left position in Figure 9
presents an example. Black can make an eye at A. White must play at A to stop

an immediate win for Black.

The second type of forced move is defined as follows:

1 There is no empty eye space for the defender in the region.



Df-pn in Go: An Application to the One-Eye Problem 135

2 There is exactly one unsafe attacker’s block b.

3 b has a single-move connection to safe stones. If the defender plays any
other move, the attacker can connect b to safety, leaving the defender
with no potential eye points.

For instance, in the right position of Figure 9 the move at B is forced.
Forced moves give a large reduction of the search space by decreasing the
branching factor.

5.3 Simulation

Smulationwas invented by Kawano (1996) to solve effectively positions with
useless interposing piece drops in tsume-shogi problems . Later, Tanase (2000)
extensively applied this idea to his a8-search engine to reduce the overhead of
calling the tsume-shogi solver inside the normal search . Assume that P is a
proven position and @ is a “similar” one we want to prove. Simulation borrows
moves from P’s proof tree to try to find a quick proof of Q). A dual notion
called dual ssimulation can be used to disprove a position.

In our solver, we apply simulation and dual simulation as follows:

= Atan AND node n, if one of n’s children, n., is proven at some point in
the search, apply simulation to all unsolved children of n.

= Similarly, at an OR node n, apply dual simulation if one of n’s children
is disproven.

This use of simulation is much more extensive than in tsume-shogi. See the
experimental section for a discussion.

6. Ko and Ko Threats

Sometimes the outcome of a one-eye problem depends on ko. It is therefore
important to model ko threats and ko recaptures in the search algorithm.

The approach taken in GOT00LS can require several searches (Wolf, 1994).
The parameter to each search is how many ko recaptures are allowed for a
specified kowinner.

Our current implementation allows only two options: one is to disallow any
immediate ko recaptures; the other is to always allow ko recaptures for the
designated kowinner. We search in one or two phases. The first search of a
position, phase 1, disallows immediate ko recaptures, but marks nodes where
such moves exist. If the search result depends on marked nodes, in phase 2
a re-search is performed. The loser of the phase 1 search is the designated
kowinner for phase 2.

Phase 2 reuses the contents of the transposition table from phase 1. The
following implementation of the transposition table aims to reduce the amount
of re-search:



136 A. Kishimoto, M. Muller

1 The Zobrist (1970) hash function is modified to account for a stone cap-
tured in the previous ko capture, to differentiate identical positions with
different histories.

2 Two flags, one for each colour, in each transposition table entry keep
track of any possible ko captures in the subtree below that node. If there
is a ko capture for a player, the flag for the other player is set to indicate
that we will allow a ko recapture after that node in a re-search. When a
node n is proven (similarly for disproven), flags are set as follows:

m If nisan OR node and n. is n’s proven child, n’s flags are set the
same as n.’s flags.

m [f n is an AND node and the flag of one of the children is set, n’s
flag is set. Otherwise, n’s flag is cleared.

In the phase 2 re-search, many phase 1 (dis)proofs can be reused. For ex-
ample, assume that a node is proven and the flag for the kowinner is not set.
Then we can use the proof from the transposition table. Similarly, we can also
reuse disproofs. Even for nodes that are not proven or disproven, the proof
and disproof numbers from phase 1 are valuable information for directing the
re-search.

Re-searches usually have a low overhead, since we keep the previous results
in the transposition table and reuse the table entries in most cases. However, if
the solution changes dramatically by ko compared to the solution from the first
search, a higher overhead results.

7. Empirical Results

This section consists of: test data (7.1), setup of experiments (7.2), test runs
(7.3), and further comments on the experiments (7.4).

7.1 Test Data

In contrast to full tsume-Go, for which many large collections of test problems
are available, we could not find any specialized collection of one-eye problems.
Our current set of 70 test positions was created mainly by the authors. The
problems can be played for both colours going first, resulting in a total of 140
problems. All problems are of the following form: a black group already has
one safe eye, and is completely surrounded at a distance by safe white stones.
The area in between forms the region, and the fate of the black group depends
on whether it can form a second eye in the region. Problems of this kind are
also suitable for solution by a general tsume-Go solver, since making one eye
is equivalent to solving the tsume-Go problem.

The test set is available at http://www.cs.ualberta.ca/~games/go/
oneeye. The problems include a mix of easy and hard problems. Some prob-



Df-pn in Go: An Application to the One-Eye Problem 137

A B CDEFGHJ
XXX XXX XXX o

R N W b~ O O N 00O ©

A B CDETFGHJ

Figure 10.  Example of a hard problem (Black to live).

lems are challenging only for one colour playing first, and are very easy if the
other colour plays first. Some of the positions are hard to solve for current
tsume-Go programs. For an example, see Figure 10.

7.2 Setup of Experiments

All experiments were performed on a Pentium 111/700 Mhz with a 100 MB
transposition table. The time limit was 5 minutes per problem.

The following abbreviations are used for the methods and enhancements
described above.

= Df-pn: The basic df-pn algorithm.

= MIN: Minimal distance modification for computing proof and disproof
numbers.

AC: Connections to safe stones for attacker

DC: Connections to crucial stones for defender

FAM: Forced attacker’s moves

FDM: Forced defender’s moves

SIM: Simulation and dual simulation

7.3 Test Runs

Adding Enhancements.  Table 1 shows the results on the test set, starting
with basic df-pn and switching on enhancements one by one. The total execution
time and number of nodes expanded were computed using the subset of 126
problems that are all solved by methods (2) - (7) in the table.



138 A. Kishimoto, M. Muller

Number of Total Total Nodes
Enhancements problems time (sec) nodes expanded | expanded
used solved 126 Problems 126 Problems per second
(1): Df-pn 20 - - -
(2): (1) +MIN 126 806 11,933,976 14,806
?3): (@ +AC 132 424 5,431,557 12,810
4: @)+DC 132 444 5,377,408 12,116
(5): (4)+FDM 132 436 5,142,100 11,802
6): (5)+FAM 133 113 1,354,506 11,970
(7): (6)+SIM 134 81 1,168,683 14,347

Table 1. Performance for successively switching on enhancements.

The table shows the importance of the MIN maodification. The only prob-
lems solved by basic df-pn were very easy ones that needed at most 400 nodes.

Search speed decreases a little with more enhancements, but improves again
with simulation. Simulation provides a fast way to generate moves, faster than
our current normal move generator, which has some overhead such as checking
connections.

Leave-One-Out Experiments.  The results for switching off a single en-
hancement at a time are shown in Table 2.

Number of Total Total Nodes
Enhancement Problems Time () Nodes Expanded | Expanded
Turned Off Solved (129 Problems) | (129 Problems) | per Second
MIN 74 - - -
AC 129 393 7,096,603 18,058
DC 134 138 2,081,344 15,070
FDM 134 264 3,705,778 14,052
FAM 133 402 5,590,511 13,907
SIM 133 175 2,123,969 12,137

Table 2. Performance for turning off single enhancements.

Performance of Simulation.  Table 3 shows the performance data for sim-
ulation in phase 1 searches. Since the method is applied in a very basic way,
45.2 % success seems to be a good initial result, with plenty of room for further
refinements.

| Total Nodes | Nodesby SIM [ SIM calls | successful calls ]
[ 6,265984 | 1,116,386 (17.8%) | 262,628 | 118,706 (45.2 %) |

Table 3. Performance data on simulation for all 134 solved problems. All enhancements on.
Phase 1 searches only.



Df-pn in Go: An Application to the One-Eye Problem 139

Re-searchesfor Ko.  Table 4 shows a summary of the overhead incurred by
re-searches for ko. In phase 1, immediate ko recaptures are not allowed. Phase
2 are the researches with a designated kowinner. The results in this table are
also with all enhancements.

Total Nodes (134 Problems)
Phase 1 Phase 2
6,265,984 (95.4 %) | 304,107 (4.6 %)

Table 4. Overheads for ko re-searches

The overhead is quite small, but of course this is mainly a property of the
test set used, which contains only a few cases with complex ko fights. In the
worst case encountered, problem oneeyeb.10.sgf with Black to play, phase 1
took 7,340 nodes and phase 2 took 11,728 nodes.

7.4 Further Comments on the Experiments

Reexpansion of Interior Nodes.  One concern in df-pn is the overhead of
reexpansion of interior nodes. In our experiments, the ratio of interior nodes
expanded to total nodes is about 30 %. In Seo’s experiments in shogi, this
ratio was about 20 %. Since information achieved dynamically is usually more
reliable than static evaluations, we think that our 30 % is still a very small price

to pay to achieve more cut-offs.
A B CDETFGHJ

Currently Unsolved Problems. g X X X X X X X X X
Our solver currently cannot solve PR ol Ll
6 problems in our test suite. Fig-
ure 11 shows an example. All un-
solved problems feature large re-
gions with many possible moves.
Besides, some problems such as in
Figure 10 and 11 stretch the lim-
its of the one-eye problem, such as
semeai, and tsume-Go. Figure 11,
for example, can be seen as a prob-
lem whether white stones adjacent
to black crucial stones can make
two-eyes or not, having no split be- A B CDETFGHJ
tween the one-eye and tsume-Go
problems. As well, the practical
limit of our current solver seems to
be at around 18 empty points, which compares favourably with about 14 empty
reported for GoTooLs. However, we need further investigations to assess this
limit and improve the ability of our solver for difficult problems.

P N W b~ 01O N 00O ©

Figure 11.  Black to play and live: A currently
unsolved problem.



140 A. Kishimoto, M. Miiller

8. Conclusions and Future Work

The early results of our work on applying df-pn to Go and specifically to
the one-eye problem are very encouraging. There are numerous possible en-
hancements, both for improving the search algorithm and for adding Go-specific
knowledge. Examplesare recognizing larger eyes, refining the knowledge about
connections, generalizing forced moves similar to Cazenave’s APS, heuristic
initialization of proof and disproof numbers, and search in open-ended areas.

To apply these ideas to other problems in Go is also an interesting research
topic. Examples include full tsume-Go (two-eye problems), tactical capture
search and connection search.

8.1 Comparison with related Programs

We would like to compare our program with general tsume-Go solvers to
assess its performance. However, it is hard to make a fair comparison since
our algorithm solves only a restricted problem. Evaluation for two eyes is
much harder than for one eye, and many years of hard work have gone into the
development of the Go knowledge in programs such as GoTooLs. However,
we believe that as a search algorithm our modified df-pn works very well for Go.
In informal experiments it seems that our algorithm can already solve harder
problems in our test set than other programs. One possible advantage of the
df-pn algorithm is that it uses the transposition table more extensively. Only
solved positions are saved in the transposition table in GoTooLs (Wolf, 2000),
while in df-pn proof and disproof numbers of previous iterations are stored in
the transposition table to improve the order of tree expansion (Nagai, 2002).

8.2 The GHI Problem in Df-pn

So far in this paper, we have not addressed the graph history interaction
(GHI) problem (Palay, 1985). This problem occurred in our experiments, for
example in double or triple ko situations. If GHI is ignored, incorrect results
are stored in the transposition table. We developed a new approach that differs
from the one described in Breuker et al. (2001) for the case of proof-number
search. The method will be described in a forthcoming publication (Kishimoto
and Miiller, 2003).

Acknowledgments

Financial support was provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Alberta Informatics Circle of
Research Excellence (iCORE).



Df-pnin Go: An Application to the One-Eye Problem 141

References

Allis, L. V., van der Meulen, M., and van den Herik, H. J. (1994). Proof-number search. Artificial
Intelligence, 66(1):91-124.

Breuker, D. M., van den Herik, H. J., Uiterwijk, J. W. H. M., and Allis, L. V. (2001). A solution
to the GHI problem for best-first search. Theoretical Computer Science, 252(1-2):121-149.

Cazenave, T. (2002). Abstract proof search. In Marsland, T. A. and Frank, I., editors, Computers
and Games (CG 2000), volume 2063 of Lecture Notes in Computer Science, pages 39-54.
Springer.

Chen, K. and Chen, Z. (1999). Static analysis of life and death in the game of Go. Information
Sciences, 121:113-134.

Fotland, D. (2002). Static eye analysis in "The Many Faces of Go". ICGA Journal, 25(4):203—
210.

Kawano, Y. (1996). Using similar positions to search game trees. In Nowakowski, R. J., ed-
itor, Games of No Chance, volume 29 of MSRI Publications, pages 193-202. Cambridge
University Press.

Kishimoto, A. and Miller, M. (2003). A solution to the GHI problem for depth-first proof-number
search. Manuscript in preparation.

Korf, R. E. (1985). Depth-first iterative deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97-1009.

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1):41-78.

Kraszek, J. (1988). Heuristics in the life and death algorithm of a Go-playing program. In
Computer Go, volume 9, pages 13-24.

Muller, M. (1997). Playing it safe: Recognizing secure territories in computer Go by using static
rules and search. In Matsubara, H., editor, Game Programming Workshop in Japan "97, pages
80-86, Tokyo, Japan. Computer Shogi Association.

Nagai, A. (1999). A new depth-first search algorithm for AND/OR trees. Master’s thesis, De-
partment of Information Science, University of Tokyo.

Nagai, A. (2002). Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis,
Department of Information Science, University of Tokyo.

Palay, A. J. (1985). Searching with Probabilities. PhD thesis, Boston University.

Sakuta, M. (2001). Deterministic Solving of Problems with Uncertainty. PhD thesis, Department
of Science and Engineering, Shizuoka University.

Seo, M. (1995). The C* algorithm for AND/OR tree search and its application to a tsume-shogi
program. Master’s thesis, Department of Information Science, University of Tokyo.

Tanase, Y. (2000). Algorithms in ISshogi. In Matsubara, H., editor, Advances in Computer Shogi
3, pages 1-14. Kyouritsu Shuppan Press. In Japanese.

Wolf, T. (1994). The program GoTools and its computer-generated tsume Go database. In Mat-
subara, H., editor, Game Programming Workshop in Japan ’94, pages 84-96, Tokyo, Japan.
Computer Shogi Association.

Wolf, T. (2000). Forward pruning and other heuristic search techniques in tsume Go. Information
Sciences, 122(1):59-76.

Zobrist, A. L. (1970). A new hashing method with applications for game playing. Technical re-
port, Department of Computer Science, University of Wisconsin, Madison, WI. Republished
(1990) in ICCA Journal, 13(2): 69-73.



