
A General Solution to the Graph History Interaction Problem

Akihir o Kishimoto and Martin Müller
Departmentof ComputingScience,Universityof Alberta

Edmonton,CanadaT6G 2E8�
kishi,mmueller� @cs.ualberta.ca

Abstract

Sincethestatespaceof mostgamesis adirectedgraph,many
game-playingsystemsdetectrepeatedpositionswith a trans-
positiontable. This approachcanreducesearcheffort by a
large margin. However, it suffers from the so-calledGraph
History Interaction(GHI) problem,which causeserrors in
gamescontainingrepeatedpositions. This paperpresentsa
practicalsolutionto theGHI problemby combiningandex-
tendingprevious methods. Becauseour schemeis general,
it is applicableto differentgametreesearchalgorithmsand
to different domains. As demonstratedwith the two algo-
rithms ��� anddf-pn in thetwo gamescheckersandGo, our
schemeincursonly a very small overhead,while guarantee-
ing thecorrectnessof solutions.
Keywords: GHI problem,df-pn algorithm, ��� algorithm,
Kawano’s simulation

Intr oduction
Heuristic searchis an important topic in Artificial Intel-
ligence. Searchalgorithmshave many practical applica-
tionsin areas,suchastheorem-proving,bio-informatics,and
games. In particular, gameshave beenregardedas useful
testbedsfor searchalgorithms,sinceefficient searchalgo-
rithmswereshown to improvethestrengthof game-playing
programs.Experimentsin many differentdomainsandwith
many differentprogramsshowed a strongpositive correla-
tion betweenthedepthof thesearchtreeandthestrengthof
a program. Therefore,programmershave investeda lot of
effort to enhancethesearchperformanceof their programs.

One of the most valuablesearchenhancementsis the
transpositiontable, a largecachethatkeepsresultsof previ-
oussearchefforts. A programcanreachthesamegamestate
via differentpaths— a socalledtransposition. If theprevi-
ouslycachedpositionis exploreddeeplyenough,thesearch
algorithmdoesnotneedto explorethepositionagain.How-
ever, if thesearchspaceincludescycles,cachedresultsmay
beflawedbecausethey ignorethepathusedto reachthepo-
sition. Thisis theso-calledGHI (Graph-HistoryInteraction)
problem(Palay1983).In practice,sofarprogrammershave
eitherignoredtheGHI problem,sincethey did not want to
degradethe performanceof their programs,or reducedthe
numberof recognizedtranspositionsin order to guarantee

Copyright c
�

2004, American Associationfor Artificial Intelli-
gence(www.aaai.org). All rightsreserved.

A

B C

D E

OR node AND node

F

G H

Loss

Figure1: TheGHI problem.

correctness.Our proposedsolution completelysolves the
GHI problemwith verysmalloverhead.

With thehelpof Figure1 weexplain theGHI problemfor
AND/OR trees.Therearetwo scenariosin which the GHI
problemcanoccur, dependingon therulesof thegame.

In thefirst scenario,whichwecall first-player-loss, a rep-
etition is considereda lossfor thefirst player, theplayerto
play at theroot node.Examplesarecheckmatingproblems
in chessandshogi(tsumeshogi),sincea repetitiondoesnot
helpthefirst playerwho is trying to checkmate.Assume�
in the figure is a loss for the first player, and this result is
storedin thetranspositiontable.Let � bea win for thefirst
player. Thenasearchstartingfrom � in thefollowing order
leadsto thewrongresult:

1. Search�
	��	���	���	�� . A lossis storedin the
tableentry for � , becausethe positionrepetitioncannot
beavoided.

2. Search��	���	�� . A lossis storedfor AND node � .

3. Expand ��	���	���	�� . A table look-up for �
retrievesa losswhich is backedup to � and � .

4. � is now incorrectlylabeledasa lossbecauselossesare
storedfor bothsuccessors� and � . However, � is a win
by thesequence��	���	���	���	���	�� .

In the first-player-loss scenario, the GHI problem only
causesinvalid disproofs.Programscanavoid theGHI prob-
lem,acceptinga lossof performance,by notstoringany dis-
proofscausedby repetitions.

Theotherscenariofor GHI, whichwecall current-player-
loss, occurswhenarepetitionis declaredto bea lossfor the
playerwhorepeatstheposition.For instance,thesituational

super-ko (SSK) rule in Go declaresthat any move that re-
peats a previous boardposition is illegal. In this scenario,
usingatranspositiontablecanleadto errorsin bothways:it
canchangea lossinto a win or a win into a loss.For exam-
ple, in Figure1, now assumethat � is a lossfor theplayer
to moveat theroot:

1. Search��	��!	���	�� . � is storedasawin because
theopponentdoesnot havea legalmoveat � .

2. Search��	"��	"��	#� . The win storedfor � is
backedup anda win is storedfor � aswell.

3. � is now incorrectly declaredas a win since � ’s table
entryshowsawin. However, � is a losingposition,since
the sequences�$	%��	%� , �$	&�'	%��	%�(
��	�� and ��	���	���	���	���	�� all lose.

This scenariodoesnot occur in checkmatingproblems
where only one player’s king is under attack. However,
(vanderWerf, vandenHerik, & Uiterwijk 2003)point out
thatwhenusingtheSSKrule in Go,thisscenariocanleadto
invalid proofs.In theirwork theproblemis avoidedby stor-
ingaseparatehashentryfor eachpathleadingtoanode.Un-
fortunately, this resultedin over1,000timeslargersearches
whensolvingGoon a)+*,) board.

AvoidingtheGHI problemis crucial,especiallywhenone
wantsto declarethatgamesaresolvedby programs.Since
oneflawed transpositiontableentrycanleadto completely
a wrongsolution,correcttechniquesmustbedevised.

Thispaperdescribesauniformsolutionto bothaforemen-
tionedscenariosof theGHI problem.Our approachsynthe-
sizesandextendsexistingtechniquesin anelegantway. Our
solutionalwaysguaranteescorrectnessif all provenanddis-
provennodesaresavedin thetranspositiontable.Thegames
of checkers, a first-player-loss scenario,and Go with the
SSKrule, a current-player-lossscenario,arechosento em-
pirically measurethe effectivenessof our approach.Since
our ideadoesnotdependonany algorithm-specificfeatures,
it canbe appliedto differentgame-treesearchalgorithms.
Wehavechosento implementourschemefor boththedf-pn
algorithm(Nagai2002)and -/. (Knuth& Moore1975).Ex-
perimentalresultsin thesedomainsandalgorithmsshow that
wepayonly asmalloverheadcomparedto programsthatig-
noretheGHI problem.In particular, sincetheonly previous
solutionfor thecurrent-player-lossscenariois to giveup all
transpositions,which is very inefficient,our approachis the
first attemptto handletheGHI problemwith aninexpensive
overhead.Additionally, weempiricallydemonstratethatthe
GHI problemis a problemthat mustbe addressedsinceit
occursin practice.

The structureof this paperis asfollows: First, the liter-
atureon the GHI problemis reviewed and the algorithms
df-pnand -/. arebriefly explained.Thenoursolutionto the
GHI problemis described,followedby experimentalresults
with bothalgorithmsin Go andcheckers,andsomeconclu-
sionsandfuturework.

Previous Work on the GHI Problem
TheGHI problemwasfirst pointedout in (Palay1983).Al-
though two possiblesolutionswere suggested,no imple-

A

B C

D

Figure 2: An examplewhereBTA fails with the current-
player-lossscenario.

mentationwasprovided.CampbellclassifiedtheGHI prob-
lem into two cases,draw-firstanddraw-last, andsolvedthe
GHI problemfor the draw-first case(Campbell1985). In
the draw-first case,a scoreinvolving repetitionis saved in
thetranspositiontable,andis laterincorrectlyretrievedfor a
position that doesnot involve repetition. In the draw-last
scenario,a scorenot involving repetition is storedin the
transpositiontable, and is later incorrectly usedfor a po-
sition involving repetition.

(Breuker et al. 2001)proposedthe base-twinalgorithm
(BTA) for solvingtheGHI problemin proof-numbersearch.
Sincetheirimplementationof BTA consideredadraw to bea
disproof,this modelcorrespondsto thefirst-player-losssce-
nario in our framework. BTA usesa possible-draw mark
combinedwith the depthof a nodein the searchgraphto
recognizerepetitions. To find out at which deptha posi-
tion causesrepetitions,BTA splits repeatedpositionsinto
two kinds of nodes: a basenodeto be explored and twin
nodeswhich can have differentvalues(i.e. possible-draw
marks)thanthe basenode. Possible-draw marksareprop-
agatedback to parents. When the root of the subtreethat
causesrepetitionsis detected,a real draw is storedin that
root. Although Breuker et al. claim that BTA is a general
solutionto the GHI problemfor best-firstsearch,thereare
threeissuesthatmustbeaddressed:
0 SinceBTA wasimplementedfor a best-firstsearchalgo-

rithm thatkeepsanexplicit graphin memory, it is anopen
questionif BTA is applicableto depth-firstsearchalgo-
rithmswith limited memory.

0 The cycle detectionschemein BTA doesnot work with
the current-player-lossscenario. Figure 2 illustratesan
example. � is a nodeat thestartof a repetitionloop, but
� ’svaluecannotbeuniquelydeterminedwithoutconsid-
ering the path. � via path �1	2� is a disprovennode,
sincethe last move in �3	4�5	��2	4� is illegal.
On the otherhand, � via path �6	7�'	7��	7� is a
provennode,sinceafterthis sequencethemove to � is a
repetition.

0 All possible-draw marksare removed for eachiteration
of proof-numbersearch.This is necessaryin BTA since
marksarepath-dependentinformation. As long asa real
draw is not stored,nodescausingrepetitionsmustbeex-
ploredagainandagainto markpossible-draws, resulting
in a largeoverheadfrom treereexpansion.

(Nagai2002)proposesa solutionto theGHI problemfor
df-pn.8 This modifieddf-pn is appliedto tsume-shogiprob-
lems,a first-player-lossscenario.In Nagai’s algorithm,df-
pn first setslargethresholdsof proof anddisproofnumbers
at the root. In caseof a repetition,df-pn simply returnsto
theparentnodewithoutstoringadisproof.If aproof for the
root is found, the proof treeis guaranteedto be repetition-
free. However, if df-pn returnsto theroot by exceedingone
of the large thresholdsof proof anddisproofnumbers,df-
pn re-searchesby assumingthata movereachingtheroot is
disproven. A similar repetitiondetectionschemeis usedat
all interiornodes.Onedrawbackof Nagai’sapproachis that
it may take a long time for the proof or disproofnumbers
to exceedthe presetthreshold. If thereis a large number
of branchesthis approachis impracticalfor detectingdis-
proofswith repetitions.Furthermore,Nagai’sapproachdoes
not work with the current-player-lossscenario. Sincethis
approachdoesnot useany pathinformation,it alsocannot
storetwo differentpath-dependentresultsfor onenode.

According to (Breuker et al. 2001), Thompsonnoticed
thathis tacticalchessanalyzersufferedfrom theGHI prob-
lem. Hecuredit for interiornodesby usingaDCG(directed
cyclic graph)representationandconsideringthehistory.

(Baum& Smith1995)suggestasolutionto theGHI prob-
lem for their best-firstsearchalgorithm. Their algorithm
storesthe whole DCG in memoryandrecognizesthe case
whena nodereachedthroughdifferentpathsmustbe split
into two nodesto save differentresults.However, their idea
wasnot implemented,andthey concludedthata low storage
algorithmwouldprobablybetoo costly.

(Schijf, Allis, & Uiterwijk 1994) investigatedproof-
numbersearchin domainswherethesearchgraphis aDAG
(directedacyclic graph)or DCG. Schijf implementedthree
algorithmsto dealwith theGHI problem.However, two of
thesemethodsare inefficient, sincethey give up on using
transpositions,while the third approachsometimesresults
in wrongdisproofs.

Overview of df-pn and 9;:
Depth-First Proof-Number Search
Thedepth-firstproof-numberalgorithmdf-pn (Nagai2002)
turnsthebest-firstproof-numbersearch(PNS)method(Al-
lis, van der Meulen,& van denHerik 1994) into a depth-
first searchalgorithm.Df-pn canexpandlessinterior nodes
andusea smalleramountof memorythanPNS.Like PNS,
it usesproof and disproof numbersand always expandsa
most-proving node.Df-pn utilizes local thresholdsfor both
proof anddisproofnumbers,selectsa mostpromisingnode,
andperformsiterative deepeninguntil exceedingeitherone
of the thresholds.Becausedf-pn is an iterative deepening
methodthatre-expandsinteriornodes,theheartof thealgo-
rithm is its useof thetranspositiontable. Whenever a node
is explored,thetranspositiontableis usedto cacheprevious
searchefforts (i.e.,proofanddisproofnumbers).

The <>= Algorithm
The -?. algorithm(Knuth& Moore1975)hasbeenthemost
popular algorithm amonggameprogrammers. The algo-

rithmutilizesasearchwindow definedby two bounds,- and
. , which representlower andupperboundson theminimax
scoreof agametree.Thesearchwindow is narrowedduring
minimaxsearch,andusedfor pruningsubtreesif the score
of anodeis provento beoutsidethewindow. Many variants
andenhancementshave beendevelopedover theyears,but
a transpositiontableis almostalwaysused.

A NewGeneralSolution to the GHI Problem
Our solution utilizes two techniques: We encodepath-
information using methodsfrom (Zobrist 1970) and use
Kawano’ssimulationtechnique(Kawano1996)to searchef-
ficiently. Theoutlineof our solutionto theGHI problemis
asfollows: Whena provenor disproven positionstoredin
thetranspositiontableis reachedvia a new path,insteadof
blindly retrieving the result, a searchis performedto ver-
ify it. If theproof/disproofverifies,theresultcanbesafely
reused;otherwisethe transpositiontableentry is treatedas
a differentposition. Kawano’s simulationis usedto reduce
the searchoverhead.For efficiency, this approachrequires
a goodschemefor storingandcomparingpaths,anda tech-
niquefor minimizing thenumberof simulationcalls.

Duplicating TranspositionTableEntries
Sincewewantto reusetheresultsof previoussearchefforts,
unprovenidenticalpositionsreachedvia differentpathsare
consideredto betranspositions,andwereusethestoredval-
uesfromthetranspositiontable:proofanddisproofnumbers
for df-pn, andminimaxvaluesfor -/. . Whenposition � is
provenvia path@ , thetranspositiontableentryfor � is split
into a ACBEDGF anda first HJILKNM tableentry. A proof is storedin
thetwin tableentryto indicatethat � is provenwhenreach-
ing � via @ . If � is provenvia a differentpath O , another
twin tableentry for O is createdandthenew proof is stored
there.Whenreaching� via a pathotherthan @ , theproofs
of thetwin tableentriesaresimulated(seelater). If at least
oneverifiesthenthatproof is used;otherwisethe informa-
tion from theunprovenbasetableentryis usedin thesearch.
Disproofsarehandledin thesameway.

EncodingPaths
To differentiate identical positions reachedvia different
paths,we needan effective methodto computea signature
of a path. A variantof the Zobrist function,which is used
to hasha position into its correspondingtranspositionta-
ble key (Zobrist 1970), can be usedto encodea path. In
our implementation,eachtranspositiontableentrycontains
an additional64-bit field to encodea signatureof the path
from the root to a position. Let MaxMove be the number
of differentmovesin a game,andMaxDepthbe the max-
imum searchdepth. A precomputedrandomtable P with
MaxMove* MaxDepth64 bit integersis preparedto encode
a path. Thesequenceof movesto reachthatpositionis en-
codedby a techniqueinspiredby Zobrist’s method.Let the
path @ be QSRUTWVXRZY[V]\]\G\]VXR_^W` , where R_a aremoves. Then @
is encodedasfollows:

codeQb@c`edfPhg R Tji glk inm Phg R Yoi g p inm \]\G\ m Phg R ^qi g r i

An importantpropertyof this path-encodingschemeis
that the orderof movesis not commutative, sincethe ran-
dom tableentriesfor identicalmoveswith differentdepths
containdifferentvalues.For example,thecodesof the two
paths@ T d1QSR T VXR Y VsR_tG` and @ Y d1QSR_tuVsR Y VXR T ` aredif-
ferent,sincecodeQv@ T `>dfPhg R Twi glk iJm Pxg R Yji g p iym Pxg R_t i g z i is
differentfrom codeQb@�YG`>d�Phg RUT i g z i{m Phg RZY i g p i{m Phg R t i gvk i .

We notethatthesizeof therandomtableis smallenough
for currenthardware. For example,in our experimentson
kG|}*ZkG| Go,wherewesetMaxMove= 362andMaxDepth=
50,thesizeis about140KB.In gameswith alargenumberof
differentpossiblemoves,suchasShogior Amazons,amove
canbesplit into two or threepartialmoves,for exampleby
separatingthe from-squareinformation from the to-square
information. This way MaxMove can be greatly reduced,
while MaxDepthincreasesby a factorof 2 or 3.

Invoking Simulation for Correctness
Tree simulation was invented by Kawano to effectively
deal with uselessinterposingpiece drops in tsume-shogi
(Kawano1996). Later, Tanaseappliedthis ideaextensively
in his -/. searchenginefor shogi to reducethe overhead
of calling the tsume-shogisolver within the normalsearch
(Tanase2000).

In AND/OR trees,which are the commonconcepton
which bothdf-pn and -/. arebased,a proof tree ~ provides
aproofthatanodeM is proven.Suchaproof treecontainsM ,
at leastonechild of eachinteriorORnodeof ~ , andall chil-
drenof interior AND nodesof ~ . All terminalnodesof ~
mustbeproven.A disproof tree ~ which proviesa disproof
is definedin ananalogousway.

Assumethat � is a provennodeand � is a “similar” one
thatwe wantto prove. Simulationborrowsmovesfrom � ’s
proof treeto attemptaquickproofof � . Thewinningmove
for eachORnodein theprooftreeis obtainedfromthetrans-
positiontableof theproof treeof � . Likewise,dualsimula-
tion, attemptsto find a disproof.

Comparedto a normalsearch,simulationrequiresmuch
lesseffort to confirm whethera position is proven or not.
Evenwith goodmoveordering,anexistingproof treeis typ-
ically muchsmallerthana new searchtreewould be. Also,
sincemovesareborrowedfrom thetranspositiontableatOR
nodes,thereis no needto invokethemovegenerator.

Assumethat � is a proven position with path @ . If we
reach� via a differentpath O , we cancheckif � via O can
beprovenby invokingsimulation.A proofis borrowedfrom
the twin tableentry (with path @). If a proof for � via O is
verified,anadditionaltwin tableentryfor � via O is created
andtheproof is saved. If morethanonetwin tableentry is
available,they aretried in turn. However, sinceproof trees
oftenhave thesameshape,it is rarethatmorethanonetree
simulation is needed. The analogousverification by dual
simulationis tried to find disproofs.

ReducingSimulation Calls
Sincesimulationincursanoverheadtoassessthecorrectness
of atranspositiontableentry, wedevisedamethodto reduce
thenumberof simulationcalls. If anodeis (dis)provenwith-
out detectinga repetition,that nodecanalwaysbe usedas

a transposition,sinceit is independentof thepathtakenby
the search.In this case,the (dis)proof is storeddirectly in
thebasetableentry, withoutcreatingatwin node.If another
path leadsto that position, the (dis)proof can be retrieved
directly.

Correctnessof Our Solution
Assumethat all proven anddisproven nodesare storedin
the transpositiontable. The following theoremguarantees
correctnessof thesolutions:

Theorem1 Our solutionsuffersneitherfromthedraw-first
nor fromthedraw-lastcase.

For unproven nodes,our proposedsolution might com-
puteincorrectproofanddisproofnumbersfor df-pn,andin-
correctheuristicvaluesfor -/. search.However, theabove
theoremsguaranteethatourapproachalwaysreturnscorrect
(dis)proofsoncethey areobtained.This theoremfor df-pn
is provenin (Kishimoto& Müller 2004),andis analogously
proven for -?. with somemodifications(seethe next sec-
tion).

Algorithm-Specific Implementation Details
Df-pn We madethe following modificationsto the origi-
naldf-pnalgorithm:
0 Proof anddisproofnumbersin a basetableentry arere-

initialized to 1 whenever a (dis)proof is saved in a twin
table entry. This is becausedf-pn tendsto createlarge
proof anddisproofnumbersbeforea (dis)proofis found,
whichmadedf-pnunableto solvesomepositions.

0 As in (Nagai2002),we initialize the thresholdsof proof
anddisproofnumbersat theroot to ����k , not to � asin
the original df-pn algorithm. This is necessaryto avoid
the GHI problemat the root, sincedf-pn saves thresh-
olds in the transpositiontablebeforeexpandinga node.
If df-pn with our modificationreturnsa proof numberof
0 andadisproofnumberof � , or viceversa,it is acorrect
(dis)proof.Otherwise,df-pn returnsthevalueunknown.

-?. Thefollowing modificationsaremade:
0 We modifieda schemefor transpositiontablelookups.A

normaltranspositiontableentrycontainsafield thatstores
thedepthsearchedbelow anode.If a transpositionis rec-
ognized,the depthstoredin the tableentry is at leastas
deepasthedepththatmustbeexplored,andthetableen-
try hasa tight -/. bound, then the table information is
retrievedandnofurthersearchfor thatnodeis performed.
We usethis strategy only for unprovennodes.Proofsand
disproofssaved in the transpositiontablearealways re-
trieved without checkingthe explored depth,sincethey
arecorrectvalues.Thismodificationnotonly makesmore
useof the transpositiontablebut alsosolvesCampbell’s
draw-lastcase.

0 Our current -?. searchusesonly the threevalues(win,
unknown, or loss). However, our solutionworks for the
generalcaseof morevaluesin betweenwin and loss. In
our implementationof checkers,adraw is consideredasa
lossfor thefirst player. To provea draw, a secondsearch

be performedin which a draw is regardedas a win for
the� first player. We notethat determininga draw within
a singlesearchis not a trivial problemfor the -?. algo-
rithm, sincethe valuesdraw andunknownareincompa-
rable. Additionally, if we want to get a correctheuristic
value,it could be obtainedby performinga sequenceof
null window searchesasin MTD(f) (Plaatet al. 1996).

Game-SpecificImplementation Details
Go Domain-specific enhancementsin (Kishimoto &
Müller 2003)are incorporatedto our df-pn and -?. imple-
mentations.Our -?. performsiterative deepening,andex-
tendsthedepthfor forcedmoves.Additionally, our -/. first
searchesthebestmovefrom apreviousiteration.

Checkers 8-piecesendgamedatabasesare incorporated
to our df-pn and -/. implementations. Scoresobtained
by databaselookupsareconsideredto be correct,because
thesescoresareindependentof thepathsourprogramstake.
Simulationis not invokedfor treesinvolving only database
scores.For enhancementsto -/. , our implementationper-
formsa variabledepth-firstsearchandusesstate-of-arten-
hancements.

Experiments
Setup
We appliedthe df-pn and -/. algorithmsto Go andcheck-
ers. Specifically, we focusedon the one-eye problemwith
situationalsuper-ko in Go, which is a current-player-loss
scenario.Meanwhile,in checkers,we usedfirst-playerloss
scenarios.

Theexperimentsfor programsignoringanddealingwith
the GHI problemand for both gameswere performedon
anAthlon 2400MPwith a 300MB transpositiontable. All
proven anddisproven nodesaresaved in the transposition
tablefor bothprograms.140positionsin Go and200posi-
tionsin checkerswereprepared.Thetime limit wassetto 5
minutesperpositionin Go. On the otherhand,we did not
limit theexecutiontimein checkers,sincetheexecutiontime
in checkerswasunstablebecauseof I/O accessincurredby
databaselookups. Instead,the nodeexpansionin checkers
waslimited to 10 million nodesperposition.

Resultsin Go
Tables1 and2 summarizetheresultsfor df-pnand -/. in Go
in termsof thenumberof problemssolvedandtotalnodeex-
pansions.Thesestatisticsarecollectedbothby programsig-
noring(IGNORE-GHI)andhandling(OUR-SCHEME)the
GHI problem. We could not test other approachessuch
as Nagai’s in Go, since thesealgorithms do not handle
urrent-player-lossscenarios.BothIGNORE-GHIandOUR-
SCHEME solve the samesubsetof problems. However,
IGNORE-GHI gave incorrectproof treesfor two positions
in df-pn andfor threepositionsin -/. . Althoughthescores
returnedby IGNORE-GHIwerecorrect,weconcludethatit
is importantto have a schemeto handlethe GHI problem,
sinceGHI happensbothin df-pn and -/. . Evenif GHI does
not appearin thefinal proof tree,it occasionallyappearsin

Table 1: Performancecomparisonbetweenignoring and
dealingwith the GHI problemfor df-pn in Go. All statis-
ticsarecomputedfor 136problemssolvedby bothprogram
versions.

Numberof Total
Method problems Total time
Used solved nodes (sec)

IGNORE-GHI kGz[);��p 22,294,119 589
OUR-SCHEME 136 21,938,585 587

Table 2: Performancecomparisonfor -/. in Go. All the
statisticsarecomputedfor 132problemssolvedby bothver-
sions.

Numberof Total
Method problems Total time
Used solved nodes (sec)

IGNORE-GHI 129+ 3 102,077,944 1,078
OUR-SCHEME 132 104,679,229 1,101

thesearch.Of the136problemssolved,OUR-SCHEMEin
df-pn explored 13,505nodesby simulation, invoked sim-
ulation 648 times, and simulation discovered 190 flawed
transpositiontableentries. In caseof -/. , OUR-SCHEME
explored147,946nodesby simulation,and invoked simu-
lation 12,005times for the 132 problemssolved. Simula-
tion detected4,174flawedtranspositiontableentries.These
numbersareconservative,becausesomeincorrectproofsor
disproofsmay be storedbut never retrieved. Furthermore,
OUR-SCHEMEcanavoid theGHI problemwith negligible
overheadin termsof extra nodesandexecutiontime. For
example,OUR-SCHEMEexplores2.5%extra nodesin -?. ,
and1.5 % lessnodesin df-pn. Thus, it is a small price to
payto alwaysguaranteecorrectness.

Resultsin Checkers
Table 3 gives the resultsfor df-pn in checkers. We addi-
tionally implementedNagai’s solution(NAGAI) to theGHI
problem(Nagai2002).Of the200problemsin thedataset,
NAGAI solved 138. IGNORE-GHI solved 144, including
the138whichNAGAI solved.However, IGNORE-GHIhad
incorrectdisproofsin 18 cases,whereasNAGAI solvesall
problemscorrectly. OUR-SCHEMEsolves 143 problems
correctly, including all of the 138 problemswhich NAGAI
solves, someof the additionalproblemswhich IGNORE-
GHI solved, plus someextra problemsnot solved by ei-
ther of the other two systems. OUR-SCHEMEsolved 2
problems(correctly) which IGNORE-GHI did not solve.
IGNORE-GHIsolved3 problemswhichourschemedid not
solve, but only oneof thoseproblemswassolvedcorrectly.
Additionally, accordingto the statisticsfor the positions
solved by all versions,our solution hasa small overhead.
OUR-SCHEMEexpandedfewernodesthanIGNORE-GHI.
Simulationdetectstheflawedtranspositiontableentries.Of
138 problemssolved by all programs,OUR-SCHEMEin-
vokedsimulation243,885timeswith 970,373nodeexpan-

Table3: Performancecomparisonfor df-pn in checkers.All
statisticsarecomputedfor thesubsetof 138problemssolved
by all programversions.

Numberof
Method problems Total
Used solved nodes

IGNORE-GHI 126+ 18 129,006,133
OUR-SCHEME 143 128,082,295
NAGAI 138 137,888,627

Table4: Performancecomparisonfor -/. in checkers. All
statisticsarecomputedfor thesubsetof 111problemssolved
by bothprogramversions.

Numberof
Method problems Total
Used solved nodes

IGNORE-GHI 103+ 8 119,289,609
OUR-SCHEME 112 116,673,224

sion, anddiscovered87,181flawed transpositiontableen-
tries. Thesenumbersconfirmthat theGHI problemoccurs
in search,andsometimesincorrectresultsarebackedup to
final disprooftrees.

Table4 shows theresultsfor -/. . OUR-SCHEMEsolved
all positionssolved by IGNORE-GHI,andonemoreposi-
tion wassolvedby OUR-SCHEME.IGNORE-GHIreturned
incorrectdisproofsfor 8 positions.OUR-SCHEMEinvoked
simulation22,536times with 31,170nodeexpansion,and
14,418caseswere failed of 111 problemssolved by both
programs. Thesenumbersindicate that the GHI problem
tendsto occurlessfrequentlyin -?. thanin df-pn in check-
ers. However, we still needto addressGHI, sinceit does
occurin practice.

In conclusions,sincethe GHI problemhappensboth in
df-pnand -/. in checkers,it is dangerousto ignore.Because
our methodnot only incurs low overheadbut also always
returnscorrectanswers,it is a worthwhile addition to any
searchenginesusceptibleto GHI.

In comparisonto existing methods,our methodcouldbe
comparedwith Breuker’sBTA. However, we notethatBTA
needsanexplicit graphrepresentation,andcomplicatedop-
erationsto deal with repetitions. This causesa problem
whenBTA usesup availablememory. On the otherhand,
our approachdoesnot needany explicit graphrepresenta-
tion. Unprovennodesarereplaced,whenthetablebecomes
full. Breuker’s schemeto detectreal draws is specificto
thefirst-player-lossscenario,andcanbeincorporatedto our
method.

Conclusionsand Future Work
In this paper, we presenteda framework to solve an impor-
tantopenproblemraisedby (Palay1983)20yearsago.Our
approachincursverysmalloverheadandis applicableto two
algorithmsdf-pn and -?. . Therefore,we concludethat our

solutionto theGHI problemis practicalandgeneral.
An interestingtopic for further considerationis the re-

lation betweenthe GHI problem with replacementand
garbagecollectionschemeswith limited memory. Sinceour
algorithmcurrentlyneedsto keepall provenanddisproven
nodesin memory, thereis still anopenquestionasto which
nodescanbereplacedor garbage-collected.

Acknowledgments
We like to thankJonathanSchaeffer andYngvi Björnsson
for their beneficialdiscussionsand making their checkers
codeavailable.NathanSturtevantandMarkianHlynka read
thedraftsof thepaperandgave usvaluablecomments.Fi-
nancialsupportwasprovided by the NaturalSciencesand
EngineeringResearchCouncilof Canada(NSERC)andAl-
berta’sInformaticsCircleof ResearchExcellence(iCORE).

References
Allis, L. V.; van der Meulen, M.; and van den Herik,
H. J. 1994. Proof-numbersearch. Artificial Intelligence
66(1):91–124.
Baum,E. B., andSmith, W. D. 1995. Bestplay for im-
perfectplayersandgametreesearch;partI - theory. Tech-
nical report,NEC ResearchInstitute. Availableathttp:
//citeseer.nj.nec.com/baum95best.html.
Breuker, D. M.; van den Herik, H. J.; Uiterwijk, J. W.
H. M.; andAllis, L. V. 2001.A solutionto theGHI problem
for best-firstsearch.TheoreticalComputerScience252(1-
2):121–149.
Campbell,M. 1985.Thegraph-historyinteraction:On ig-
noringpositionhistory. In 1985Associationfor Computing
MachineryAnnualConference, 278–280.
Kawano,Y. 1996. Usingsimilar positionsto searchgame
trees. In Nowakowski, R. J., ed., Gamesof No Chance,
volume 29 of MSRI Publications, 193–202. Cambridge
UniversityPress.
Kishimoto,A., andMüller, M. 2003. Df-pn in Go: Appli-
cationto the one-eye problem. In Advancesin Computer
Games.ManyGames,ManyChallenges, 125–141.Kluwer
AcademicPublishers.
Kishimoto,A., andMüller, M. 2004.A solutionto theGHI
problemfor depth-firstproof-numbersearch.Information
Sciences. To appear.
Knuth, D. E., and Moore, R. W. 1975. An analysisof
alpha-betapruning.Artificial Intelligence6:293–326.
Nagai,A. 2002. Df-pn Algorithmfor Searching AND/OR
TreesandIts Applications. Ph.D.Dissertation,Department
of InformationScience,Universityof Tokyo.
Palay, A. J. 1983. Searching with Probabilities. Ph.D.
Dissertation,CarnegieMellon University.
Plaat,A.; Schaeffer, J.; Pijls, W.; andde Bruin, A. 1996.
Best-FirstFixed-DepthMinimax Algorithms.Artificial In-
telligence87(1-2):255–293.
Schijf, M.; Allis, L. V.; andUiterwijk, J. W. H. M. 1994.
Proof-numbersearchand transpositions. International
ComputerChessAssociationJournal17(2):63–74.

Tanase,Y. 2000. Algorithms in ISshogi. In Matsubara,
H., ed.,Advancesin ComputerShogi 3, 1–14. Kyouritsu
ShuppanPress.In Japanese.
vanderWerf, E.C. D.; vandenHerik, H. J.;andUiterwijk,
J. W. H. M. 2003. Solving Go on small boards. Inter-
national ComputerGamesAssociationJournal 26(2):92–
107.
Zobrist, A. L. 1970. A new hashingmethodwith appli-
cationsfor gameplaying. Technicalreport,Departmentof
ComputerScience,Universityof Wisconsin,Madison.

