
Temperature Discovery Search

Martin Müller and Markus Enzenberger and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Canada T6G 2E8
{mmueller,emarkus,jonathan}@cs.ualberta.ca

Abstract

Temperature Discovery Search (TDS) is a new minimax-
based game tree search method designed to compute or ap-
proximate the temperature of a combinatorial game. TDS is
based on the concept of an enriched environment, where a
combinatorial game G is embedded in an environment con-
sisting of a large set of simple games of decreasing temper-
ature. Optimal play starts in the environment, but eventu-
ally must switch to G. TDS finds the temperature of G by
determining when this switch must happen. Both exact and
heuristic versions of TDS are described and evaluated exper-
imentally. In experiments with sum games in Amazons, TDS
outperforms an αβ searcher.
Keywords: Temperature Discovery Search, combinatorial
games, αβ algorithm, Go, Amazons

Introduction
The effort required to solve games by minimax search
typically increases exponentially with the required search
depth, even when all standard search enhancements are used
(Schaeffer 1989). Improvements are possible for games that
exhibit additional structure. One example are combinatorial
games (Berlekamp, Conway, & Guy 1982), which can be
broken down into a sum of independent subgames.

Go endgames can be analyzed as combinatorial games.
They often consist of several independent fights to refine
the boundaries of loosely surrounded territories. As an-
other example, Figure 1 shows a position G from the game
of Amazons that decomposes into a sum of four subgames
G1 + G2 + G3 + G4. In Amazons, playing pieces called
amazons move like chess queens and try to block the other
player by shooting arrows that block empty squares. Areas
that become completely blocked from each other become in-
dependent subgames. In the figure, each of the four corners
forms one subgame. Each corner is separated from the rest
of the board by a solid wall of blocked squares.

One important goal of algorithms for combinatorial
games is to replace global minimax search by local analy-
sis of single subgames as much as possible. Because of the
exponentially growing cost of search, and because the length

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A C D

1

2

3

4

B E F G H I

6

5

7

8

9

Figure 1: An Amazons position with four subgames of size
4 × 4 (Black to move)

of local move sequences is typically much shorter than play-
ing out the whole sum game, even methods that perform sub-
stantial analysis of each local game can still be much faster
than global search. For example, in Figure 1 there are several
hundred legal moves and 39 empty squares, so the game can
last up to 39 moves. Local analysis reduces both the width
and the depth of the search by a factor of 4 or more. This is
a massive reduction in the size of the search space.

An exact local search method that was applied to late-
stage Go endgames is decomposition search (Müller 1999).
Approximation algorithms must be used when the exact so-
lution of local problems or the global combination of local
solutions is too costly. Methods based on the concepts of
mean and temperature (Berlekamp, Conway, & Guy 1982;
Berlekamp 1996) can yield very good play, with bounded
error. The mean of a subgame measures how advantageous
for a player this game is “on average”, when played as part
of a sum of games. The temperature measures the urgency
of playing first in a particular subgame. These two numbers
are usually computed “bottom-up” by retrograde analysis,
which requires building the complete local game graph.

This paper introduces Temperature Discovery Search
(TDS), a method for discovering the temperature of a local
game by a forward minimax search. The method is more
general and more practical than Kao’s Mean and Temper-
ature Search (Kao 2000). Kao’s method applies to the re-
stricted class of binary game trees, which allow only a sin-
gle move for each player in a local game position. TDS has

no such restriction. In many combinatorial games, including
Go endgames and Amazons, there are local positions with
many plausible moves for both players. Kao’s method also
requires a search to the end of the game, whereas TDS can
be used as an approximation method with a given depth or
time limit.

The contributions of this paper are:
• A novel use of AI search techniques to solve a problem in

the domain of combinatorial games, and the novel use of
combinatorial game theory to enhance the performance of
an AI game-playing program.

• The first general forward search method to compute the
mean and temperature of any finite loop-free combinato-
rial game.

• The first known systematic method to approximate mean
and temperature by forward search.

• Several techniques to control the trade-off between speed
and accuracy, and their empirical evaluation.

• A series of experiments in practical play of hot sum
games, showing that TDS in combination with the Hot-
strat algorithm convincingly outperforms an αβ searcher.

Combinatorial Games
A major difference between normal αβ minimax search and
local analysis of a sum game is that while αβ solves a single
optimization problem, in a sum game there is a trade-off be-
tween a local gain and the right to play first in another game.
Combinatorial game theory analyzes subgames under the as-
sumption that there are (many) other subgames around, and
seeks to optimize the score in the sum game, not just in the
current subgame. The gain from playing in one subgame
must be compared against the potential loss from letting the
opponent play first in the remaining subgames. Combina-
torial game theory provides tools to quantify this trade-off.
In a real-world sum game, the other subgames can be arbi-
trarily complex, and therefore evaluating the trade-offs pre-
cisely is hard. In contrast, a locally restricted αβ search
would optimize a player’s local profit but ignore the trade-
off. This leads to poor play in many situations.

A middle ground is represented by the concept of a stan-
dardized enriched environment (Berlekamp 1996), in which
each subgame is analyzed. Traditionally, players are called
Left, who prefers positive values, and Right, who prefers
negative values. An enriched environment consists of many
elementary switches, simple subgames of the form v| − v,
with a large number of values v. In v| − v, Left to move
can gain v, while Right to move can gain −v. The mean
is µ(v| − v) = 0 and the temperature is t(v| − v) = v
(Berlekamp, Conway, & Guy 1982). Sum games consist-
ing only of switches are easy to play. Playing a switch with
highest temperature v is always an optimal move.

In a sum game consisting of a single, potentially complex,
subgame G plus an enriched environment, the trade-off now
becomes much simpler to analyze: the choice is between
playing in G and playing the switch with highest value v in
the environment. If v is very large, each player will take
this profit rather than play in G. As the available values v

become smaller, eventually a player will prefer to move in
G instead.

For example, consider playing a game and having a choice
of making a move (and thereby improving your position) or
taking some money. How valuable is it to Left to have the
right to move? Assume the money is a stack of coupons,
of decreasing value $10, $9,. . . and the advantage Left gets
by playing on the board is worth $5 to Left. In this case
Left would take the coupon, making the highest remaining
coupon valued at $9. Right would do a similar analysis, and
conclude the position is (say) worth $8, so Right takes the
$9 coupon leaving $8 as the top coupon value. Nothing has
changed on the board, so Left takes the $8 coupon, leaving
a $7 top coupon. Now Right makes a move since moving
is worth more ($8) that taking the next coupon ($7). If you
view the coupon stack as being the value of moving in a
different subgame, then the top value in the stack will de-
crease to the critical point where it becomes more profitable
to move in the current game than to move in a different sub-
game. This critical point is a representation of how urgent it
is to play in that subgame; this procedure finds a temperature
where playing in the game is optimal.

Let G be a finite loop-free combinatorial game and p be a
player. In the view of thermography (Berlekamp, Conway,
& Guy 1982), a player should play in G at a temperature
t(G). However, in so-called sente situations a player has a
threat that makes it possible to play in G at a higher tem-
perature. Let t̂(G, p) be the highest temperature such that
player p can play in G without a loss in the thermographic
sense. For loop-free games, this means p can play in G at
any temperature in the range [t(G) .. t̂(G, p)]. For exam-
ple, the game G = 10|0||0 has a temperature t(G) = 0, but
t̂(G, Left) = 5. Left’s move to 10|0 is a threat that raises the
temperature. Left can play at any temperature t in the range
[0, 5]. However, t̂(G, Right) = 0, so Right should not play
at a temperature above 0 here.

In the first phase of TDS, a single search is used to iden-
tify a first temperature estimate t, which is guaranteed to
lie within the interval [t(G) .. t̂(G, p)]. In a second phase,
further searches are performed that successively lower the
estimate t until t = t(G).

Coupon Stacks
The concept of a coupon stack was introduced by Berlekamp
in the context of analyzing Go endgames (Spight 2002). It
is used to implement an enriched environment.
Definition: A simple coupon stack C(tmax, δ), where tmax =
nδ for some integer n ≥ 0, is the sum of elementary
switches of temperatures δ, 2δ, · · · , tmax. Each such switch
is called a coupon. In C(tmax, δ), tmax > 0, either player can
take the coupon of value tmax, which changes the score of
the game by tmax in the player’s favor. The move leads to a
smaller stack C(tmax − δ, δ). A stack C(0, δ) = 0 is said to
be empty and neither player has a move.

A simple coupon stack C = C(tmax, δ) has tempera-
ture t(C(tmax, δ)) = tmax and mean µ(C(tmax, δ)) = 0.
The left score, the minimax score with Left going first, is
V (C, Left) = dn

2
eδ and the right score, the minimax score

with Right going first, is V (C, Right) = −dn

2
eδ.

In a sum G + C, an optimal player will play in G only
if t(C) ≤ t̂(G, p). In the range t(G) ≤ t(C) ≤ t̂(G, p),
playing in C and playing in G are both optimal.

Games played on a 19× 19 Go board plus a coupon stack
C(20, 1

2
) have been used in “Environmental Go” to gain in-

sight into how professional players estimate the temperature
of Go endgames (Spight 2002).

Extended Coupon Stacks for Negative
Temperatures
For games where all positions of temperature 0 or below can
be evaluated statically, a simple coupon stack C(tmax, δ) is
sufficient. However, in general play has to continue at neg-
ative temperatures down to t = −1. This situation can hap-
pen in games with difficult to evaluate endgame positions,
such as Go or Amazons. One specific example are so-called
zugzwang positions such as −4|3 = 0 where neither player
wants to move.
Definition: An extended coupon stack C

−1(tmax, δ) can
be constructed from a simple coupon stack C(tmax, δ) by
adding coupons of value 0,−δ,−2δ, · · · ,−1, followed by
a sufficiently large number k of further coupons of value -1,
and a final coupon of value − 1

2
as the bottom-most coupon.

For any δ = 1

2m
, with integer m > 0, this construction

avoids bias and ensures that V (C, p) = V (C
−1, p) for both

players p. The number k of extra coupons should be cho-
sen in a game-dependent way, large enough such that the
final − 1

2
coupon is never taken and the stack never becomes

empty.

Temperature Discovery Search
Temperature Discovery Search (TDS) is a standard αβ mini-
max search of the sum of a game G and a (simple or ex-
tended) coupon stack C. The important issue is how to use
the information returned by the search to determine the mean
and temperature of G.

Searching a Sum Game G + C

The αβ search process for TDS in a sum game G + C pro-
ceeds as follows:

Move generation Possible moves in G + C are all moves
in G plus one move in C, taking the top coupon (unless
the stack is an empty simple coupon stack).

Terminal Positions Two types of positions are leaf nodes
in the search: in a normal terminal position the value
of G can be statically recognized. In a pseudo-terminal
position both players have taken a −1 coupon as their
last move, indicating their unwillingness to continue play.
Examples of such positions are zugzwangs such as −4|3,
where both players would lose points by playing on.

Evaluation The evaluation of a position G+C, with player
p to play, is the sum of three components: evaluation of
G, coupons taken, and remaining coupons in C.

1. Evaluation of G: Normal terminal positions are evalu-
ated by their exact integer value. Nonterminal positions

in G can be evaluated by a heuristic evaluation func-
tion h(G) to improve move ordering or enable heuris-
tic TDS (see below). Pseudo-terminal positions are not
evaluated heuristically by the playing program. Fol-
lowing the simplicity rule of combinatorial game the-
ory (Berlekamp, Conway, & Guy 1982), such positions
are assigned a value of 0.

2. Coupons taken: The evaluation is the sum of all
coupons taken by Left minus the sum of all coupons
taken by Right.

3. Remaining coupons: The evaluation is V (C, p). This
assumes that both players take the remaining coupons
in turn, beginning with the player to move.

Example
Figure 2 shows a local Amazons position G with Black =
Left to move first. The search of G + C with an extended
coupon stack C = C

−1(tmax = 17

8
, δ = 1

8
) yields the mini-

max score V (G + C, Left) = 15

8
. This particular choice of

tmax and δ will be motivated in the description of Experi-
ment 1 below. Taking a coupon of value v is represented
by C(v) and an Amazons move by specifying the squares
as from − to × arrow. The principal variation (best line of
play–PV) for Figure 2 is:

1. C(17

8
) 2. C(16

8
) 3. C(15

8
) 4. C(14

8
) 5. C(13

8
)

6. C(12

8
) 7. C(11

8
) 8. A2–A3×B2 9. C(10

8
) 10. C(9

8
)

11. C(8

8
) 12. C(7

8
) 13. C(6

8
) 14. C(5

8
) 15. C(4

8
)

16. C(3

8
) 17. C(2

8
) 18. C(1

8
) 19. C(0) 20. C(− 1

8
)

21. C(− 2

8
) 22. C(− 3

8
) 23. C3–B4×C3.

The value 15

8
of the leaf position in this line is the sum

of the final position value (White has 1 square; − 8

8
from

Black’s point of view), the difference in coupon values
(Black has 21

8
more), and the value of the remaining coupons

(2

8
in Black’s favor). Most moves are coupon moves that

lower the value of the coupon stack until at move 8 and again
at move 23 it becomes advantageous for a player to make a
move.

A C D

1

2

3

4

B

Figure 2: Example Amazons position (Black to move)

Determining the mean: Assume that p is the player to
move. According to a theorem in (Berlekamp 1996), if the
value δ in C is sufficiently small, then V (G + C, p) =
µ(G) + V (C, p). Since V (C, p) is known (see above),
µ(G) can be determined. In the example, V (C, Left) =
d 17

2
e · 1

8
= 9

8
(17 coupons split two ways, each of value 1

8
),

V (G + C, Left) = 15

8
and therefore µ(G) = 15

8
− 9

8
= 3

4
.

Determining the temperature: Observe the move se-
quence in the principal variation returned by the search. If
t(C) > t̂(G, p), then the first moves in the PV will all be

in C. At some time when t(G) ≤ t(C) ≤ t̂(G, p), the first
move in G will appear in the PV. This can be used as a start-
ing point of an iterated search process to determine t(G).
t(G) is the lowest temperature at which optimal play can
switch from C to G. In the example, the first move in G was
played between the coupons of value t = 11

8
and t−δ = 10

8
.

The first estimate of t(G) is set to t, since t(G) ≤ t. If the
minimax score stays the same even if the next lower coupon
of value t − δ is played before the first move in G, then the
temperature estimate can be lowered by δ. To check this,
TDS is modified to play all the coupons down to C(t − δ)
before moves in G is allowed. If the minimax score remains
the same, then taking C(t−δ) first was not a loss, compared
the previous search where G was played before C(t − δ).
Therefore the estimate can be decreased to t := t − δ, and
the process is repeated. Otherwise, if the minimax score
changes, then taking C(t− δ) was nonoptimal, and the tem-
perature is t(G) = t.

In the example, the first search returns t = 11

8
by scan-

ning the PV given above. In the second search, all coupons
down to C(t − δ) = C(10

8
) are taken first. The minimax

value of this search is also 15

8
, so C(10

8
) was also an optimal

play and the estimate is lowered to t := t − δ = 10

8
. In

the third search, coupons down to C(9

8
) are taken first. The

minimax value of this search is 13

8
, less than before. Tak-

ing the coupon C(9

8
) before playing in G was a loss. The

temperature is t(G) = t = 10

8
.

Heuristic TDS
Time- or depth-limited searches with TDS can be used to
approximate the temperature of a game. As in any heuristic
αβ search, this introduces evaluation errors. Depending on
the coupon stack used and the PV returned from the search,
different outcomes are possible. Several searches with dif-
ferent coupon stacks may be required to find an approximate
temperature.

Assume that TDS of a sum G + C results in a PV con-
sisting of k moves, [m1, . . . ,mk]. If the PV contains at least
one move in G, determine i such that mi is the first move in
G. Otherwise, if all PV moves are in C, set i = k + 1. The
outcome of a single search can be classified as follows:

fail high If either i = k+1 (all moves in the PV are coupon
moves), or the last coupon of C was played before any
move in G.

fail low m1 was played in G. The temperature of G may be
higher than t(C).

regular Neither fail high nor fail low, 1 < i ≤ k. The PV
starts with one or more moves in C followed by a move
in G.

The fail high and fail low cases require additional search(es)
with a different stack to find the move to play.

Hotstrat-TDS: a TDS-based Heuristic Sum Game
Player
A simple way of using approximate temperatures in a play-
ing program is to adapt the combinatorial game strategy

of Hotstrat (Berlekamp, Conway, & Guy 1982), replacing
the unknown exact temperatures by estimated temperatures
computed by TDS. Given a sum game G = G1 + . . . + Gn,
the temperature t(Gi) of each subgame is estimated by TDS
and a subgame Ghot with highest estimated temperature is
chosen.

A best move in Ghot at temperature t = t(Ghot) is found
by re-running TDS on Ghot with a stack C

−1(t, δ). Move
generation is modified to force the first move to be in Ghot,
not in C.

As an optimization, since each move changes only one
subgame, the temperature of the other unchanged subgames
can be cached and reused for the upcoming moves. To try
to avoid playing into zugzwang positions at the end of the
game, when the temperature estimate of all subgames is −1,
a simple global minimax search is performed.

As an example of how Hotstrat-TDS works, consider
playing the four subgames in Figure 1. with Black to play.
TDS approximates the temperatures of the four subgames as
ttop left = 2, ttop right = 1, tbottom left = 3, tbottom right = 0.
Therefore Hotstrat selects the bottom left as the hottest
game, and TDS finds A2–B3×A3 as a best move on the
board at temperature 3.

Experiments

In the experiments, TDS is tested in the game of Amazons
(Lieberum 2003). Amazons endgames are an ideal environ-
ment for evaluating this search method. Unlike Go, Ama-
zons is a pure combinatorial game without the complica-
tions caused by ko (local position repetitions). Amazons is
an attractive and difficult game on its own, with board po-
sitions that naturally split up into sum games in the course
of a game. Furthermore, for small positions exact mean and
temperature data is available in the form of databases. Using
retrograde analysis, Theodore Tegos computed all Amazons
positions on a subset of a 4 × 4 grid containing one amazon
of each player (Tegos 2002).

All experiments were performed on a 2 GHz Athlon XP.

Experiment 1: Comparing TDS with Exact Mean
and Temperature Data

The following properties of Amazons were used to set up
the first and second experiment: A n point room containing
2 amazons has n − 2 empty points, limiting the maximum
game length to n − 2 moves. In such a game, all means
and temperatures must be integral multiples of 23−n. The
maximum possible temperature of these games is n − 3, so
tmax = n−3+δ was used. According to (Berlekamp 1996),
choosing δ = 1

2
× 23−n = 22−n is sufficient to determine

means and temperatures precisely.
The first experiment compares the mean and temperature

computed by TDS against the exact database values from
(Tegos 2002). For all 132 rooms with size 4, all 690 rooms
of size 5 and all 3330 rooms of size 6, the TDS results for
both mean and temperature agreed with the database values.

δ \ Size 4 5 6
δ = 1 0.155 /0 0.334 /0.086 0.306 /0.150
δ = 1

2
0 /0 0.0029 /0.024 0.0099/0.020

δ = 1

4
0 /0 0.0014 /0 0.0016/0.005

δ = 1

8
– 0 /0 0.0008/0

δ = 1

16
– – 0 /0

Table 1: Average absolute errors of t/µ

δ \ Size 4 5 6
δ = 1 1 /0 1.5 /0.75 1.5 /0.75
δ = 1

2
0 /0 0.25 /0.25 0.375 /0.25

δ = 1

4
0 /0 0.125 /0 0.125 /0.125

δ = 1

8
– 0 / 0 0.0625/0

δ = 1

16
– – 0 /0

Table 2: Maximum errors of t/µ

Experiment 2: Measuring the Effect of Increasing δ

Tables 1 and 2 show the effects of using values of δ larger
than 22−n. Increasing δ introduces errors, but reduces the
search depth and speeds up the search because far fewer
coupons must be played. The experiments used all the rooms
of size 4, 5 and 6 from the database. For each test position,
two searches were performed, one for each player moving
first. The mean and temperature estimates were set to the
average of the two results, which greatly improved the ac-
curacy. A table entry contains the error in the temperature
estimate followed by the mean estimate. Table 1 shows the
average absolute error and Table 2 the maximum error over
the test sets.

The tables show a clear correlation between the size of δ
and the accuracy of the computed means and temperatures.
However, even for δ = 1

2
the average error is quite small.

Experiment 3: Depth-limited Search
An alternate way of reducing the cost of a TDS search at
the expense of some accuracy is to limit the search depth. In
contrast to the previous experiments, the errors in the heuris-
tic evaluation function h(G) influence the result of these
searches. Figure 3 shows the average absolute error of t
for fixed δ = 1

2
and varying search depth. As expected the

average error decreases with deeper searches for two rea-
sons. First, larger subgames need deeper searches because
more board moves can be played in the subgame. Second,
the maximum theoretically possible temperature grows with
the size of the subgame and therefore a coupon stack with a
higher tmax has to be used.

Experiment 4: Playing Sum Games against a
Minimax Player
This experiment pits the Hotstrat-TDS player described
above against a normal global αβ search program in a sum
of Amazons positions. Both programs share the same core
αβ search engine with standard performance enhancements
and the same game-specific code such as move generation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A
ve

ra
ge

 a
bs

ol
ut

e
er

ro
r o

f t

Depth

Size 6
Size 5
Size 4

Figure 3: Average absolute errors of t for depth-limited
search for subgame sizes 4 to 6

and evaluation function. The program used, Arrow, took
third place at the Second Open Computer-Amazons Cham-
pionship in 1999. Compared to the current top programs,
it is weak in the opening and middle game, but competi-
tive in the endgame phase due to its special endgame knowl-
edge. Sums of small subgames have characteristics similar
to endgame positions.

In the experiments, the number of subgames in a sum
game varies from 2 to 6 in increments of 2, and the size of
subgames from 4×4 to 6×6. Two amazons of different color
and three arrows were placed on randomly chosen squares in
each subgame. Figure 1 shows such a sum game, with four
subgames of size 4 × 4. Usually, Amazons is played on a
single 10 × 10 board with 4 amazons each.

For each combination of number and size of subgames,
200 random positions were created and played twice such
that each player played each color once. Games were played
under tournament-like conditions, but with a shorter time
limit of 10 seconds per move. The score of a game is defined
as the number of moves that the winning player can still
make on the board when the opponent runs out of moves.

Table 3 shows the results. The average score of Hotstrat-
TDS increases quickly with the number and the size of the
subgames. In positions with two 4 × 4 subgames Hotstrat-
TDS performs slightly worse than the global αβ player. In
this case the global search can search deeply enough to reach
close to terminal positions, whereas the overhead of multiple
searches for determining the temperature and best move with
Hotstrat-TDS are a disadvantage here. In all other scenarios
in this experiment, Hotstrat-TDS outperforms the global αβ
player. The advantage increases greatly as there are more
and larger subgames.

Because of the reduced search width, local search in TDS
can go deeper than global search. Even the simple approxi-
mation of the value of playing in a subgame by a single num-
ber, the estimated temperature, suffices to outplay global αβ
convincingly under tournament conditions. An alternative is
to do local αβ searches, to compute two local minimax val-
ues, one for each player going first, and then play a move in

N 4 × 4 5 × 5 6 × 6
2 −1.7(2.5) 43% 1.2(5.7) 55% 7.8(10.2) 67%
4 2.3(4.9) 57% 13.5(11.5) 69% 41.2(18.3) 90%
6 8.1(6.2) 72% 32.5(15.3) 88% 81.2(26.8) 96%

Table 3: Game results depending on the number N and the
size of the subgames. Each entry shows the mean score, the
standard deviation of the score and the percentage of wins

the subgame with the largest difference in minimax values.
This is an inferior strategy, both experimentally and theoret-
ically, for the reason outlined earlier, that it maximizes local
profit but ignores global trade-offs.

Figure 4 illustrates some differences between Hotstrat-
TDS and global αβ. In this position, there are several
promising places to play. However, with a branching fac-
tor of several hundred and a 10 second time limit, αβ search
reaches only a search depth of 4 ply, and has to rely on a
heuristic evaluation for many volatile positions. In contrast,
TDS can search up to 9 ply locally. Even if many of these
moves are coupon moves, the evaluations are closer to ter-
minal positions, and they are all for the same local area, so
they are more reliable for both reasons.

A C D

1

2

3

4

B E F G H I

6

5

7

8

9

Figure 4: Sample game situation (Black to move)

Conclusions and Future Work
TDS is the first forward search algorithm that can compute
the mean and the temperature of a combinatorial game, as
opposed to the usual bottom-up analysis. A major practical
advantage of this method is that it can be used to approx-
imate these values with high accuracy by resource-limited
searches. TDS is shown to be successful both in its exact
version and in practical play, where positions are too com-
plex for exhaustive analysis. Even with a relatively large δ
such as 1

2
, the approximation quality of TDS is excellent.

One challenge for the future is to develop a mathematical
analysis that explains these experimental results.

The main limitation of purely local search methods such
as TDS is that they cannot always lead to globally opti-
mal play. In particular, methods such as Hotstrat that com-
press information about a local game to a single number are
limited in their performance. Given unlimited time, global
search will eventually play optimally, while Hotstrat reaches

a plateau once all temperatures are known exactly. A com-
bination of local and global methods is necessary to further
improve the performance.

TDS is applicable to any combinatorial game and is rel-
evant for playing games that are sums of complex, hot sub-
games. One major future task is to apply it to Go endgames.
The long term goal is to play real Go endgames at or beyond
human professional level. The potential for such methods
was shown in (Spight 2002), where computer-assisted hu-
man analysis uncovered several crucial errors in top-level
human play.

The main technical problem in applying TDS to Go is
that it must be extended to handle local ko repetitions.
Berlekamp and Spight have developed interesting theoret-
ical approaches to this problem (Berlekamp 1996; Spight
1999). One solution requires a coupon stack containing mul-
tiple copies of each switch. A direct implementation of these
ideas will most likely be too slow in practice, so further re-
search is needed.

Acknowledgements
This research was supported by grants from NSERC, the
Natural Sciences and Engineering Research Council of
Canada, and iCORE, the Province of Alberta’s Informatics
Circle of Research Excellence. Theodore Tegos provided
his databases of Amazons positions, which were invaluable
for testing our implementation of TDS.

References
Berlekamp, E.; Conway, J.; and Guy, R. 1982. Winning
Ways. London: Academic Press. Revised version pub-
lished 2001-2003 by AK Peters.
Berlekamp, E. 1996. The economist’s view of combi-
natorial games. In Nowakowski, R., ed., Games of No
Chance: Combinatorial Games at MSRI. Cambridge Uni-
versity Press. 365–405.
Kao, K. 2000. Mean and temperature search for Go
endgames. Information Sciences 122(1):77–90.
Lieberum, J. 2003. An evaluation function for the game
of Amazons. In van den Herik, J.; Iida, H.; and Heinz, E.,
eds., Advances in Computer Games 10, 299 – 308. Kluwer.
Müller, M. 1999. Decomposition search: A combinatorial
games approach to game tree search, with applications to
solving Go endgames. In IJCAI-99, 578–583.
Schaeffer, J. 1989. The history heuristic and the perfor-
mance of alpha-beta enhancements. IEEE Transactions on
Pattern Analysis and Machine Intelligence 11(11):1203–
1212.
Spight, W. 1999. Extended thermography for multiple kos
in Go. In van den Herik, H., and Iida, H., eds., Computers
and Games. Proceedings CG’98, number 1558 in Lecture
Notes in Computer Science, 232–251. Springer Verlag.
Spight, W. 2002. Go thermography - the 4/21/98 Jiang-
Rui endgame. In Nowakowski, R., ed., More Games of No
Chance. Cambridge University Press. 89–105.
Tegos, T. 2002. Shooting the last arrow. Master’s thesis,
University of Alberta.

