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Abstract. Domain-speci�c knowledge plays a signi�cant role in the suc-
cess of many Monte Carlo Tree Search (MCTS) programs. The details
of how knowledge a�ects MCTS are still not well understood. In this
paper, we focus on identifying the e�ects of di�erent types of knowledge
on the behaviour of the Monte Carlo Tree Search algorithm, using the
game of Go as a case study. We measure the performance of each type of
knowledge, and of deeper search by using two main metrics: The move
prediction rate on games played by professional players, and the play-
ing strength of an implementation in the open source program Fuego.
We compare the result of these two evaluation methods in detail, in
order to understand how e�ective they are in fully understanding a pro-
gram's behaviour. A feature-based approach re�nes our analysis tools,
and addresses some of the shortcomings of these two evaluation methods.
This approach allows us to interpret di�erent components of knowledge
and deeper search in di�erent phases of a game, and helps us to obtain
a deeper understanding of the role of knowledge and its relation with
search in the MCTS algorithm.
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1 Introduction

Go programs achieved success �rst on small boards due to the power of Monte
Carlo Tree Search, and later on the full 19×19 board due to the power of knowl-
edge encoded in the deep neural networks. The MCTS based program Fuego [1]
was the �rst program able to beat a top human professional player in Go on a
9×9 size board in 2008 [8]. Fuego achieved this level of play by using a MCTS
algorithm enhanced by simple knowledge of features and patterns. Despite the
successes that programs had on the 9×9 size board, the full 19×19 size board
remained out of reach until recently, when AlphaGo [17,18] far exceeded the hu-
man level of play. AlphaGo uses a variant of MCTS with a very strong knowledge
obtained through learning with Neural Networks (NN) in order to improve the
search in MCTS.

Many studies have focused on increasing the strength of knowledge and meth-
ods of incorporating knowledge in MCTS based programs [5,4,6,16,20]. In order
to examine the obtained knowledge and the resulting programs, move prediction
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and playing strength are used as the most common evaluation methods. In this
paper we investigate each of these methods and the impact of knowledge on the
MCTS-based program Fuego.

In Section 2 �rst we brie�y describe simple features. Then in Section 3 we
introduce playing strength and move prediction as evaluation methods. We then
describe the research motivations for this work in Section 4. Then in Section 5
we describe the experiments and analysis of the obtained result. In Section 6 we
describe the conclusions and future work. This paper is a condensed version of
the results in the �rst author's MSc thesis [12].

2 Knowledge and Simple Features

We de�ne knowledge as information gained by training methods that helps a
program to act in an informed manner, and improves the performance of a player
when applied. One method of obtaining knowledge is by using features. Features
are properties of a game state or a move, which can reveal information about
that state or move. Examples of move features in Go are whether it captures
any stone, or creates a ko situation. Coulom [6] de�ned a set of simple move
features that were extensively used and extended by other programs. In order to
use simple features, we need to evaluate them. Fuego uses Latent Factor Ranking
(LFR) [16] as its evaluation and training method for simple features.

3 Evaluation Methods

3.1 Playing Strength

One method for testing knowledge is comparing playing strength with and with-
out the use of that knowledge. In this scenario we use knowledge either as a
standalone player or integrate it into an available program, and play a num-
ber of matches against other programs or another version of itself. If we know
the level of strength of the opponent, then we can estimate the strength of our
program from the obtained results by using the Elo rating formula [7]. If we
integrate knowledge in an existing program, then we can estimate the quality of
the knowledge by measuring the increase in playing strength resulting from the
added knowledge.

3.2 Move Prediction

Move prediction is the act of predicting the next move in a game that was
played before. To predict a move, we select a position from a game and feed that
position to the game-playing engine. Then we compare the response received
with the next move played in the game. Games played by professional players
are one of the main data sources for training knowledge in Go. In order to
evaluate the obtained knowledge move prediction is very often used.
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Coulom [6] reported a 34.9% prediction rate for his feature-based knowledge
learning technique. Wistuba et al. [16] were able to reach 40.9% prediction rate.
Xiao et al [20] were able to improve Wistuba's [16] method to increase the
prediction rate by 2%. Clark et al. [5] used deep neural networks to increase the
prediction rate to 44%. Soon after, Maddison et al reached 55% with a deeper
and larger network [15]. The current state of art in move predictors are deep
residual networks [13]. Cazenave reports a 58% prediction rate with such an
approach [4]. In general, stronger knowledge has led to stronger play. We want
to measure whether in di�erent Fuego-based players, increases in prediction rate
correspond with increased playing strength.

4 Research Motivations

The relation between knowledge and search in Go programs and how these two
impact each other is an area that still needs more study. Research motivations
for this work are as following: 1. Examine current evaluation approaches used in

Go programs, which are: move prediction and playing against another program.

Understand the di�erences between each of these tests and how they relate to each

other, 2. Evaluate the impact of knowledge on the performance of a Go program,
3. How does longer and deeper search improve the strength of a MCTS program,

in the presence of knowledge?, and 4.Can this increased strength be explained in

terms of simple feature knowledge?

Many researchers have studied simulation policies in Go, focusing on move
prediction as an evaluation method, or comparing the strength of two programs
[10,14,19]. Xiao et al. [21] report both improved move prediction and playing
strength of Fuego after adding stronger knowledge; however, no insight is given
to what those changes in the evaluation mean. Fernando et al. [9] analyze the
Fuego simulation policy and the impact of changes to it. No analysis was done
on evaluation methods and interpretation of the e�ect of added knowledge. Our
current work is the �rst such analysis.

5 Experimental Results and Discussion

In this section we �rst we describe the players used in our experiments, then
provide the results. We explain those results, and use them to investigate our
research motivations.

5.1 Fuego-Based Players Used in our Experiments

in our experiments we have used the following players from the Fuego code base.

Playout Policy-Only Player: this simple player uses only the playout policy of
Fuego for generating the next move in the game, and it does not use search. This
player helps us to understand the playout policy in Fuego better, and also helps
us to measure di�erent aspects of the playout policy, such as move prediction
and playing strength.
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Simple Features-Only Player: here, we use the prior knowledge in Fuego as a
stand-alone player. The highest evaluated move according to features is played.
Having a features-only player helps us to understand how the knowledge en-
coded in features compares to search, and it also helps to better evaluate feature
knowledge.

No Knowledge Player: in order to examine how knowledge helps the performance
of a player, we turn o� prior knowledge and move �ltering in Fuego. This player
uses only MCTS with the default Fuego playout policy. This player helps us
better understand the impact of search on a player's move prediction and playing
strength.

No Additive Player: Fuego by default uses additive knowledge to help its in-tree
policy focus more on high-ranking moves. We turn o� the additive knowledge in
this player, and rollback Fuego to use MCTS with the UCT method. This player
helps us to better understand the role of additive knowledge in Fuego.

Default MCTS-Based Fuego Player: we need to be able to compare the results
obtained by other players with full-strength Fuego. This player uses the full
Fuego engine with all default settings.

Varying the Number of Simulations: for the MCTS-based players No Knowledge,
No Additive and Default we vary the number of simulations in {100, 300, 1000,
3000, 10000}. This helps us to understand the impact of more search on di�erent
players.

5.2 Move Prediction

For the move prediction task, we used games from Pro Game Collection [3]. In
total we used 4621 games, after removing games that were played on board sizes
other than 19×19. Table 1 shows the results of the move prediction task on all
the positions from these games. The players are Fuego-based engines described
in Section 5.1. The move prediction rate is the fraction of positions for which the
professional move was predicted correctly. For the No Knowledge, No Additive,
and Default Fuego players the number in the name represents the number of
simulations per move used by that player. Figure 1 shows the prediction rate for
di�erent number of simulations.

The Playout Policy-Only and Simple Features-Only players do not use Monte
Carlo simulations. Playout Policy-Only predicted less than 22% of professional
moves. Simple Features-Only has a much higher prediction rate of approximately
31%. Given the fact that neither of those two players uses MCTS, the gap signi�es
the role of the knowledge obtained through a large set of simple features trained
by machine learning methods in the Simple Features-Only player, compared to
the combination of fast rules and small patterns in the Playout Policy-Only
player.
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Fig. 1: Graph of move prediction rate.

Removing all knowledge has a big negative impact on the prediction rate
in MCTS. It drops the prediction rate to 12% in the No Knowledge player
with 100 simulations. Search compensates for the lack of knowledge to some
degree. With 10000 simulations, the prediction rate of the No Knowledge player
increases to over 21%. Nonetheless, this is still far below the move prediction rate
of any MCTS player utilizing knowledge. This shows the role of knowledge in
giving direction to MCTS toward nodes with better outlook, when the number
of simulations is limited.

The prediction rate of the No Additive player is between approximately 28%
and 33%. Up to 1000 simulations, increasing the number of simulations improves
the prediction rate; however, after that it starts to drop. When we compare the
results of a No Additive player to the Default MCTS-based player with the same
number of simulations, we observe a similar pattern in change of prediction rate.
The di�erence between prediction rates of the Default Fuego player and the
No Additive player for simulations between 100 to 10000 are: 0.0015, 0.0024,
0.0061, 0.0139, 0.0178. This shows that as the number of simulations grows,
additive knowledge slows down the drop of prediction rate in the Default Fuego
player, and biases the selection policy in MCTS more towards professional player
moves. This widening gap can also be observed in Figure 1.

Given the obtained results several new questions arise:

� Is there any di�erence in strength between players with similar prediction
rate?

� What role does the number of simulations play in players strength vs pre-
diction rate?

� Why does the prediction rate for No Additive and Default MCTS players
start to drop?
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In order to start investigating these questions, we conducted two experiments.
The �rst experiment measures the playing strength of players against each other.
The second measures the move prediction rate in di�erent stages of the games.

5.3 Playing Strength

In order to answer the �rst two questions in Section 5.2, we created a round robin
tournament between all the 11 players described in Section 5.1. Each round con-
sists of 100 games between two players, with each player playing Black 50 times.
All players except the Simple Features-Only player use randomization, which
resulted in not having any duplicated games. We used GoGui [2] to perform
the tournament. We selected some interesting results from this tournament and
reported those in Figure 2.

Fig. 2: Result of 100 game matches between pairs of players.

Default MCTS-based Fuego vs No Additive Player This compares the
experiments with same number of simulations between the No Additive and
default MCTS-based Fuego player. Increasing simulations does not change the
balance of strength between these two settings, and removing additive knowl-
edge had minimal impact on playing strength. This is consistent with what we
observed in the move prediction task. It can be concluded from the result that
these two players have almost the same playing strength against each other when
using the same number of simulations.
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No Knowledge vs Other MCTS-based Players The playing strength of the
No Knowledge player decreases most of the time against an opponent with the
same number of simulations as the number of simulations increases. The role of
knowledge becomes more important as a player's strength increases. Knowledge
helps a player to avoid crucial mistakes in a game, where a stronger opponent
can better exploit those mistakes. While it seems that more search should com-
pensate for lack of knowledge, there are two reasons that we do not see that
e�ect in this group of experiments. First, the opponent also bene�ts from an
increased number of simulations. Second, in a player that uses the knowledge,
increasing the number of simulations leads to more visits of promising moves
that the knowledge picks. This enables the player to examine these moves more
deeply, and pick the best among them. The No Knowledge player is less focused
and needs more simulations to achieve the same e�ect.

Varying Number of Simulations, 300 vs 100 As expected from previous
experience with MCTS-based engines, we can see that in every case, a 3x increase
in number of simulations leads to a huge di�erence in playing strength. This is in
sharp contrast to the move prediction task in Table 1, where the di�erence was
small and sometimes even negative. This shows that using the move prediction
rate as a measure to examine a player is not as informative as we expected it
to be. There remain aspects of a player which strongly a�ect its comparative
strength against another player, which move prediction is unable to reveal.

No Additive vs Other MCTS-based Players In these experiments, remov-
ing the additive term has limited impact on playing strength. The biggest change
in playing strength between the No Additive and Default Fuego player is in 300
simulations, where Default Fuego player won 55% of games. Removing feature
knowledge decreases the playing strength by a huge margin, with win-rates of
only 7-17% for the No Knowledge player.

Simple Features-Only vs No Knowledge Players This scaling experiment
shows how much search is needed to reach and surpass Simple Feature knowl-
edge. With 100 simulations, the No Knowledge player is weaker than feature
knowledge: it loses 67 games. With 300 simulations, the No knowledge player
surpasses the strength of the Simple Features-Only player, and with 1000 simu-
lations the No Knowledge player is much stronger, winning 98 of 100 games.

5.4 A Closer Look at Move Prediction Rate

In Section 5.2 of the previous experiment, surprisingly the move prediction rate
did not show any major di�erence between Default Fuego and the No additive
player when the number of simulations was varied between 100 to 1000, while
Section 5.3 showed undeniable di�erences in strength between those players. We
also want to understand why the prediction rate starts to drop after 3000 simu-
lations in the Default MCTS-based and No Additive players. In this experiment,
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we study the e�ect of the game phase. We divide a game into six intervals from
the opening to the endgame, and measure the prediction accuracy of each player
separately for each interval. We created six intervals of 50 moves each, corre-
sponding to move 0 to move 300. Because of the limited number of available
samples after move 300 we ignored those �nal small endgame moves.

Figure 3 shows the move prediction accuracy per interval for Default Fuego
with 100 and 1000 simulations, and for No Additive with 100 and 1000 simu-
lations. While Table 1 showed no noticeable di�erence between 100 and 1000
simulations, Figure 3 shows that for the �rst 200 moves there is a major di�er-
ence in both Default Fuego and No Additive players, with a higher prediction
rate for the 1000 simulation player. This di�erence fades from moves 200− 250
and turns to the opposite for moves 251− 300.

Figure 4 shows the prediction accuracy for experiments where we saw the
drop of prediction rate with 3000 and 10000 simulations for No Additive and
Default Fuego. We added the 300 simulation players as a baseline. In the open-
ing, the prediction rate for the Default Fuego players increases with number of
simulations, and for No Additive players remains very similar for the �rst 50
moves. From the second interval to the last, the prediction rate of the 300 simu-
lation players sharply increases. For the 3000 simulation players this increase is
more moderate. In the 10000 simulation players we observe a drop of prediction
rates for the �rst 250 moves, and then a slight rebound.

To explain the lower prediction rate in the late endgame in players using more
simulations, we need to look at how the selection policy in MCTS works. In a
game when one player's winning probability is very high, there are many moves
that still result in that player winning, while being sub-optimal in terms of score.
The selection policy in Fuego maximizes winning probability, not score. After 200
moves, the winner of most of the games can be predicted with high con�dence.
Fuego chooses a �safest� move according to its noisy simulations. Professional
players will not usually select such point-losing �safe� moves. Another reason
lies in the impact of knowledge on players with fewer simulations. Knowledge
is used to initialize the value of a node in the Monte Carlo tree. When the
number of simulations is still small, this initialization plays a major role in
MCTS search. Since it is based on features learned from professional games, it
biases the search toward professional moves. As the number of simulations grows,
its impact diminishes.

5.5 Move Prediction and Feature Frequency

Since the move prediction rate alone does not explain the di�erence in playing
strength, we try to �nd other di�erentiating factors between various players by
focusing on features. Features play a major role in the success of a player. Even
modern neural networks can be seen as a function that is built upon a complex
set of features computed in its nodes. In order to understand the signi�cance
of di�erent features, we use frequency of features, and we report the most fre-
quent features for each experiment. We count the number of times each feature
is present in professional players' moves throughout the game records to identify
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Fig. 3: Move prediction accuracy per game phase for 100 and 1000 simulation
players. Each group has 50 moves.
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Fig. 4: Move prediction accuracy per game phase for 300, 3000 ad 10000 simula-
tion players. Each group has 50 moves.
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frequency of features. We also record the same features over the moves gener-
ated by our computer-based players. Our goal is to gain insight on how players
di�er. In each experiment, we count the number of times each feature exists in
the moves generated by one player. The result is a table of features with their
signi�cance for the move prediction task.

We selected three baselines to analyze the results obtained from our compar-
ison. The �rst baseline is the frequency of features in all legal moves for every
position in all the professional games. The second one is the frequency of all
features in professional moves throughout all game records. The last baseline is
the frequency of features in the professional move which do not get any attention
from our player. In order to determine these moves, we record the number of
simulations allocated by Default Fuego for each professional move in each game
position. If the number of simulation for the professional move is less than 1%
of the move chosen by Default Fuego, that move is marked as a professional
move low with simulation count and its features are recorded. Figure 5 shows
the graphs for these baselines.

The two most prominent features in Figure 5a are 117 and 122. They rep-
resent a distance of 4 or more to the block of the last opponent stone and to
the block of the last own stone respectively. Their frequency is more than 85%
over all legal moves for each position. This is not surprising due to the size of
the 19×19 board, and the distribution of legal moves in each position. The next
two prominent features are 25 (moves on line 5 and upward) and 21 (moves on
the �rst line). While moves on line 5 and upward cover 1.68 times the area of
moves on the �rst line, they only happen 1.25 times more in the legal moves.
Comparing the frequency of these two features reveals that positions on the �rst
line of the board remain empty longer than other points in professional games.

Figure 5b shows features of professional players moves. Feature 176 (distance
2 to closest opponent stone) is true for 62% of professional moves and feature
177 (distance 3 to closest opponent stone) in 22%. In total 85% of professional
moves are in close proximity to opponent stones. Feature 157 and 158 (distance
2 and 3 to closest own stone) together cover almost 80% of professional moves,
showing that professionals play close to their own stones as well.

As in Figure 5a, in Figure 5c prominent features of professional moves missed
by Fuego are 122 and 117 with frequency of 68% and 60%. This shows that moves
that usually get ignored by Fuego are non-local responses to the opponent, or
�tenuki� moves that change the area of play.

Impact of More Simulations Figure 6 shows the di�erence in feature fre-
quency of moves generated by default Fuego with 3000 and 100 simulations. The
main di�erence is in features 117 and 122 which indicate changing the area of
play, �tenuki�. Feature 25 (play on line number 5 and up) is another example
of the impact of more simulations on the area of play. We saw that this is one
of the prominent features of professional players moves. These results show that
the player with more simulations can �nd centre and tenuki moves more often,
and becomes more similar to how professional players play in these situations.
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(a) Feature frequencies of every legal move
in professional games.

(b) Feature frequencies of all professional
moves in professional games.

(c) Features of professional moves that have
low number of simulations compared to the
move played by Default Fuego using 1000
simulations.

Fig. 5: Feature counts of baselines.
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Fig. 6: Top 10 di�erences between features count of default Fuego player with
3000 simulations and 100 simulations.

Impact of the Additive Term Figures 7a and 7b show the di�erences between
the default Fuego player and the No additive player with 3000 simulations. In
Figure 7a, features 157 and 176 are for playing in distance of 2 to the closest
own stone and opponent colour respectively. They happen 6% and 4% more
in the default Fuego player which bene�ts from the additive term. This shows
that additive knowledge encourages playing close to previous stones. Feature 64
also happens 3% more in the player using the additive term. This feature is for
3×3 patterns used in the simulations policy. This is an expected behaviour as
the additive knowledge uses a local shape pattern to evaluate each move. Other
features in Figure 7a have a very low frequency.

The No Additive player plays more often in empty areas of the board (feature
2153, 3×3 empty pattern), and far from all other stones, features 117, 122 and
160 (distance 5 to closest own stone).

Impact of Simple Feature Knowledge with Increasing Number of Sim-

ulations By comparing Figures 8a and 8b and Figures 8c and 8d we can un-
derstand the impact of simple feature knowledge. Features 26 (distance 2 to last
opponent stone), 64 and 114 (distance 1 to block of last opponent stone) are
more present in the player with knowledge, while in Figure 8b features 117 and
122 occur up to 42% more in the No Knowledge player. This shows that the
No Knowledge player with low number of simulations plays more randomly in
all areas of the board without any attention to the last own or opponent move,
while the player with knowledge responds locally to those moves more often.

As the number of simulations grows, we still observe in Figures 8c and 8d
the same di�erence in style of play from default Fuego and the No Knowledge
player. This gap, however, narrows to half with consistency in relative frequency
of features to each other. To some degree more simulations compensate for the
lack of knowledge in the No Knowledge player, as we already observed in the
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(a) Top 10 positive di�erences. (b) Top 10 negative di�erences.

Fig. 7: Di�erence between feature counts of default Fuego and No Additive player
when both players use 3000 simulations.

move prediction task; however, more simulations are not able to completely close
the gap.

Features of Professional Moves We ran another experiment to understand
why some professional moves are ignored in Fuego. We compared the statistics
of the default Fuego moves to the professional moves with low simulations in
Figure 9. This helps to understand what kind of moves professional players make
that Fuego does not consider, and how often those moves happen. In Figure 9a,
features 114, 115, 119, 157, 176 are all for moves with distance of 1 or 2 to the
own or opponent stones. This signi�es the higher degree of locality of play in
Fuego versus professional players. Also 3×3 simulation policy patterns (feature
64) occur 35% more in the default Fuego moves than in professional moves with
low number of simulations, showing that many professional moves do not follow
traditional 3×3 patterns as described in [11]. Looking at Figure 9b, features 117,
122, 159, 160, 161, 178, 179 are all for moves with distance of 4 or more to stones
of either colour and feature 2153 is for the empty 3×3 square. These features
happen up to 24% more in professional moves that received a very low number
of simulations from Fuego. This shows that Fuego systematically likes to play
locally, and moves with longer distance to the last own or opponent stone are
not appealing to the program.

Feature di�erences in Figures 9c and 9d between the default Fuego moves
and all professional moves have similar feature di�erences to Figures 9a and 9b,
but with di�erent magnitude. First the magnitude of di�erence is much lower
in Figures 9c and 9d. The other di�erence is that the most di�erentiating factor
for the default Fuego player is that it plays 12% more in distance 2 of opponent
stones (feature 176) than professional players. Professional moves still occur
more in distance of 3 or more (features 116, 159, 160, 177, 178 and 179) to other
stones, but the gap to Fuego is smaller.
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(a) Top 10 positive di�erence when both
players use 100 simulations.

(b) Bottom 10 negative di�erence when
both players use 100 simulations.

(c) Top 10 positive di�erence when both
players use 3000 simulations.

(d) Bottom 10 negative di�erence when
both players use 3000 simulations.

Fig. 8: Di�erence between feature counts of default Fuego and No Knowledge
player.
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(a) Positive di�erence with professional
moves low simulation count.

(b) Negative di�erence with professional
moves with low simulation count.

(c) Positive di�erence with all professional
moves.

(d) Negative di�erence with all professional
moves.

Fig. 9: Di�erence between feature counts of default Fuego with 3000 simulations
moves and professional moves.
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5.6 Move Selection Analysis

The next experiment helps us to understand under what circumstances a player
can predict a professional move, while at other times it can not. We created an
experiment to measure the number of simulations relative to the initial weight
of a move. The results of this experiment are reported in Figure 10.

For the Y-axis of Figure 10 we measured two di�erent cases. In the �rst case,
we measured the number of simulations sims,a for move a in state s relative to

the total number of simulations for state s in the professional game:
sims,a

Σisims,i
.

For the second case, we measured the relative number of simulations sims,a for

move a in state s to the number of simulation sims,b for move b in state s:
sims,a

sims,b
.

The Y-axis of Figures 10a to 10d use the �rst case. For Figures 10a and 10b,
move a is the move selected by default Fuego, and for Figures 10c and 10d it is
the move selected by the professional player. The Y-axis of Figures 10e and 10f
uses the second case. Move a is the move selected by the professional player and
move b is the move selected by default Fuego.

The X-axis of Figure 10 has two di�erent formats. In the �rst one, we use the
initial weight ws,a of move a in state s of the professional game. For the second
case, we compute the maximum weight ws,max for the state s, then compute the
relative weight of move a to the maximum weight

ws,a

ws,max
. Since the weight of

a move can be negative, we normalize the relative value by a sigmoid function
sig(wa)
sig(wmax)

. The X-axis of Figures 10a, 10c and 10e uses the �rst format. The

X-axis of Figures 10b, 10d and 10f uses the second format. Move a is selected by
default Fuego in Figures 10a and 10b, and by professional players in Figures 10c
to 10f.

In order to understand the distribution of simulations, we created Figure 11a.
It represents the relation between the weight of the feature for a move selected
by default Fuego and the percent of simulations that move has received. Most of
the moves selected by default Fuego have the majority of the simulations. Moves
with higher initial weights receive almost 100% of simulations. Moves selected
by Fuego have di�erent ranges of weights from low to high. However, Figure 10b
shows that even moves with low weights have weights close to the maximum
weight of that position, and most of the times are the maximum weight.

Figure 10c shows that professional players moves most of the time either
received the maximum number of simulations, or received close to zero. Moves
that have an in-between number of simulations make up a smaller portion of
professional moves. Figure 10d better illustrates this point. Figure 11b shows
that for professional moves to get the attention of Fuego, they need to have
higher evaluation by simple features.

We also compared the number of simulations for the professional moves and
the moves selected by default Fuego. Figure 10e shows that very often the move
played by professionals is the same as the Fuego move. However, if they di�er,
the chances of the professional move having a large number of simulations is low.
Most of the time, it has less than 20% compared to Fuego's move. Figure 10f
plots the relative number of simulations and the relative heuristic weight of the
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(a) Graph of selected move by default Fuego
player given its initial weight

(b) Graph of selected move by default
Fuego player given sigmoid of its initial
weight divided by sigmoid of Max weight.

(c) Graph of played move by professional
player given its initial weight.

(d) Graph of selected move by professional
Player given its sigmoid of its initial weight
divided by sigmoid of Max weight.

(e) Percent of simulations relative to se-
lected move divided by professional player's
move given its initial weight.

(f) Percent of simulations relative to se-
lected move divided by professional player's
move given sigmoid of its initial weight di-
vided by sigmoid of Max weight.

Fig. 10: Comparison between number of simulations for initial feature weight.
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(a) Graph of average simulations for se-
lected move by default Fuego player given
its initial weight.

(b) Graph of average simulations for se-
lected move by default professional player
given its initial weight.

Fig. 11: Percent of average number of simulations for buckets of initial weights.

professional move to the move selected by default Fuego. The ratio of simulations
drops sharply as the relative weight of the professional player's move decreases.
For professional moves that have a ratio of less than 0.9, their number of simu-
lations is near zero most of the time. Less than 7% of professional moves have
both higher weight than the move selected by Fuego, and fewer simulations.

This experiment showed us the importance of simple feature initialization on
the number of simulations a move receives. Fuego gives professional moves more
simulations if they have high evaluation by simple features and ignores them if
their simple feature evaluation is low.

The move selected by Fuego does not need to have high evaluation as seen
in Figure 10a. It just needs to have an evaluation close to the maximum move
evaluation of that position. This can be observed in Figure 10b. We also ob-
served in Figures 10d and 10e how professional moves either receive close to the
maximum number of simulations or close to zero.

6 Conclusions and Future Work

In this work we investigated two popular evaluation methods: move prediction
and playing strength, and how they relate to each other. We noticed that move
prediction did not reveal important aspects of a player, and there remain many
details that an aggregated move prediction percentage can not express. Players
with similar move prediction rate can have very di�erent playing strengths.

We used a playing strength experiment to understand the impact of the fol-
lowing concepts in MCTS: additive knowledge, simple feature knowledge, num-
ber of simulations, and playout policy. The additive term has a very small impact
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on playing strength. Removing feature knowledge has a massive negative impact
on playing strength which only increases with more search.

We analyzed the move prediction rate in several game stages in order to
capture di�erences between the players. With more search, the move prediction
rate drops near the end of a game, due to �safe� move selection in MCTS.

To �nd more di�erentiating factors between players, we examined feature
frequencies in the move prediction task for di�erent players. We were able to �nd
features that di�er remarkably between players, which can be used to de�ne their
behaviour. We also found relations between the evaluation of feature knowledge
and the number of simulations a move receives.

For future work, we want to extend the study by including neural network-
based players and extending the experiments to understand the impacts of a
neural network in detail. Another promising extension of this work is trying to
understand neural networks in terms of both simple features and move predic-
tion, in order to �nd an interpretation of their behaviour with known features
of the Go game.
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A Detailed Move Prediction Results

Experiment Accuracy

Playout Policy-Only 0.2160

Simple Features-Only 0.3066

No Knowledge 100 0.1212

No Knowledge 300 0.1486

No Knowledge 1000 0.1767

No Knowledge 3000 0.1976

No Knowledge 10000 0.2125

No Additive 100 0.3209

No Additive 300 0.3269

No Additive 1000 0.3281

No Additive 3000 0.3074

No Additive 10000 0.2811

Default 100 0.3224

Default 300 0.3293

Default 1000 0.3342

Default 3000 0.3213

Default 10000 0.2989

Table 1: Result of move prediction for players based on Fuego.
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