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Abstract. The game of NoGo is similar to Go in terms of rules, but
requires very different strategies. While strong heuristic computer play-
ers have been created for NoGo, solving and optimal play have been
less studied. We introduce Sorted Bucket Hash (SBH), a new approach
to building transposition tables for game solvers, and apply it to solve
NoGo on small boards. Using boolean negamax with standard heuristics
and SBH, our program SBHSolver has now solved NoGo on 50 different
rectangular boards including 3×9, the largest solved NoGo game to date.
It re-solved 5 × 5 NoGo much more efficiently than She’s work in 2013
and Cazenave’s work in 2020. The SBH data structure can also efficiently
extract a proof tree for the game. We provide analyses of NoGo proof
trees and games, and discuss human-understandable strategies from this
perspective.

Keywords: Game solving · Transposition tables · NoGo · Sorted Bucket
Hash.

1 Introduction

NoGo (or Anti-Atari Go [5]) is a lesser-known variant of the widely studied game
of Go. The rules of NoGo are:

1. Black and White take turns to play, with Black going first. At each turn
a stone of the player’s colour is placed onto an empty point on the board.
Passing is forbidden.

2. Connected stones of the same colour form a block. Adjacent empty points of
blocks are called liberties.

3. All blocks must always have at least one liberty. For Go players, this means
that both suicide and capturing are forbidden.

4. The game ends when a player has no legal move to play. This player is
deemed the loser.

The simple twist to the rules makes NoGo very different to play. Unlike Go,
where ko fights can greatly extend the length of a game, the number of moves in
NoGo is strictly less than the size of the board, since each block needs an empty
point for a liberty. The game state is completely determined by the current
board. However, NoGo still has a state space that grows exponentially with the
number of points on the board, and no easy winning strategies are known.

The three main contributions in this paper are:
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1. The data structure of Sorted Bucket Hash (SBH) for space-efficient trans-
position tables based on perfect hashing. SBH is designed for use in weakly
solving games.

2. Efficient solutions of NoGo on all 50 rectangular boards of size up to 27
points, with orders of magnitude fewer nodes than the 5× 5 NoGo solution
by She [9].

3. New results on NoGo, such as a winning strategy for Black on 5 × 5 in at
most 21 moves, two general results for 1×n NoGo, and a statistical analysis
of two human-understandable heuristics from the solver’s perspective.

2 Related Work

NoGo is a relatively young game with few human players. Previous research
mostly focused on creating strong computer agents for competitions such as the
Computer Olympiad, TAAI (Taiwanese Association for Artifical Intelligence),
and TCGA (Taiwan Computer Game Association) tournaments. Early programs
include BobNoGo [4], an open-source program based on MCTS that includes an
exact solver.

NoGo was proven a win for the first player (Black) on the 3× 3 board and a
loss on 4× 4 in 2011 [6]. All three distinct opening moves on 3× 3 boards win.
5 × 5 NoGo was solved in 2013 by Pohsuan She [9]. Black can win with all six
distinct opening moves, as shown in Fig. 1. Cazenave determined the winner of
NoGo played on boards of size up to 25 points by using alpha-beta search with
Monte Carlo Move Ordering and a transposition table of size 1048575 entries
[1].

Fig. 1: The six distinct openings for 5× 5 NoGo, from [9]. White dots represent
distinct possible replies from White.
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3 Sorted Bucket Hash and its Use in Solving Games

3.1 Boolean Negamax Search and Heuristics

While Sorted Bucket Hash is a general data structure, we explore it in the specific
context of transposition tables for Boolean Negamax, which is a simpler special
case of alpha-beta search [3] for two-valued outcomes. Our search also uses two
standard heuristics, Enhanced Transposition Cutoff [7] and History Heuristic [8].

3.2 A Transposition Table with Perfect Hashing

A transposition table is useful to avoid redundant evaluation when an equivalent
game position can be reached via different move sequences. In typical implemen-
tations, each game state is mapped to a k-bit hash code. An m-bit part of the
code is used as an index into a hash table, and the remaining n = k − m bits
are used as a validation code which is stored with each hash entry.

Tradeoffs for Designing Hash Tables Designing an efficient hash table re-
quires navigating trade-offs between speed, memory used, and the amount of
information stored per position. Our solver is designed for the following sce-
nario:

– Large state space, with many transpositions, so maximizing the size of the
table is important.

– Storing all solved positions, in contrast to using a fixed memory table with
a replacement scheme and re-search [2].

– The amount of data per position that needs to be stored is minimal. One
bit for storing win/loss is enough (a few extra bits are useful as discussed
below).

– Perfect hashing, as discussed below.

Perfect vs Lossy Hashing With perfect hashing, each game position is mapped
to a unique hash code. For example, all the states of a NoGo board with n points
can be mapped to 3n distinct codes. If storing a full hash code takes too much
space, lossy hash functions such as 64-bit Zobrist Hashing [10] are used in prac-
tice. However, in our application 64-bit Zobrist codes used too much memory,
and smaller codes led to too many hash collisions. This was the main motivation
for developing SBH based on perfect hashing.

Sorted Bucket Hash Sorted Bucket Hash (SBH) is a new method for organiz-
ing a transposition table. Given a game state s, SBH uses a perfect hash function
h(s) that produces k = m+n-bit hash codes. The m-bit segment of a hash code
represents the bucket index, and the n-bit segment serves as the validation code.
A SBH hash table consists of 2m buckets. Each bucket holds at most 2n entries.
Buckets are empty at the beginning and become populated as code-value pairs
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are stored. A bucket entry consists of a 1-bit game value and an n-bit validation
code. SBH keeps the entries in each bucket sorted by their validation codes. Bi-
nary search based on validation codes is used to find entries and insertion points
in a bucket. The find operation of SBH takes O(1) for the hashing part, and
O(n) for binary search among the at most 2n validation codes inside a bucket.
This compares favorably with the O(2n) linear search in chaining.

The values of k, m, and n are problem-dependent and should be carefully
selected by finding the balance between algorithm efficiency and the actual mem-
ory size. Below, we discuss our choices for solving NoGo.

SBH Find and Store Operations The operations find and store are imple-
mented as follows: A given k-bit hash key is split into m-bit index and n-bit
validation code. The index selects the bucket, and binary search of the vali-
dation code completes the find operation. Store involves a find of the correct
location within the right bucket, followed by allocating a new one larger array
and copying the old data over in two parts, with the new entry stored in between.

Collecting Solutions in SBH SBH provides an easy and efficient way to
extract a winning strategy from the transposition table after a successful search.

This uses an extra “proof flag” and an encoded winning move stored in each
hash entry (see details for NoGo below). Solution extraction marks all nodes
that are part of the proof tree, starting with the root. Another Boolean Negamax
“search” is guided by the results stored in the transposition table: at each OR
node, the stored move is chosen to find a child node, while in an AND node all
children are traversed. The proof flag is set for all the nodes encountered, and
the set of marked nodes forms the solution.

To actually store the solution to disk, sequentially visit all buckets and write
out all marked nodes. The size of the stored solution is typically much smaller
than the original transposition table after the search. This stored solution is also
sorted by full hash codes, making it easy to reload the solution into the SBH
transposition table for game playing or analysis later. For example, storing the
solution takes less than a minute for 5× 5 NoGo on modest hardware.

SBH Implementation for NoGo We discuss implementation details of SBH
for our program SBHSolver in the case of 5 × 5 NoGo, where a comparison to
previous work is possible. For hashing, a board is encoded as a 25-digit base 3
number, with point encoding empty = 0, black = 1, and white = 2. Since 239 <
325 < 240 this requires using k = 40-bit hash codes. A small m results in poor
performance due to many positions being hashed into the same bucket, while
a large m potentially leads to more memory overhead. Based on our hardware
(32GB of memory) and some experimentation, we used an m = 30-bit index and
an n = 40− 30 = 10-bit validation code, with a bucket size limit of 210 = 1024.
An example of calculating the hash code, index, and validation code of a NoGo
board is shown in Fig. 2.
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Fig. 2: The calculation of hash code, index, and validation code of a NoGo board.

5 × 5 NoGo has over 8.47 × 1011 possible states that need to be addressed,
requiring 40 bits. A typical proof of one opening move visited about 2.42×108 <
228 distinct game positions, less than 0.03% of the represented space of 240.

SBHSolver is implemented in C++. The hash table is an array of 230 pointers
as shown in Fig. 3. Each pointer points to a bucket, or is null if the bucket is
empty. A bucket is a dynamically allocated sorted array with at most 210 entries.
Each entry occupies 2 bytes and consists of 1-bit proof flag, 5-bit winning move/
outcome, and 10-bit validation code. The 5-bit winning move represents either
a winning legal move for the current player or an illegal move encoded as 11111.
The illegal move 11111 implies a loss, while any legal move implies a winning
state. The proof flag is used for collecting a solution. Bucket entries are sorted
by validation code in ascending order. The size of a bucket grows by 1 with each
insertion.
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Fig. 3: Data structure for 5 × 5 NoGo using Sorted Bucket Hash with m = 30,
n = 10. Each cube represents one of the 230 buckets. Each bucket stores up to
210 positions sorted by validation code. In this example, bucket 2 is empty.
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4 NoGo Results and Solution Analysis

4.1 4 × 4 NoGo

In 4×4 NoGo, the second player (White) wins. For each of Black’s three distinct
initial moves, the symmetric reply shown in Fig. 4 is the only win for White.

Fig. 4: The 3 distinct Black opening moves and White’s unique winning replies.

Playing symmetrically does not win in all 4 × 4 positions where it applies,
but it is an effective heuristic. Among 24,708 game positions where a white move
can make the board symmetric, such a move wins 85.3% of the time.

4.2 5 × 5 NoGo

SBHSolver proved that Black wins with all six distinct opening moves shown
in Fig. 1, confirming the result from She [9]. As a new result, we proved that
Black can force a win in at most 21 moves for all six openings, but cannot force
a win in 19 moves or less. We showed these by introducing a threshold T = 21
(or T = 19), and modifying the evaluation such that games that are not won in
T moves are losses for Black.

As an example of the efficiency gains, to solve the A1 opening SBHSolver
evaluated 2,968,264,746 distinct game positions. A subset of 242,002,061 posi-
tions forms the solution. Fig. 5a shows the distribution of these proven game
positions by depth. The number of nodes is largest at depth 18, then decreases
due to two factors: more games being decided, and having more transpositions.

There are fewer white-to-play positions than black-to-play positions one ply
earlier, since for each white-to-play position we only identify one winning black
move, and there are transpositions among the resulting black-to-play positions.
The frequency of transpositions within the solution increases with depth, as
shown in Fig. 5b.

SBHSolver is efficient compared to She’s solution [9]: using SBH with boolean
minimax and two standard heuristics, SBHSolver searches on average 188× fewer
nodes in solving the six distinct openings. It is also 15× faster than Cazenave’s
solution [1] that evaluated 46,092,056,485 moves.
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(a) Distribution of nodes by depth.
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Fig. 5: Analysis of a solution to 5x5 NoGo with the A1 opening, by search depth.

Sample 5×5 Games Our perfect SBHPlayer follows one of our winning strate-
gies for Black. We tested it against the strong open source program BobNoGo
[4]. Figs. 6a and 6b show two representative wins. The first game follows the
original A1 proof, and the second game the 21-move solution of C3.

In the third game in Fig. 6c SBHPlayer wins against BobNoGo even as White,
from the losing side. At move three, SBHPlayer knows that E2 is winning for
Black. However, BobNoGo chose C3, and SBHPlayer quickly exploited this weak
move and solved this variation by search, partially relying on the precomputed
solution to avoid mistakes, and won in 22 moves.

Comments on NoGo Strategy Making eyes, an important element of Go
strategy, is often recommended for NoGo as well, and is frequently seen from
the MCTS-based BobNoGo player. Eyes represent a local advantage, “reserving”
points for the player. However, only 45.2% of the terminal positions in the A1
solution contain any eyes for Black, so SBHPlayer very often wins without them.
Instead, SBHPlayer seems to favor creating long blocks that separate the oppo-
nent’s stones. This seems to be an effective strategy, at least in 5×5 NoGo. Both
behaviors are seen in all the games in Fig. 6: SBHPlayer creates long blocks, but
no eyes.

4.3 Solutions of Rectangular NoGo Boards

Figs. 7 and 8 summarize the results of SBHSolver on solving rectangular NoGo
boards. It solved all such boards with up to 27 empty points. Black wins on
most boards. Notable exceptions, which are White (second player) wins, are
1 × 1, 4 × n with n ≤ 4, and several 2 × n boards. The results on 3 × 9, 1 × n
with 10 < n ≤ 27, and 2× n with 10 < n ≤ 13 are new compared to [1].
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(a) SBHPlayer (Black) (b) SBHPlayer (Black) (c) SBHPlayer (White)

Fig. 6: Three sample games against BobNoGo. SBHPlayer wins even as White.
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Fig. 7: Table of game theoretic values for rectangular NoGo boards. 1 means a win
for Black from the empty board, 0 a loss. Symmetric results for row > column
are omitted to save space. For more 1× n results see Fig. 8.

1× n NoGo Fig. 8 summarizes the win/loss results of all first moves on 1× n
NoGo boards for n ≤ 27. A black stone indicates a winning move for Black,
a white stone a loss. Black wins with most opening moves, especially on large
boards. Symmetry arguments lead to two general results for arbitrary n:

Theorem 1. In 1× n NoGo, with odd n > 1, the center point (n+ 1)/2 wins.

Proof. The Black move at (n + 1)/2 divides the board into two subgames. A
winning strategy for Black is to mirror the previous White move. Whenever a
white move is legal because of a liberty at some point x, the mirror black move
is also legal because of a corresponding liberty at n+ 1− x. An example of this
strategy is shown in Fig. 9.

Theorem 2. In 1 × n NoGo, with even n > 2, the two middle points n/2 and
n/2 + 1 lose.

Proof. If Black plays at one middle point, a winning strategy for White is to
play the other, then follow the mirroring strategy. The game splits into two
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Fig. 8: Opening results for 1×n NoGo with n ≤ 27. Row i evaluates the opening
moves of 1 × i NoGo (black = winning move, white = losing). For example, in
1× 7 NoGo, the only winning first move for Black is D1 in the middle.
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independent subgames G and −G in terms of Combinatorial Game Theory, and
G + (−G) = 0, a second player win. If Black plays at point x (in either G or
−G), then n + 1 − x is guaranteed to be a legal move for White in the inverse
game. An example is shown in Fig. 10.

12 3 45 67

A B C D E F G H I

1

Fig. 9: In 1 × 9 NoGo, Black wins by playing at the middle point E1 and then
mirroring White’s moves.

1 2 34 56 78

A B C D E F G H I J

1

Fig. 10: In 1× 10 NoGo, Black loses if playing at E1 or F1 as the opening move.
White can win by mirroring Black’s moves.

Black wins on all solved boards except n = 1 and n = 4. The data in Fig.
8 supports two conjectures: For n > 5, a move at location 1 always loses, and
for n > 7, a move at location 2 always wins. A move at location 3 often loses
on smaller boards, but these losses seem to become less frequent. What is the
trend for larger n?

5 Summary and Future Work

The new hashing scheme of Sorted Bucket Hash (SBH) is designed for weakly
solving games, and extracting their solution strategies efficiently. The effective-
ness of SBH is validated by the SBHSolver program, which found the game-
theoretical value and winning strategies for NoGo on all board sizes up to 27
points. An analysis of NoGo strategies shows that on the 4 × 4 board, White
can often benefit from playing symmetrically. On the 5× 5 board, in addition to
making eyes as in Go, building long blocks that separate the opponent’s stones
is also a good strategy.

The SBH data structure as well as the SBHSolver implementation can be
improved further:



Solving NoGo on Small Rectangular Boards 11

1. With the current simple encoding, many game positions hash into the same
buckets, slowing down find and store operations over time. Spreading out the
perfect hash codes, such as with a linear congruence mapping, should give
better distribution across buckets, potentially improving the performance.

2. Depending on game encoding details, large stretches of consecutive buckets
may remain empty. A better data structure could compress long stretches of
null pointers.

3. SBHSolver reallocates bucket memory at each insertion. An alternative strat-
egy such as doubling the bucket size would reduce memory copies at the cost
of larger storage requirements.

4. To solve even larger games, where the search does not fit into main memory,
SBH should be combined with a two-tier (disk+memory) storage scheme.
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