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Abstract

In games research, Go is considered the classical board game
that is most resistant to current AI techniques. Large-scale
knowledge engineering has been considered indispensable
for building state of the art programs, even for subprob-
lems such as Life and Death, or tsume-Go. This paper de-
scribes the technologies behind TSUMEGO EXPLORER, a
high-performance tsume-Go search engine for enclosed prob-
lems. In empirical testing, this engine outperforms GoTools,
which has been the undisputedly best tsume-Go program for
15 years.

Introduction
Progress in AI can be achieved in many different ways,
through new algorithms, combinations of existing ap-
proaches, knowledge transfer from other disciplines, and
many more. Progress can also be demonstrated through
leaps in practical performance on problems that are consid-
ered hard for AI. This paper falls into the latter category. Its
contributions are:

• The design and implementation of a high-performance
search engine for the difficult AI domain of Life and
Death problems, or tsume-Go.

• A synthesis and extension of several recent improvements
of the depth-first proof-number search algorithm (df-pn)
(Nagai 2002).

• A small but effective and efficient set of domain-specific
search enhancements.

• Experimental results that demonstrate that TSUMEGO
EXPLORER improves upon the current state of the art in
solving tsume-Go.

Proficiency in solving tsume-Go is one of the most im-
portant skills for AI programs that play the ancient Asian
game of Go. For 15 years, Thomas Wolf’s program GoTools
(Wolf 1994; 2000) has been the undisputedly strongest pro-
gram for solving tsume-Go. Wolf’s groundbreaking work
led to the first program that could play an interesting, highly
nontrivial part of the game of Go on a level equivalent to
strong human masters. One distinctive feature of GoTools
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Figure 1: A typical tsume-Go problem: White to play and
kill all black stones.

is that it contains a large amount of Go-specific knowledge.
Such knowledge is used for move ordering heuristics that
speed up the search, and for static position evaluation that
recognizes wins and losses early.

This paper presents TSUMEGO EXPLORER, a different
approach to solving tsume-Go problems, with a focus on
efficient search techniques rather than extensive domain
knowledge. The core of the algorithm is an enhanced ver-
sion of the depth-first proof-number search algorithm (df-
pn) (Nagai 2002). The enhancements allow the search to ef-
fectively deal with the complications of Go such as position
repetitions, called ko. Even with relatively simple domain
knowledge, TSUMEGO EXPLORER is shown to outperform
GoTools, and scale better to larger problems. The experi-
mental results demonstrate the potential of efficient search-
based approaches to Go, at least for the restricted domain of
tsume-Go. This success may have implications on the de-
sign of future generations of Go programs.

As in GoTools, this research focuses on enclosed prob-
lems which are separated from the rest of a Go board by a
wall of safe, invulnerable stones. Figure 1, adapted from
(Wolf 2000), shows a typical example. The long unmarked
chain of white stones forms the outside boundary of the
problem. In games, both fully enclosed and loosely sur-
rounded open boundary positions occur frequently.

The Tsume-Go Problem
An enclosed tsume-Go problem is defined by the following
parameters:

• Two players, called the defender and the attacker. The
defender tries to live and the attacker tries to kill. Either
player can be specified as moving first.



• The region, a subset of the board. At each turn, a player
must either make a legal move within the region or pass.

• A wall of safe attacker stones surrounding the region.

• A set of crucial defender stones within the region.

In Figure 1, Black is the defender and White is the at-
tacker. Crucial stones are marked by triangles and the rest
of the region is marked by crosses.

The outcome of a tsume-Go problem is binary, win or
loss. The defender wins by saving at least one crucial stone
from capture, typically by creating two eyes connected to the
stone(s). The attacker wins by capturing all crucial stones,
which can be achieved by preventing the defender from cre-
ating two eyes in the region. Coexistence in seki is consid-
ered a win for the defender, since the stones become safe
from capture. The situational super-ko (SSK) rule is used,
under which any move that repeats a previous board posi-
tion, with the same color to play, is illegal. For details, see
the section on treatment of ko below.

Related Work
Previous Work on Tsume-Go
A tsume-Go solver consists of two main parts: evaluation
and search. Both exact solvers and inexact heuristic ap-
proaches are popular in practice.

The simplest solvers use only static evaluation and no
search. Algorithms include Benson’s method for detecting
unconditional life (Benson 1976), Müller’s safety by alter-
nating play (Müller 1997), and Vilà and Cazenave’s method
for classifying large eye shapes (Vilà & Cazenave 2003).

All strong computer Go programs contain a module for
analyzing life and death, often using search with a com-
bination of exact and heuristic rules (Chen & Chen 1999;
Fotland 2002). The downside of the use of heuristics are
possibly incorrect answers, which might lose a game.

Among exact solvers, for 15 years, Wolf’s GoTools (Wolf
1994) has been the best. GoTools uses a special-purpose
depth-first αβ search algorithm. A transposition table re-
duces search effort by storing won and lost positions. Go-
Tools contains a sophisticated evaluation function that in-
cludes look-ahead aspects, powerful rules for static life and
death recognition, and learning of dynamic move ordering
from the search (Wolf 2000). One of the most important
enhancements in GoTools is dynamic move ordering using
the subtrees explored so far. If a move m1 at position P is
refuted by the opponent playing m2, then m2 is tried next
at P , since it is a likely “killer” move. Successful moves
from subsequent positions in the search also get some credit,
which achieves better move ordering.

Depth-First Proof-Number Search
Df-pn (Nagai 2002) is an efficient depth-first version of
proof-number search (Allis, van der Meulen, & van den
Herik 1994). Nagai used df-pn to develop the currently best
solver for tsume-shogi, checkmating problems in Japanese
chess. Df-pn(r) is an enhancement of df-pn (Kishimoto &
Müller 2003; Kishimoto 2005) that is able to deal with posi-
tion repetitions, which are very common in Go. (Kishimoto

& Müller 2003) applied df-pn(r) to the one-eye problem, a
special case of tsume-Go. Despite a relatively small amount
of Go-specific knowledge, the method could solve harder
problems than the best general tsume-Go solvers.

The question addressed in the current paper is whether
an approach along the lines of (Kishimoto & Müller 2003)
can be effective for full tsume-Go. Evaluation in tsume-Go
is much more complicated than in the one-eye problem. It
requires checking for two eyes, dynamic detection of seki,
and testing connections between the stones surrounding the
eyes. In strong previous solvers such as GoTools, years of
hard work have gone into the development of game-specific
knowledge for static position evaluation.

The TSUMEGO EXPLORER Algorithm
This section discusses evaluation by static life and death de-
tection, dynamic detection of seki, addition of basic game-
specific knowledge, and standard df-pn enhancements such
as Kawano’s simulation (Kawano 1996) and heuristic ini-
tialization of proof and disproof numbers.

Evaluation of Terminal Positions

The defender can win by creating two complete eyes con-
nected to at least one crucial stone in the region. The attacker
aims to eliminate potential eye points, where an eye can pos-
sibly be created. The attacker wins by creating a dead shape,
where no two nonadjacent potential eye points remain in the
region. Seki is considered to be a defender win. It is de-
tected dynamically by search, when the defender passes and
the attacker still cannot win. Only basic one and two point
eyes are recognized statically.

Game-Specific Knowledge

The following game-specific knowledge is incorporated into
TSUMEGO EXPLORER: Connections to safe stones, forced
moves, Kawano’s simulation (Kawano 1996), and heuristic
initialization of proof and disproof numbers.

Safety by connections to safe stones Connections by a
miai strategy (Müller 1997) are used to promote unsafe at-
tacker stones to safe. Promoted safe attacker stones help to
reduce the number of potential eye points. This reduces the
search depth by detecting attacker wins earlier.

Move Generation All moves in the given region plus a
pass are generated, except when forced moves exist. Forced
moves are a safe form of pruning, which can decrease the
branching factor. A forced attacker move prevents the de-
fender from making two eyes immediately, for example A
in Figure 2(a). A forced defender move is a point that the
defender must occupy immediately. It is defined as follows:

• There is only one unsafe attacker block b which has a
single-move connection to safe stones.

• If the defender plays any other move and the attacker con-
nects b to safety, the defender is left with a dead shape.

An example of a forced defender move is B in Figure 2(b).
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Figure 2: Forced Moves.

Simulation Kawano’s simulation (Kawano 1996) borrows
moves from the proof tree of a proven position P in order to
find a quick proof of a “similar” position Q. The winning
move for each OR node in the proof tree below P is tried
for the analogous position below Q. If simulation is suc-
cessfully applied to Q, it returns a correct proof for Q. If
simulation fails, the normal df-pn search is performed. A
successful simulation requires much less effort than a nor-
mal search, since even with good move ordering, a newly
created search tree is typically much larger than an existing
proof tree. In TSUMEGO EXPLORER, similar positions are
defined as follows:

• Let n be an AND node with a proven child nc, and let m
be a winning move from nc. Based on nc’s proof tree, ap-
ply simulation to all unsolved children of n, except for the
child ne that results from the opponent playing m from n
(if such a move is legal).

• A dual procedure is used at OR nodes.

The handling of ne is different from previous approaches.
(Kishimoto & Müller 2003) treat ne as a similar position.
However, ne does not seem to be similar since one important
point on the board has been occupied by the other player. In
GoTools, ne is tried next if one of n’s children is (dis)proven
(Wolf 2000). On the other hand, TSUMEGO EXPLORER first
tries to simulate all child nodes except for ne. This choice is
motivated by the behavior of df-pn. A successful simulation
allows df-pn to immediately explore further children of n at
the current threshold. This use of simulation is much more
extensive than in tsume-shogi (Kawano 1996). Motivations
are that a position changes more gradually in Go, and that
many bad moves can be refuted in the same way.

Heuristic Initialization Df-pn initializes the proof and
disproof numbers of a leaf node to 1. The standard df-pn en-
hancement df-pn+ (Nagai & Imai 1999) uses heuristic ini-
tialization of proof and disproof numbers, as proposed for
proof-number search in (Allis 1994). In TSUMEGO EX-
PLORER, proof or disproof numbers for the defender are
initialized by an approximation of the method in (Kierulf
1990), which computes the minimum number of succes-
sive defender moves required to create two eyes. A similar

heuristic for the number of moves to create a dead shape is
computed to initialize (dis)proof numbers for the attacker.

Nonuniform Heuristic Threshold Increments Heuristic
proof and disproof numbers are typically larger than the de-
fault value of 1. This increases the reexpansion overhead
at interior nodes, since thresholds are increased only by the
minimum possible amount: If n is an OR node, nc is n’s
child selected by df-pn, and pn2 the second largest proof
number among n’s children, then df-pn sets a threshold of
thpn(nc) = min(thpn(n), pn2+δ) with δ = 1. To reduce
reexpansions, at the cost of possibly making the direction of
search less precise, a larger δ is chosen, namely the average
value of the heuristic initialization function of all moves. For
an AND node n, the disproof threshold of nc is set analo-
gously. The standard df-pn threshold computation is used in
the other two cases, for proof thresholds of AND nodes and
disproof thresholds of OR nodes. For example, if n is an OR
node, ni are n’s children and dn(n) is n’s disproof number,
thdn(nc) = thdn(n) −

∑
dn(ni) + dn(nc).

Experimentally, this technique reduced the ratio of reex-
panded nodes to total nodes from 45% to 33%, and achieved
about a 21% node reduction for harder problems. Investi-
gating the trade-off between the ratio of reexpansions and
decreasing the total execution time remains as future work.

Treatment of Ko
Sometimes the outcome of a tsume-Go problem depends on
position repetition, called ko. A move may be illegal locally,
within the searched region, but become legal in the larger
context of a full board game after a nonlocal ko threat has
been played. It is therefore important to model nonlocal ko
threats followed by local ko recaptures within the search. As
in (Kishimoto & Müller 2003), if ko is involved in a proof or
disproof in the first search phase, a re-search is performed by
assuming that the loser can immediately re-capture ko as of-
ten as needed. Within a search, more complicated repetitions
such as double ko and triple ko are handled correctly. The
solver also includes the techniques for solving the Graph
History Interaction problem (Kishimoto & Müller 2004a).

GoTools uses a more sophisticated approach, with re-
searches in order to make a finer distinction between how
many external ko threats must be played to win a ko.

Experimental Results
This section compares the performance of TSUMEGO EX-
PLORER against GoTools experimentally, on an Athlon XP
2800 with a time limit of 5 minutes per problem instance.
TSUMEGO EXPLORER used a 300 MB transposition table.
GoTools used a 2MB table.1

The two test suites used for the experiments were:
1. LV6.14 contains 283 positions in the hardest category

from the database of 40,000 tsume-Go problems automati-
cally generated by GoTools (Wolf 1996b). Figure 3 shows

1The version of GoTools used in our experiments was provided
by Thomas Wolf. A different version of GoTools is used in the
SmartGo program by Anders Kierulf. It is about 3.4 times faster.
However, it still cannot solve most of the problems in our test suite
that are unsolved by the original GoTools.
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Figure 3: A position from LV6.14 (White lives with D2).
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Figure 4: A hard problem from ONEEYE (Black lives with
E8).

a typical example. All problems are solved for either color
playing first, resulting in a total of 566 instances. The re-
sults shown are for the subset of 418 problems whose solu-
tion does not involve ko. For the remaining 148 problems
involving ko, overall results are similar but excluded here,
since GoTools spends more resources on computing a more
fine-grained result type for ko.

2. ONEEYE (Kishimoto & Müller 2004b) is an extended
version of the test set used by (Kishimoto & Müller 2003)
containing 162 instances, of which 148 can be solved with-
out ko. Hard problems in ONEEYE usually contain a large
empty area, as in Figure 4.

Results
Tables 1 and 2 summarize the performance of the two
solvers on LV6.14 and ONEEYE. Both programs solve all
problems in LV6.14. TSUMEGO EXPLORER is about 2.8
times faster in total. In ONEEYE, TSUMEGO EXPLORER
solves all 119 problems solved by GoTools plus 23 ad-
ditional problems. TSUMEGO EXPLORER solves the 119
common problems more than 20 times faster.

Table 1: Performance comparison between TSUMEGO EX-
PLORER and GoTools in LV6.14.

Problems Total time (s)
solved (418 Problems)

GoTools 418 1,235
TSUMEGO EXPLORER 418 448

Total Problems 418 -

Table 2: Performance comparison between TSUMEGO EX-
PLORER and GoTools in ONEEYE.

Problems Total time (s)
solved (119 Problems)

GoTools 119 957
TSUMEGO EXPLORER 142 47

Total Problems 148 -
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Figure 5: Comparison of solution time for individual in-
stances in LV6.14.
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Figure 6: Knowledge wins: A position that GoTools solves
faster (White to live with D1).
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Figure 7: Search wins: A position that TSUMEGO EX-
PLORER solves faster (Black to kill with E2).
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Figure 8: Solution time for problems solved by both pro-
grams in ONEEYE.

Detailed Results for LV6.14 Figure 5 compares the exe-
cution time for individual problems in a doubly logarithmic
plot. 46 problems solved within 0.01 seconds by TSUMEGO
EXPLORER are hardly visible on the left edge of the graph.
In problem instances above the diagonal, TSUMEGO EX-
PLORER was faster. No program completely dominates the
other. TSUMEGO EXPLORER, with its efficient search, is
faster in 291 cases, GoTools, with its large amount of Go-
specific knowledge, in 127 cases. For hard problems, where
at least one program needs more than 5 seconds, TSUMEGO
EXPLORER is faster in 25 out of 29 instances.

In Figure 6, GoTools’ knowledge and move ordering work
perfectly. It takes only 0.08 seconds, with 167 leaf nodes ex-
panded to a maximum depth of 19. In contrast, TSUMEGO
EXPLORER needs 0.44 seconds, with 22,773 node expan-
sions and maximum depth 23. Figure 7 is hard for Go-
Tools. It needed 211 seconds compared to 11.7 seconds for
TSUMEGO EXPLORER.

Detailed Results for ONEEYE Figure 8 plots the exe-
cution time for ONEEYE for the subset of 119 problems
solved by both programs. The superiority of TSUMEGO EX-
PLORER on most problems in this test suite is clearly visi-
ble. TSUMEGO EXPLORER outperforms GoTools by a large
margin, and is faster in 93 out of the 119 instances solved
by both. In Figure 9, GoTools needed 121 seconds against
0.14 seconds for TSUMEGO EXPLORER. However, in some
cases the Go knowledge of GoTools is very valuable. The
position in Figure 10 with White to play is solved by the
static evaluation of GoTools, while TSUMEGO EXPLORER
searches 3,159 nodes.

For the 23 problems solved only by TSUMEGO EX-
PLORER, the difficulty ranges from very easy to hard. As
an extreme example, Figure 11 was solved in just 0.73 sec-
onds.

Limitations of TSUMEGO EXPLORER

The current TSUMEGO EXPLORER can solve enclosed po-
sitions with around 20 empty points in a few seconds. The
practical limit of our solver seems to be 22-29 empty points.
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Figure 9: Search wins: Black to kill with C5.
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Figure 10: A position that GoTools solves statically: White
to kill, for example with F9.
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Figure 11: A position solved only by TSUMEGO EX-
PLORER: Black to live with D8.
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Figure 12: A hard tsume-Go problem for TSUMEGO EX-
PLORER (White kills with S18).



As a borderline case, Figure 12, with 29 empty points,
was solved in 750 seconds with more than 16 million ex-
panded nodes. These numbers compare favorably to Go-
Tools, which scales up to about 14 empty points.

Conclusions and Future Work
In computer games research, there is an ongoing competition
between the proponents of search-intensive and knowledge-
intensive methods. So far, computer Go researchers have
been mainly in the knowledge camp. TSUMEGO EX-
PLORER shows the potential of search methods in Go, at
least for restricted problems such as tsume-Go.

One advantage of df-pn is that it uses the transposition ta-
ble more extensively in the search. Only solved (won or lost)
positions are stored in GoTools’ transposition table (Wolf
2000), while df-pn utilizes proof and disproof numbers from
previous search iterations to choose a promising direction
for tree expansion (Nagai 2002).

Future work includes the integration of more knowledge
into the solver, in order to study the trade-offs between
speed and knowledge in this domain more closely, and cre-
ate a solver that combines the best aspects of both GoTools
and TSUMEGO EXPLORER. The next practical step will be
an extension to open boundary tsume-Go problems. (Wolf
1996a) describes some difficulties of open-boundary prob-
lems. Unlike in enclosed problems, the set of moves to be
considered is not well-defined, leading to heuristic pruning
or threat-based approaches such as (Cazenave 2001). Fi-
nally, integration with a full playing program will be an im-
portant topic to improve the strength of computer Go pro-
grams.
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