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Abstract

This thesis proposes, analyzes and tests different exploration-based techniques in

Greedy Best-First Search (GBFS) for satisficing planning. First, we show the po-

tential of exploration-based techniques by combining GBFS and random walk ex-

ploration locally. We then conduct deep analysis on how flaws in heuristics impact

GBFS’s performance. Uninformative Heuristic Regions (UHRs) and Early Mis-

takes (EMs) for GBFS are analyzed and illustrated on a number of International

Planning Competition (IPC) benchmarks. Corresponding solutions, namely Greedy

Best-First Search with Local Exploration (GBFS-LE) and Type-based Greedy Best-

First Search (Type-GBFS), are proposed and shown to outperform GBFS substan-

tially. While this thesis mainly focuses on improving coverage (number of prob-

lems solved) with exploration-based techniques, we also introduce the Diverse Any-

time Search (DAS) framework, which reduces unproductive time and improves plan

quality by randomized exploration. Finally, we integrate these techniques and build

the new satisficing planner Jasper, which ranked 4th of 20 planners in the Sequen-

tial Satisficing track of IPC-2014 and solved the largest number of problems among

non-portfolio-based planners.
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Chapter 1

Introduction

1.1 AI Planning and Heuristic Search

Planning exists in real life. Activities that need planning vary from simple tasks,

such as shopping and routing, to complicated tasks, such as logistics problems and

even automatically controlling rovers on Mars. Naturally, planning a task efficiently

becomes an interesting research question. In Artificial Intelligence (AI), AI Plan-

ning is such a research tool that solves the real-life planning problems.

AI Planning systems compute a sequence of actions that achieve a goal. Figure

1.1 shows the basic idea of an AI planning task. The task is to move the package

in City B to City C with a truck which is initially located at City C. A valid sample

plan would be:

• Move the truck from City C to City B;

• Load the package to the Truck;

• Move the truck from City B to City C;

• Unload the package from the Truck.

Note, the loading and unloading actions are not shown in the diagram for simplicity.

The bold states in the diagram illustrate the above solution.

This example is very simple, however it can be made much harder (or more real-

istic) by adding more cities, packages and trucks. It very quickly becomes hard for

human beings to compute the desired solutions, and AI planning techniques start

1



City A City B City C
(Destination)

City A City B City C
(Destination)

City A City B City C
(Destination)

City A City B City C
(Destination)

h = 1

h = 1

h = 2 h = 0

Figure1.1:Antoylogisticexample.

beinguseful.ThereareseveralapproachesinAIplanning,includingSATplan-

ning[29],Graphplanplanning[3],HierarchicalTaskNetworks(HTN)[12]and

HeuristicSearch[4].Heuristicsearchhasbeenprovenoneofthemosteffective

[15,19,46,61].

Inheuristicsearch,thereisafunctionh(.),suchthatgivenastates,h(s)repre-

sentstheestimatedcostofasequenceofactionsthattransformstoonetargetstate.

Thehighlevelideaofheuristicsearchistoselectivelysearchthestatespacewith

thehelpoftheheuristicfunction,inordertofindthedesiredsolutionsfaster.For

example,inFigure1.1,wherethereareroadsbetweenCityAandB,andCityB

andC,assumethatthedistancebetweenthepackageandthedestinationisusedas

theheuristicvalue.TheheuristicvaluesofthesestatesinFigure1.1areshownto

thelefttopofthesestates.Inthisexample,theheuristicfunctionsuggeststotake

therightbranchinsteadoftheleftbranch,whichmovesfurtherawayfromthegoal

state.Recently,therehasbeengreatprogressinAIplanningduringrecentInter-

nationalPlanningCompetitions[15,61].Manyplanningproblemsareinspiredby

realapplications,suchasrobotcontrol,transportationandmolecularbiology.
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1.2 Flaws in Heuristic Functions and Exploration

During the past decades, the AI planning community spent much effort in develop-

ing strong domain-independent heuristics, such as FF [25], causal graph (CG) [18]

and context-enhanced additive (CEA) [21] heuristics. Heuristic search algorithms,

which selectively search the state space, can be misled by the flaws in a heuristic. As

an example, Greedy Best First Search (GBFS), which plays a core role in modern

satisficing planning algorithms, always searches a state with lowest known heuristic

value, and is very easily misled by flawed heuristics.

Figure 1.2 illustrates one such example. The task is to move an agent from start

location S to goal locationG. Black locations are obstacles that the agent can not go

through. A state in this problem is modeled by the current location of the agent and

the map itself. Assume that the heuristic function estimates the cost from a state s to

G by the euclidean distance. States at shaded locations are more promising (lower

heuristic value) than 9.8. Therefore, Greedy Best First Search starting from S has

to search all these states before it turns to the correct direction to the right of S.

Figure 1.2: The effect of misleading heuristics.

Adding exploration (not following heuristic values) can be a good answer to

flawed heuristics. Balancing exploitation and exploration has been well researched

3



in bandit algorithms [1] and Monte Carlo Tree Search [31], which has major appli-

cations in computer games [11] and probabilistic planning [30]. The high level idea

is that while the search algorithms are focusing on the current most promising states

(exploitation), they also spend a certain effort in trying currently not most promising

states (exploration). For the example in Figure 1.2, adding an exploration compo-

nent means we will also have some chance in searching heuristically less preferred

states, such as the state that the one with heuristic value 9.8.

1.3 Contributions of this Thesis

This thesis analyzes some search algorithms on specific planning instances in de-

tail, but proposes exploration-based solutions that can improve heuristic search al-

gorithms in general. Intensive case studies are performed in this dissertation, such

as visualizing the Multiple Uninformative Heuristic Region problem in 10 different

planning domains in Chapter 5, illustrating the biased h-value distribution over open

list for one resource constrained domain in Chapter 6, and analyzing the Unproduc-

tive Time for the famous planner LAMA-2011 [46] in Chapter 7. These case studies

are important contributions of this dissertation, which provide strong clues on how

exploration should be applied in heuristic search. Besides, different exploration-

based techniques are proposed. They combine GBFS with Monte Carlo Random

Walk Planning (MRW), add local exploration, trade off frequency and size of lo-

cal exploration, add type-based exploration, and diversify search for better plan

quality. The following sections briefly describe these techniques. Note, most exper-

iments in this dissertation were conducted before the IPC-2014 competition [61].

Since LAMA-2011 was the well-recognized state of the art during that time, these

techniques were mostly compared with LAMA-2011.

Chapter 3: Combining GBFS and RWS locally for Better Scaling
Behavior

Chapter 3 introduces Random Walk-Driven Local Search (RW-LS). RW-LS bal-

ances exploration and exploitation by running both local GBFS and random walks,

which are sequences of actions which are selected randomly. The algorithm has
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been implemented in the system Arvand with Local Search (Arvand-LS). Its per-

formance is evaluated experimentally against other top planners from IPC-2011 on

IPC-2011 benchmarks, and on scaled-up instances from several IPC domains. The

results show significant improvements in both coverage and plan quality over IPC-

2011 planners. This chapter is based on the following publication:

• F. Xie, H. Nakhost and M. Müller. Planning via Random Walk-Driven Local

Search. In Proceedings of the Twenty-Second International Conference on

Automated Planning and Scheduling (ICAPS-12), 315–322, 2012. [66].

In the above paper, I implemented all the code and ran all results. Hootan Nakhost

collaborated on developing the algorithm, designing the experiments and preparing

the paper.

Chapter 4: Adding Local Exploration to Greedy Best First Search

Chapter 4 analyzes the problem of uninformative heuristic regions (UHRs), where

heuristic functions provide no guidance, and proposes a two level search framework

as a solution. In Greedy Best-First Search with Local Exploration (GBFS-LE), a lo-

cal exploration is started from within a global GBFS whenever the search seems

stuck in UHRs. Two different local exploration strategies are developed and eval-

uated experimentally: Local GBFS (LS) and Local Random Walk Search (LRW).

The two new planners LAMA-LS and LAMA-LRW integrate these strategies into

the GBFS component of LAMA-2011. Both are shown to yield improvements in

terms of both coverage and search time on benchmarks from the first 7 Interna-

tional Planning Competition, especially for domains that are proven to have large

or unbounded UHRs [24, 23]. This chapter is based on the following publication:

• F. Xie, M. Müller and R. Holte. Adding Local Exploration to Greedy Best-

First Search in Satisficing Planning. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence (AAAI-2014), 2388-2394, 2014

[68].
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Chapter 5: Understanding and Improving Local Exploration in
Greedy Best First Search

Chapter 5 analyzes, quantifies and improves the performance of the Greedy Best-

First Search with Local Search (GBFS-LS) algorithm. GBFS-LS adds exploration

using a local GBFS to a global GBFS. This substantially improves performance

for domains that contain large Uninformative Heuristic Regions (UHRs), such as

plateaus or local minima. Planning problems with a mix of small and large UHRs

are shown to be hard for GBFS but easy for GBFS-LS. In three standard IPC plan-

ning instances analyzed in detail, adding exploration using local GBFS gives more

than three orders of magnitude speed up. This chapter also discusses an improved

GBFS-LS algorithm, which replaces larger-scale local GBFS explorations with a

greater number of smaller explorations. This section is based on the following pub-

lication:

• F. Xie, M. Müller and R. Holte. Understanding and Improving Local Explo-

ration for GBFS. In Proceedings of the 25th International Conference on

Automated Planning and Scheduling (ICAPS-2015), 244–248, 2015 [72].

Chapter 6: Type Based Exploration for Early Mistakes in GBFS

Chapter 6 explores how early mistakes, which lead the search into a unpromising

region of the state space where no easy-to-find solution exists, influence GBFS’

performance. This chapter proposes exploration via type systems [35] and multiple

queues [19] as one solution.

Utilizing multiple queues [19] in GBFS has been proven to be a very effective

approach to satisficing planning. Successful techniques include extra queues based

on Helpful Actions (or Preferred Operators), as well as using Multiple Heuristics.

One weakness of all standard GBFS algorithms is their lack of exploration. All

queues used in these methods work as priority queues sorted by heuristic values.

Therefore, misleading heuristics, especially early in the search process, can cause

the search to become ineffective.

Chapter 6 introduces a search algorithm that utilizes type systems [35] in a new
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way: for exploration within a GBFS multi-queue framework in satisficing planning.

A careful case study shows the benefits of such exploration for overcoming defi-

ciencies of the heuristic. The proposed new baseline algorithm Type-GBFS solves

almost 200 more problems than baseline GBFS over all 2112 problems from the

first 7 International Planning Competitions. This chapter is based on the following

publication:

• F. Xie, M. Müller, R. Holte and T. Imai. Type-based Exploration for Satisficing

Planning with Multiple Search Queues. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence (AAAI-2014), 2395-2401, 2014

[70].

In the above paper, Tatsuya Imai implemented the DBFS planner for experimental

comparison. I designed the algorithm, and implemented all the experiments.

Chapter 7: Better Anytime Search for Plan Quality with Post-
processing

Chapter 7 explores how to generate better quality solutions via randomized explo-

ration. Most of the satisficing planners, which are based on heuristic search, iter-

atively improve their solution quality through an anytime approach. Typically, the

lowest-cost solution found so far is used to constrain the search. This avoids areas

of the state space which cannot directly lead to lower cost solutions. However, when

used in conjunction with a post-processing plan improvement system such as ARAS

[39] this bounding approach can harm a planner’s performance since the bound

may prevent the search from ever finding additional plans for the post-processor

to improve. The new anytime search framework of Diverse Anytime Search (DAS)

addresses this issue through the use of restarts, randomization, and by not bounding

as strictly as is done by previous approaches.

Chapter 7 shows that by using these techniques, the framework is able to gen-

erate a more diverse set of "raw" input plans for the post-processor to work on.

We then show that when adding both Diverse Anytime Search and the ARAS post-

processor to LAMA-2011, the winner of IPC-2011, the performance according to
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the IPC scoring metric improves from 511 points to over 570 points when tested

on the 550 problems from IPC 2008 and IPC 2011. Performance gains are also

seen when these techniques are added to Anytime Explicit Estimation Algorithm

(AEES) [56], as the performance improves from 440 points to over 513 points on

the same problem set. This chapter is based on the following publication:

• F. Xie, R. Valenzano and M. Müller. Better Time Constrained Search via Ran-

domization and postprocessing. In Proceedings of the Twenty-Third Inter-

national Conference on Automated Planning and Scheduling (ICAPS-2013),

pages 269-277, 2013 [67].

In the above paper, Rick Valenzano contributed the idea on how to randomize op-

erators for plan diversity. I designed the algorithm and implemented all the experi-

ments.

Chapter 8: The Jasper Planner: the Art of Exploration with GBFS

Chapter 8 integrates all techniques developed in this dissertation into a strong sat-

isficing planner. Jasper is a satisficing planner that builds on LAMA-2011. It adds

two modifications. First, it replaces the GBFS algorithm in LAMA-2011 with Type

Exploration based Greedy Best-First Search with Local Search (Type-GBFS-LS),

which combines GBFS-LS from Chapter 4 and Type-GBFS from Chapter 6. Type-

GBFS-LS is an improved version of GBFS that is less sensitive to flaws in heuristic

functions. Second, it implements the DAS system as in Chapter 7 for solution im-

provement, which takes the modified LAMA-2011 as the anytime planner and Aras

[39] as the post-processing system.

Jasper ranked the 4th (out of 21 planners) in IPC-2014 Deterministic Satisfic-

ing Track. It solved the largest number of problems among all non-portfolio-based

planners. This chapter is based on the following publication:

• F. Xie, M. Müller and R. Holte. Jasper: the Art of Exploration in Greedy

Best First Search. In M. Vallati, L. Chrpa, L. and T. McCluskey, The Eighth

International Planning Competition, University of Huddersfield, 39–42, 2014

[69].
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Other Publications

Except for publications discussed in the dissertation, the other publications created

during my PhD time are listed as follows:

• F. Xie, H. Nakhost, and M. Müller. A local Monte Carlo tree search approach

in deterministic planning (abstract). In Proceedings of the Twenty-Fifth AAAI

Conference on Artificial Intelligence, AAAI 2011, pages 1832–1833, 2011

[65].

• H. Nakhost, M. Müller, R. Valenzano, and F. Xie. Arvand: the art of random

walks. In Á. García-Olaya, S. Jiménez, and C. Linares López, editors, The

2011 International Planning Competition, pages 15–16, 2011 [38].

• F. Xie. Exploration and combination: Randomized and multi-strategies search

in satisficing planning. In Doctoral Consortium of ICAPS-13, 2013 [64].

• R. Valenzano, J. Schaeffer, N. Sturtevant, and F. Xie. A comparison of knowledge-

based GBFS enhancements and knowledge-free exploration. In Proceedings

of the Twenty-Fourth International Conference on Automated Planning and

Scheduling, pages 375–379, 2014 [60].

• F. Xie, A. Botea, and A. Kishimoto. Heuristic-aided compressed distance

databases. In Workshops at the Twenty-Ninth AAAI Conference on Artificial

Intelligence, pages 85–91, 2015 [71].

• R. Valenzano and F. Xie. On the Completeness of Best-First Search Variants

that Use Random Exploration. In Proceedings of the Thirtieth AAAI Confer-

ence on Artificial Intelligence, 2016 [57].

1.4 Chapter Summary

In this chapter, I described how flaws in heuristics can lead to bad performance

for Greedy Best First Search, and proposed adding exploration components to han-

dle this problem. I then outlined our contributions in this direction that use different
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kinds of exploration in order to solves these problems and improve the performance

of GBFS-based algorithms. Each of these contributions will be described in a sep-

arate chapter below. Before doing so, I will first introduce the background of my

research as well as the related works that frequently appear in the dissertation in the

next chapter.
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Chapter 2

Background

AI Planning is a generic tool to solve real life planning problems. Its purpose is

to find a sequence of actions starting from the initial state to reach a target state.

First, this chapter introduces the representations of a classical planning problem.

Second, it introduces the most popular approach for classical planning: Planning as

Heuristic Search [4].

2.1 Model and Representation

A classical planning task, such as a STRIPS [14] or SAS+ [2] planning task, can

be interpreted as a path finding problem in a directed graph, in which nodes rep-

resent possible states of the problem and edges represent actions that transit from

one state to another. A plan can also be understood as a path in the corresponding

graph. It starts from the initial node to a node that represents one of the goal states

of the problem. In classical planning, which is the focus of this dissertation, it is as-

sumed that the environment is static and all the available actions have deterministic

outcomes. This section reviews the STRIPS [14] and SAS+ representations [2] for

planning problems.

2.1.1 STRIPS Representation

The STRIPS representation uses boolean variables, known as fluent, fact or atom,

whose domain contains only two values: True and False. The formal definition of a

STRIPS planning problem [14] is:
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Definition 1. (STRIPS). A STRIPS planning task is a tuple π = 〈F, I,G,A〉 where

1. F contains a set of fluents;

2. I ⊆ F is the initial state;

3. G ⊆ F describes a set of goal states;

4. A contains a set of actions, which have the form 〈Pre(a), Add(a), Del(a)〉,

where Pre(a), Add(a), Del(a) ⊆ F .

The STRIPS representation implicitly describes the state space S, which equals

the power set of F , of a planning problem. Each state s ∈ S is a set of fluents

F (s) ⊆ F such that all fluents f ∈ F (s) have the value True while fluents f ′ /∈

F (s) have the value False. I ⊆ F represents the initial state. G presents a set of

fluents that a goal state must satisfy, namely SG = {s|G ⊆ F (s), s ∈ S}. An

action a is only applicable in a given state s if Pre(a) ⊆ F (s), and is executed by a

transition function f(s, a) = (F (s) ∪Add(a) \Del(a)) that sets fluents in Add(a)

to be True and fluents in Del(a) to be False.

2.1.2 SAS+ Representation

Unlike the boolean variables in the STRIPS representation, SAS+ [2] describes

states using multivalued variables, variables with domains of arbitrary finite size.

The formal definition of a SAS+ planning problem [2] is:

Definition 2. (SAS+). A SAS+ planning task is a tuple π = 〈V, I,G,A〉 where

1. V is a set of state variables. Each variable v ∈ V has an associated finite

size domain Dv. D+
v = Dv ∪ u is an extended domain, where u denotes

the undefined value. s[v] represents the value of state variable v in state s.

Implicitly, the complete state space is defined as SV = D1×D2× ...×D|V |,

and the partial state space is defined as S+
V = D+

1 ×D+
2 × ...×D+

|V |;

2. I ∈ S+
V is the initial state;

3. G ∈ S+
V describes the goal state;
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4. A contains a set of actions. Each action a has the form 〈Pre(a),Post(a),Prevail(a)〉,

where Pre(a),Post(a),Prevail(a) ⊆ S+
V . For every action a, there are two

constraints: 1), for all v ∈ V , if Pre(a)[v] 6= u, then Post(a)[v] 6= u and

Pre(a)[v] 6= Post(a)[v]; 2), for all v ∈ V , Post(a)[v] = u or Prevail(a)[v] =

u.

Each state s ∈ S+ is a complete assignment of state variables in V . Each state

variable v can take an defined value from Dv or the undefined value, which means

unknown or "does not matter". A complete state assigns defined values to all state

variables, while a partial state also assigns the undefined value. We say a state

s1 satisfies a state s2 if for all v ∈ V , s2[v] = s1[v] or s2[v] = u. I ∈ S+

and G ∈ S+ represent the initial state and goal state. An action a is modeled by

〈Pre(a), Post(a), P revail(a)〉, where Pre(a), Post(a), P revail(a) are all partial

states:

• Pre(a) specifies the defined values of these changed variables before the

action a is applied;

• Post(a) specifies the defined values of these changed variables after the ac-

tion a is applied;

• Prevail(a) specifies the defined values of required unchanged variables be-

fore the action a is applied.

An action a is applicable in a given state s if s satisfies both Pre(a) and Prevail(a).

The resulting state is computed by updating the changed variables to the values

specified in Post(a).

Optimal Planning and Satisficing Planning

In a classical planning task, every action a has a positive cost cost(a). A solution

(or plan) is a sequence of actions a0, ..., an that transform the initial state to one

goal state. The plan is optimal if it minimizes sum of action costs
∑n

i=0 ai. Optimal

Planning only looks for optimal plans, but does not scale to large problems because

of the hardness to prove plan optimality. Satisficing Planning does not require plan
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optimality in order to scale to larger problems. The Satisficing track in the Interna-

tional Planning Competitions (IPCs) [15, 61] measures both coverage (number of

problems solved) and plan quality (sum of action cost).

2.2 Planning As Heuristic Search

Heuristic search is the most effective approach in classical planning [15, 19, 46, 61].

A heuristic estimator guides search in the corresponding graph of the state space.

Since the seminal paper by Bonet and Geffner [4], which introduced two domain-

independent heuristics hadd and hmax, much research applied heuristic search to

classical planning. Many top planners are based on heuristic search techniques. Ex-

amples are FF [25], Fast Downward [19] and LAMA [47]. The remainder of this

section introduces popular domain-independent heuristics, heuristic search algo-

rithms, and commonly used search enhancements.

2.2.1 Domain Independent Heuristics

Since the introduction of hadd and hmax, there has been remarkable progress in de-

veloping domain-independent heuristics, including the Fast Forward (FF) heuristic

hFF [25], the Causal Graph (CG) heuristic hcg [18], the Context Enhanced Addi-

tive heuristic hcea [21], and the Landmark Count (LM) heuristic hlm [48]. In this

section, we briefly discuss the most popular family of domain-independent heuris-

tic, the delete relaxation based heuristics, namely hadd, hmax and hFF . While these

heuristics are discussed based on the STRIPS representation, for which they were

initially introduced, they can also be derived for the SAS+ representation.

Delete-Relaxation Based Heuristics

Domain-independent heuristics are often derived from solving a simpler version

of the problem, called the relaxation π+ of the original problem π. The relaxation

abstracts some conditions, such as the delete list in STRIPS actions, so that any

solution in the problem is also a solution in the relaxation. The most popular way

of relaxation is the delete-relaxation, which removes all delete lists Del(a) of a
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problem. Since no fluent can become False from True, the number of fluents that

have the value True increases monotonically. Let A+ denote the actions set with-

out delete list. A sequence of actions a+0 , ..., a
+
n ∈ A+ is an optimal plan for π+

if it transforms the initial state to a goal state and minimizes the sum of actions∑n
i=0 a

+
i . Let p+ denote one optimal plan for π+, then cost(p+) is an admissible

heuristic known as h+, which never overestimates the cost. cost(p+) is also called

the optimal delete relaxation heuristic. Although the computational complexity of

finding a solution (if any) is bounded by the number of fluents in F , computing an

optimal solution for π+ is NP-Complete [5]. An approximate solution for π+ can be

calculated in polynomial time and quickly enough for solving planning problems in

practice [4, 25].

The Max and Additive Heuristics: both hadd and hmax approximate the opti-

mal delete relaxation heuristic h+ by aggregating the costs of making a set of fluents

True. The cost of making one fluent True is decided by the action a that achieves

it with the minimal estimated cost, which is calculated from the costs of making

all fluents in Pre(a) True plus the cost of a itself. hmax approximates h+ by the

minimal estimated cost of the most expensive single fluent, assuming that the cost

of achieving a set of fluents is equal to that of the most expensive fluent. The formal

definition of hmax for fluents, actions and sets of fluents is:

hmax(f ; s) =


0 iff f ∈ s
∞ A(f) = ∅
mina∈A(f) h

max(a; s) otherwise
(2.1)

hmax(a; s) = cost(a) + hmax(Pre(a); s) (2.2)

hmax(Q; s) = max
f∈Q

hmax(f ; s) (2.3)

hmax(s) = hmax(G; s) (2.4)

A(f) denotes the set of actions that can achieve fluent f . If there exist zero cost

actions, there might be multiple value assignments that satisfy the above equations.

This issue can be solved by computing the heuristic values of fluents and actions

in a specific order. First, compute heuristic value of fluents in s, which are all 0.
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Then, compute heuristic values of actions that are applicable from the current state,

followed by computing heuristic values of new fluents that are achieved by these

actions and adding these fluents into the current state. At the same time, update the

heuristic value of already achieved fluents if they are achievable by lower heuristic

values. The process is repeated until heuristic values of all fluents in G are com-

puted.

hmax is an admissible heuristic [4] and hmax(s) ≤ h+(s) given any s [4]. How-

ever, in practice hmax is less informative than hadd, which is not admissible. hadd

assumes costs of achieving a set of fluents is the sum of achieving each indepen-

dently and approximates h+ in this way. The formal definition of hadd for fluents,

actions and sets of fluents is:

hadd(f ; s) =


0 iff f ∈ s
∞ A(f) = ∅
mina∈A(f) h

add(a; s) otherwise
(2.5)

hadd(a; s) = cost(a) + hadd(Pre(a); s) (2.6)

hadd(Q; s) =
∑
f∈Q

hadd(f ; s) (2.7)

hadd(s) = hadd(G; s) (2.8)

Similar to hmax, if there exist zero cost actions, there might be multiple value as-

signments that satisfy the above equations. The same process described for hmax

can be used to resolve this issue. hadd(s) ≥ h+(s) given any state s [4]. Very of-

ten, one action achieves more than one desired fluent, which causes the problem of

over-counting for hadd.

The Fast Forward Heuristic: hFF attacks the over-counting issue in hadd by re-

turning the cost of a solution for the delete-relaxed problem π+. There are two steps

in computing such a plan [25]: 1) build a relaxed planning graph, which alternates

between fluent layers, containing current True fluents, and action layers, containing

actions that lead to new True fluents; 2) extract a solution from the graph. Unlike

hmax and hadd, hFF computes a real plan for problem π+. In this plan, an action can
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Algorithm 1 Best First Search
Input Initial state I , goal states G
Output A solution plan

1: open.insert(I , 0, h(I))
2: while open 6= ∅ do
3: n ← open.remove_min() {The open list is sorted differently for different

algorithms.}
4: if n ∈ G then
5: return plan from I to n
6: end if
7: closed.insert(n)
8: for each v ∈ successors(n) do
9: if v 6∈ closed then

10: open.insert(v, g(n) + cost(n, v), h(v))
11: else
12: if g(n) + cost(n, v) < g(v) then
13: closed.remove(v)
14: open.insert(v, g(n) + cost(n, v), h(v))
15: end if
16: end if
17: end for
18: end while

make multiple fluents True. The cost of the plan is returned as the heuristic value.

hFF is not admissible but it is more informative in practice than hadd [25]. Overall,

for any state s, we have hmax(s) ≤ h+(s) ≤ hFF (s) ≤ hadd(s) [4, 25].

2.2.2 Heuristic Search Algorithms

A heuristic function is important for planning systems since it provides guidance

for future search. However, a search algorithm is also essential for the performance

of planners. Two main types are used in satisficing planners: Best First Search [19,

36, 46] and Local Search [25, 38].

Best First Search Algorithms

Best First Search algorithms always expand the most promising state according to

a function called f(.), and keep all successors of the state into in a priority queue

called called Open List. All states that are already expanded are stored in a data
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Algorithm 2 Enforced Hill Climbing
Input Initial state I , goal states G
Output A solution plan

1: open.insert(I)
2: hbest ← h(I)
3: while open 6= ∅ do
4: cur ← open.remove()
5: succs← cur.succssors()
6: while succs 6= ∅ do
7: n← succs.remove()
8: if n ∈ G then
9: return plan from I to n

10: end if
11: if h(n) < hbest then
12: open.clear()
13: succs.clear()
14: hbest ← h(n)
15: end if
16: open.insert(n)
17: end while
18: end while

structure called Closed List. Given a state s, f(s) is usually a linear combination of

g(s), the best known total cost of a sequence of actions that reaches s from the start

state, and h(s), the estimated cost to reach a goal state from s. For example, the best

first search algorithm A* [17] takes f(s) = g(s) + h(s). In this case, when h(s) is

admissible, never overestimating the cost to reach a goal state, solutions found by

A* are optimal. Greedy Best First Search (GBFS), where f(s) = h(s), is one of the

most important best first search algorithms for satisficing planning. GBFS always

expands a state that is closest to a goal state according to h(.) without consider-

ing g(s). GBFS can often find a solution quickly. Many state-of-the-art satisficing

planners, such as LAMA [46] and Fast Downward [19], run GBFS to quickly find

a solution first before looking for better quality solutions. Flaws in a heuristic can

significantly decrease the performance of GBFS, which will be discussed in detail

in Chapters 4, 5 and 6. Another variant of Best First Search is Weighted A* [44], in

which f(s) = g(s)+w∗h(s). Here, w ≥ 1 is a parameter that controls the trade-off

between plan quality and search time. The larger w is, the more emphasis is put on
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expanding states that are closer to goal states. w = 1 corresponds to A*. Algorithm

1 shows the pseudo code of the Best First Search framework. A*, GBFS and WA*

differ from each other in how the open list is ordered.

Local Search Algorithms

Local search algorithms have also been well explored in the planning community.

One famous such algorithm is Enforced Hill Climbing (EHC) [25]. As in the stan-

dard Hill Climbing algorithm [53], EHC expands a current state s and chooses a

successor state with lowest h value (must be smaller than h(s)) as the new current

state. This process iterates until either the current state is a goal state or no such

successor state exists. EHC differs from Hill Climbing in local minima, when none

of the successor states has a lower h value than s. In this case, EHC switches to

exhaustive breadth first search until finding a state s′ with h(s′) < h(s). EHC fails

when no such exit state s′ is found after EHC exhausts all states reachable from

s. Algorithm 2 shows the pseudo code of Enforced Hill Climbing. The planner FF

[25] starts with an EHC search. If it fails, FF restarts with GBFS from the initial

state.

Monte Carlo Random Walk Planning (MRW) [38] is another local search based

algorithm that applies the Monte Carlo sampling ideas from computer game re-

search in classical planning. Algorithm 3 shows the pseudo code. In Line 5, IsDeadEnd(s)

returns True if the heuristic function think there is no solution node in the subtree

under s. In MRW, quick random walks are performed to explore the neighborhood

of the current search state s. A random walk starting from s0 (s0 = s) is a sequence

of states s0 → s1 → · · · → sn, in which each transition action sk → sk+1 is ran-

domly selected from among the applicable actions for sk. Only the end state sn of

the random walk is evaluated by a heuristic function h such as hFF [25]. After a

number of random walks from the current start state s, the search greedily updates

s to an end state of minimum h-value. This process of performing a set of random

walks, then jumping to a best endpoint is called a search step. The algorithm termi-

nates when a goal state is found. If the minimal heuristic value is not improved for

MAXSTEPS steps, the algorithm restarts from I .
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2.2.3 Planning Enhancements

Besides the basic search algorithms and heuristics, successful heuristic search based

satisficing planners use many search enhancements. This section introduces the

three most commonly used search enhancements: Deferred Evaluation [45], Pre-

ferred Operators [19] and Multiple Heuristics [51]. The latter two enhancements

are typically used under the Multiple Queue Search framework, which is also de-

scribed in this section.

Deferred Evaluation

Domain independent heuristics are generally expensive to compute. Most of the run

time of heuristic search based planners is spent in computing heuristic values. Once

a node is expanded, its successors are evaluated by h(n) before being put into the

open list. Only a small part of the nodes will eventually be expanded. Helmert [19]

proposed a technique called Deferred Evaluation, in which nodes are evaluated by

Algorithm 3 Monte-Carlo Random Walk Search
Input Initial state I , goal states G
Paramter MAXSTEPS Output A solution plan

1: s← I
2: hmin ← h(I)
3: counter ← 0
4: while s /∈ G do
5: if counter > MAXSTEPS or IsDeadEnd(s) then
6: s← I {restart from the initial state}
7: hmin ← h(I)
8: coutner ← 0
9: end if

10: s ← RandomWalkSearch(s,G) {return the endpoint with the lowest
heuristic value of a set of random walks.}

11: if h(s) < hmin then
12: hmin ← h(s)
13: counter ← 0
14: else
15: counter ← counter + 1
16: end if
17: end while
18: return the plan from I to s
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the heuristic value of their parent. The nodes in the open list are not evaluated until

they are expanded, which substantially reduces the number of node evaluations,

especially when combined with Preferred Operators (see next section).

Multiple Queue Search

Two of the most important enhancements for satisficing planning, Multi-Heuristics

and Preferred Operators, are based on the Multiple Queue Search [19, 52] frame-

work. When more than one heuristic is used in the search algorithm, Multiple Queue

Search uses one priority queue for each heuristic, and selects the next node to ex-

pand from these queues by a strategy, such as round-robin. Queue boosting [19]

can be used to assign priorities to different queues. Once a node is expanded, all its

successors are evaluated by all heuristics, and put into every queue with the corre-

sponding value. Preferred Operators is a term coined by Helmert [19] in the spirit of

Helpful Actions [25], to represent all operators that are promising for some reason.

For Preferred Operators, one additional priority queue per heuristic is used, which

contains only these successors. Usually the preferred operator queue(s) are also

boosted. The search benefits both from focusing more on usually relevant actions,

and from reaching greater depths more quickly because of the smaller effective

branching factor in the preferred queues.

2.3 Chapter Summary

In this section, we first described the model and representation we use to present

planning problems. We then focus on the heuristic search based solution for sat-

isficing planning, by describing the three major components: Planning Heuristic,

Search Algorithms and Planning Enhancements.
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Chapter 3

A Taste of Exploration: Combining
Greedy Best First Search and
Stochastic Random Walk

This chapter describes a new search algorithm called Random Walk-Driven Local

Search (RW-LS). RW-LS combines the systematic greedy algorithm Greedy Best-

First Search (GBFS) and the exploration-based algorithm Random Walk Search

(RWS) in a local search manner. This new algorithm is compared with the two

closely related algorithms: GBFS and RWS. An new set of benchmarks IPC-2011-

LARGE are generated to show the limit of top planners in IPC-2011 as well as

the better scaling behavior of the proposed algorithm. This chapter is based on the

following publication:

• F. Xie, H. Nakhost and M. Müller. Planning via Random Walk-Driven Local

Search. In Proceedings of the Twenty-Second International Conference on

Automated Planning and Scheduling (ICAPS-12), 315–322, 2012 [66].

3.1 Introduction

Most successful current satisficing planners combine several complementary search

algorithms [15, 46, 61]. Examples range from portfolio planners such as Fast Down-

ward Stone Soup [22] and loosely coupled parallel planners such as ArvandHerd

[58] to systems which cycle through several search strategies, such as FF [25], FD

[19], and ArvandHerd, and dual queue search algorithms as in LAMA [46]. Other
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examples are Probe [36], which combines explorative probes with standard search

techniques, Arvand [38], a planner which alternates exploration by Random Walks

with a greedy hill-climbing strategy, and Roamer [37], which combines a best-first

strategy with the use of random walks to escape from plateaus and local minima.

Another successful planning technique has been post-processing for plan improve-

ment, as in the Aras system [39].

The main contribution of this chapter is Random Walk-Driven Local Search

(RW-LS), a new planning method which combines local search with random walks.

In RW-LS, a greedy best-first search is driven by two kinds of evaluations: direct

evaluation of tree nodes, and evaluation of random walk endpoints as in Arvand.

Another contribution is IPC-2011-LARGE, a set of scaled up test instances for

several of these domains. Such scaled up instances are useful to show the limit of

these top planners in IPC-2011.

This chapter is organized as follows: After the new planning algorithm RW-

LS is introduced and compared with related work, the RW-LS planner Arvand-

LS is described next, followed by a section about the generation and selection of

harder problems from existing IPC domains for which scalable problem generators

are available. The experimental results for Arvand-LS show strong improvements

compared to Arvand and LAMA-2011 in both coverage and plan quality for hard

problems from several IPC domains.

3.2 Monte Carlo Random Walks Local Greedy Best-
First Search

The MRW algorithm emphasizes fast exploration by random walks, while leaving

plan improvement to a postprocessor such as Aras. In contrast, RW-LS focuses on

plan quality during search by performing a local Greedy Best First Search in each

step. Figure 3.1 compares the search strategies of MRW and RW-LS. Both algo-

rithms use random walks to explore the search space near a starting point s0. After

each exploration phase, both algorithms update s0 to an explored state with mini-

mum h-value and start the next search step from this new s0. Unlike MRW, RW-LS
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Figure 3.1: The search strategies of MRW (left) and RW-LS (right).

performs a local Greedy Best-First Search starting from state s0 during exploration.

The search uses well-known enhancements such as Deferred Evaluation and a sec-

ond open list containing only states reached via preferred operators [19]. RW-LS

evaluates the best state s retrieved from an open list, and also performs a random

walk starting from s ending in a state r. A linear combination of the heuristic values

h(s) and h(r) is used to order the nodes in the open list.

Algorithm 4 The MRW-like main loop of RW-LS
Input Initial State I and goal condition G
Output A solution plan

(s, hmin)← (I, h(I))
while G 6⊆ s do
(s, status)← IteratedRW-LS(s,G)
if status = NO_PROGRESS or IsDeadEnd(s) then
(s, hmin)← (I, h(I)) {restart from initial state}

else
hmin ← h(s)

end if
end while
return the plan from I to s

Algorithm 4 shows an outline of the MRW framework [38], adapted to RW-

LS. A state s is DeadEnd if there is no solution under the subtree of s. The only
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difference in the top-level algorithm is the call to IteratedRW-LS instead of doing

pure exploration by random walks. A successful search returns the sequence s0 →

s1 → · · · → sn of states along a plan, with s0 = I the initial state, sn ⊇ G a goal

state and each partial path sk → sk+1 obtained by a search step starting from sk.

The main search loop fails if IteratedRW-LS reports no progress, or if the current

search state becomes a dead end. In these cases, the algorithm simply restarts from

the initial state I .

IteratedRW-LS, shown in Algorithm 5, attempts to find an improved state s′ by

calling RW-LS a limited number of times. Each call constitutes one search step. If

the minimum h-value does not improve, IteratedRW-LS returns no progress.

Unlike MRW, RW-LS performs a random walk-guided greedy best-first search

as its search step. This method is shown in Algorithm 6.

RandomWalk(s,G) performs one random walk from a state s. As in MRW

[38], each random walk either returns the end state r reached after a given maximum

number of random actions, or terminates early on encountering a goal or dead end.

Algorithm 5 Iterated RW-LS
Input State s and goal condition G
Parameter MAXSTEPS
Output New s and progress status

open← [s]
closed← []
for i = 1 to MAXSTEPS do
s′ ← RW-LS(s,G, open, closed)
if IsNotDeadEnd(s′) and h(s′) < h(s) then

return (s′, PROGRESS)
end if

end for
return (s, NO_PROGRESS)

3.2.1 Random Walk-Driven Local Search

Algorithm 6 shows the random walk-guided greedy best-first search algorithm.

Open and closed lists are shared between iterations. RW-LS performs a random

walk from each state retrieved from the open list, and evaluates the endpoint r. The
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Algorithm 6 RW-LS, random walk-driven local search
Input state s0, goal condition G, open, closed
Parameter NUMWALKS
Output Best state smin or DEAD_END

(smin, hmin)← (s0, h(s0))
for i = 1 to NUMWALKS do

if open.empty() then
return DEAD_END

end if
s← open.remove_min() {best open node in tree}
if G ⊆ s then

return s
end if
r ← RandomWalk(s,G)
if G ⊆ r then

return r
end if
if h(s) < min(hmin, h(r)) then

(smin, hmin)← (s, h(s))
else if h(r) < hmin then

(smin, hmin)← (r, h(r))
end if
closed.insert(s)
open.insert(s.children()− closed, w × h(s) + h(r))

end for
return smin

algorithm keeps track of, and returns the best state seen overall, either from closed

or from a random walk endpoint. States in open are ordered by a linear combina-

tion w × h(s) + h(r). The parameter w controls the trade-off between exploration

and exploitation. The variable open in the algorithm manages both the normal and

the preferred operator open lists. The method also keeps track of the path (action

sequence) leading from s to the best state smin. In case smin was a random walk

endpoint, this path consists of an in-tree prefix followed by the random walk. For

simplicity, the details of path handling are omitted in the pseudocode.

If RW-LS fails to find an improvement, it returns the input state. Unlike MRW,

there is no forced transition to an end point in this case, and IteratedRW-LS repeat-

edly calls RW-LS from the same start state, while keeping the open and closed lists
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and increasing the parameter NUMWALKS.

3.2.2 Comparison to Other Related Algorithms

The RW-LS algorithm has some similarities to Enforced Hill Climbing [25]. Both

algorithms perform a local search before transitioning to the next search state. The

major differences are: 1) EHC uses a uniform, breadth first exploration strategy,

while RW-LS combines a selective GBFS with random walks to explore a larger

neighborhood; 2) EHC does not use heuristic values to guide the search, until it

finds a state with improved h-value, while RW-LS uses a linear combination of

h(s) and h(r) to guide the greedy best-first search.

Random-Walk Assisted Best-First Search (RWA-BFS) [37] is more closely re-

lated to RW-LS, as it combines best-first search with random walks. However, ran-

dom walks in RWA-BFS are added to a global, complete best-first search. In con-

trast, RW-LS is a stochastic local search algorithm. As a complete global search

algorithm, RWA-BFS outperforms RW-LS in domains which seem to require some

exhaustive search, such as Sokoban and Parking. RW-LS shines in solving large

problems for which its combination of local search and exploration is effective.

Furthermore, while RW-LS runs random walks from every expanded node, RWA-

BFS uses them only when the search is considered to be stuck in a local minimum.

3.3 Arvand-LS: A Simple Planner based on RW-LS

Arvand-LS is an implementation of the RW-LS algorithm based on the IPC-2011

version of Arvand [41], called Arvand-2011 here. As outlined in Algorithm 4,

Arvand-LS replaces the pure exploration by random walks of Arvand-2011 by RW-

LS. For most other parts of the planner, the Arvand-2011 default settings are used,

such as the maximal number of local searches before restarting from the initial

state, MAXSTEPS = 7 in Algorithm 5. Arvand-LS first runs each search step with

NUMWALKS = 100 random walks. For each restart from I , the number of random

walks is doubled, up to a maximum of 3200. There are two reasons for this doubling

strategy: as long as no plan to a goal state is found, wider exploration increases the
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probability of finding a solution; after a solution is found, larger searches increase

the fraction of in-tree actions, as opposed to random walk actions, in the solution,

which helps improve plan quality. The weight w in the combined heuristic function

of RW-LS is set to a large value, w = 100, after some initial experiments on IPC-

2011. h(r) is often used only for tie-breaking, but it seems to be very successful

in that because it makes the search more informed in large plateaus. In our testing,

the algorithm was robust against changes to MAXSTEPS in the interval [1,14].

Performance declined slowly for larger values of this parameter.

How random walks of Arvand-LS are performed is controlled by a tuple of

parameters:

• (len_walk , e_rate, e_period ,WalkType)

Random walk length scaling is controlled by an initial walk length of len_walk , an

extension rate of e_rate and an extension period of NUMWALKS ∗ e_period . The

algorithm performs random walks with length cur_len_walk , which initially equals

len_walk . If hmin does not improves over NUMWALKS ∗e_period random walks,

cur_len_walk will be updated to cur_len_walk ∗ (1 + e_rate). The choices for

WalkType are MHA and MDA [38], which use online statistics of helpful actions

and deadend states respectively to bias the action selection in random walks. For

example, a configuration of (1, 2, 0.1,MHA) means that all random walks use the

MHA enhancement, and if hmin does not improve for NUMWALKS ∗ 0.1 random

walks, then the length of walks, len_walk , which starts at 1, will be doubled. The

same three configurations used in Arvand are used:

• config-1: (10, 2, 0.1,MHA)

• config-2: (1, 2, 0.1,MDA)

• config-3: (1, 2, 0.1,MHA)

The algorithm cycles through these configurations, starting with config-1 and chang-

ing at each restart.
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Integration with the Aras postprocessor is identical to Arvand-2011: Aras is run

on each new plan found until it reaches the memory limit. Compared to the original

postprocess-once method [39], this applies Aras to a larger variety of input plans.

One major difference between Arvand-2011 and Arvand-LS is less pruning:

Arvand-LS turns off the pruning in the search or random walks for states whose

cost so far exceeds the cost of the best found solution. This pruning does not work

well for Arvand-LS since its high quality initial plans often prevent the algorithm

from finding any other alternate plans. This pruning strategy is further discussed in

Chapter 7.

3.4 IPC-2011-LARGE: Scaling up IPC-2011 Domains

In several domains, the test instances used at IPC-2011 have become too easy for

the current top planners. Harder instances are needed to show that a new approach

advances the state of the art in coverage as well as in plan quality. The collection

IPC-2011-LARGE represents a new, more challenging test set.

Four out of fourteen IPC-2011 domains have been scaled up to harder problems

in IPC-2011-LARGE to help illustrate the performance of Arvand-LS: Woodwork-

ing, Openstacks, Elevators and Visit-All. In Woodworking, wood must be processed

using different tools to produce parts. Planners should minimize the processing cost.

Openstacks is a combinatorial optimization problem where products must be tem-

porarily stacked. Planners need to minimize the maximum number of stacks in si-

multaneous use. In Elevators, passengers need to be transported using two types

of elevators with different cost characteristics. In Visit-All, an agent located in the

center of a n × n grid must visit all cells of the grid while minimizing the number

of moves.

Regarding the other IPC-2011 domains, Transport, Tidybot, Nomystery and Floor-

tile seem hard enough for current planners, so scaling can wait. In Parking, Sokoban

and Barman, neither Arvand nor Arvand-LS scale very well - see the discussion in

the IPC-2011 results section below. Depending on the needs of the community,

IPC-2011-LARGE could be expanded in the future to include harder instances from
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those domains. For the remaining domains of Parcprinter, Pegsol and Scanalyzer,

no scalable generators were available.

3.4.1 IPC-2011-LARGE Parameter Settings

Parameters used in most IPC-2011-LARGE instances are larger than the hardest

problems in IPC-2011. To describe a range of parameters, the notation p ∈ [L..U ; I]

is used to indicate that parameter p varies from a lower limit of L to an upper limit

of U in increments of I . For example, p ∈ [10..30; 5] means that the generated

instances have values of p ∈ {10, 15, 20, 25, 30}. For these domains, the parameters

are selected so that none of the planners can solve all of them.

Elevators The hardest IPC-2011 problem has f = 40 floors and p = 60 passen-

gers. The new problems also fix f = 40, and vary p ∈ [20..305; 15].

Openstacks The largest number of products in IPC-2011 is p = 250. New prob-

lems use p ∈ [250..630; 20].

Visit-All The hardest IPC-2011 problem has grid size g = 50. New problems use

g ∈ [48..86; 2].

Woodworking The largest number of parts in IPC-2011 is p = 23. For new prob-

lems, p ∈ [25..105; 4].

The new test set is designed to be a clear step up in difficulty from IPC-2011.

Only planners that were able to solve most of the IPC-2011 instances for a given

domain are likely to solve some of the new IPC-2011-LARGE instances.

3.5 Experiments

Experiments include tests on all IPC-2011 and IPC-2011-LARGE benchmarks.

They were run on an 8 core 2.8 GHz machine with a time limit of 30 minutes and

memory limit of 2 GB per problem. Results for planners which use randomization

are averaged over 5 runs.
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3.5.1 Planners and Evaluation

The experiments compare Arvand-LS with the best known version of seven other

planners: LAMA-2011, FDSS-2, Probe, Arvand, LPG-td, FF, FD-Autotune-2 (FD-

AT-2) and Roamer. LAMA-2011, FDSS-2 and Probe are the three top performers

from IPC-2011. Arvand and LPG-td [16] are well-konwn local search planners. FF

and FD-AT-2 both use Enforced Hill Climbing as the first try to solve the problem.

Roamer is included for comparison with Random-Walk Assisted Best-First Search.

LAMA-2011-FF is LAMA-2011 in FF-only mode, with the Landmark Heuristic

disabled. Since Arvand and Arvand-LS use hFF only, this version of LAMA-2011

helps to make a better comparison by removing the influence of the hLM heuristic.

The IPC-2011 versions of Roamer and Arvand were affected by a bug in the

PDDL-to-SAS+ translator used. Arvand also had a memory management problem.

These issues have been fixed in the versions of the planners used in the current

experiments. All planner codes can be found in the official IPC-2011 SVN reposi-

tory1.

The evaluation method is the same as in IPC-2011: the score for an unsolved

problem is 0. For each solved problem, the planner receives a score between 0 and

1, scaled relative to the best plan that these planners find in the experiments.

3.5.2 Results on IPC-2011 Benchmarks

The coverage and quality results on IPC-2011 are shown in Tables 3.1 and 3.2. In

addition, Figure 3.2 plots the number of problems solved as a function of the search

time first for the first 5 minutes, and then for the full 30 minutes. Arvand-LS solves

more problems quickly than the other tested planners. The overall performance of

Arvand-LS shows a significant improvement compared to the baseline planner Ar-

vand and exceeds that of several other top planners.

The coverage of both Arvand and Arvand-LS is weak in the domains of Sokoban,

Parking and Barman. The main reason for the bad performance of random walks

in these domains is that specific action sequences need to be discovered in order to

1svn://svn@pleiades.plg.inf.uc3m.es/ipc2011/
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make progress. The probability of repeatedly discovering such sequences through

random walks is very small. In contrast, best-first search planners work much better

in these domains, since they store the states that they have already tried, and can

discover such paths by a complete search. The local search in Arvand-LS improves

upon Arvand’s pure exploration: The average Sokoban coverage improves from 2.2

to 8.4, Parking improves from 3.8 to 8.6 and Barman from 0 to 9.6.

Another interesting data point shown is LAMA-2011-FF, the version of LAMA

without the hLM heuristic. It solves 39 fewer problems than LAMA-2011. Visit-All

shows the biggest drop, from 20 to 4. This domain is also very hard for many other

planners that don’t use the LM heuristic, such as FD-AT-2 and FDSS-2. Interest-

ingly, the random walks planners Arvand and Arvand-LS, which use only the FF

heuristic, solve all problems in Visit-All. It is because hFF has the multiple Unin-

formative Heuristic Regions (URHs) problem in Visit-All, where multiple small and

large UHRs create a large "virtual" UHR over the open list. The multiple UHRs

problem will be further discussed in Chapter 5.

While local search improves the coverage of random walk planners most of

the time, it fails for Nomystery [42]. This is a truck-package transportation domain

similar to Transport in IPC-2011. Its key feature is that trucks only have a limited

amount of fuel. In such resource constrained planning domains, delete-relaxation

heuristics are not informative, since they ignore resource consumption. Random

walk-based methods work very well here [42]. In Arvand-LS, the local greedy best

first search guided by the hFF heuristic seems to suffer from similar problems as

other GBFS planners, following paths of great heuristic improvement but running

out of fuel in the process. While Arvand-LS is weaker than Arvand here because of

its greedy best-first search, thanks to random walks, it still achieves the third best

score among all tested planners.

Compared to Arvand, Arvand-LS shows a significant improvement on plan

quality in Elevator, Openstacks, Scanalyzer and Visit-All. In these domains, the

local search finds much shorter plans. In Elevator, the plan quality of Arvand-LS

is even better than that achieved with systematic search planners, such as LAMA-

2011.
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3.5.3 Results on IPC-2011-LARGE Problems

Table 3.3 shows the coverage of all tested planners on the four scaled domains. The

key observations are:

• Arvand-LS significantly outperforms the other tested planners in all domains

except Large-Openstacks, where Arvand has a slight advantage. Arvand-LS

solves twice as many problems as LAMA-2011, the winner of IPC-2011.

Many other planners have problems scaling up to these large instances.

• Both RW-LS and MRW scale better than EHC implemented both in FF and

FD-AT-2.

• Relying on random walks to escape from the plateaus within a global best-

first search framework is not enough to scale to these large problems: both

Arvand and Arvand-LS solve between 5 to 20 problems more than Roamer

in each of the domains.

• In three out of four domains, the local search in Arvand-LS increases cover-

age compared to Arvand.

Figure 3.3 shows IPC-style scores for each domain. To keep the figures readable,

only the results of the four planners with highest score are shown in each domain 2.

The results show:

• Arvand-LS always generates better quality plans than Arvand. In a few cases,

such as problems 17 to 20 in Large-Openstacks, Arvand-LS gets lower scores

since it is not able to consistently solve the problem in all 5 runs.

• Except for Large-Visit-All, Arvand-LS creates plans of better (Large-Elevators)

or competitive quality compared to more systematic planners such as LAMA-

2011.
2In Large-Visit-All, only three planners solve any problem.

35



Focusing on the Large-Elevators results in Figure 3.3(a), the difference in plan

quality of Arvand-LS and Arvand decreases with problem size. There are two rea-

sons for this: for problems 10 to 20, solutions are found only by the config-1 con-

figuration using long random walks, so the generated solutions consist mostly of

random actions. Furthermore, these solutions are so long that Aras, which grows a

neighborhood graph along the solutions, has memory problems. The best solution

for problem 1 is found by FD-Autotune-2. However, this planner did not scale to

larger instances.

In Large-Openstacks, Figure 3.3(b), both LAMA-2011 and Arvand-LS generate

good quality solutions initially, but Arvand-LS scales better. Arvand-LS finds better

quality solutions than Arvand until problem 16, and then Arvand takes over for

larger instances. Beyond problem 16, Arvand-LS does not solve the problems in all

5 trial runs.

For smaller Large-Visit-All instances, both Arvand and Arvand-LS generate

lower quality plans than LAMA. Only Arvand-LS scales beyond problem 13. To

avoid making bubbles - unvisited squares surrounded by visited squares - is a good

strategy to generate good quality plans in this domain. Random walks visit unvis-

ited squares quickly in the beginning, but create a lot of bubbles on the way, leading

to bad plan quality.

The Large-Woodworking instances, Figure 3.3(d), seem relatively easier since

more planners can solve problems here. The plan quality on the first 10 problems is

very close for the tested planners. Only Arvand-LS scales beyond problem 13. The

low score for problem 17 is due to 3 out of 5 trial runs of Arvand-LS failing.

To summarize, Arvand-LS is the strongest planner overall in these tests in terms

of both coverage and quality. In some problems with moderate plan length, Arvand

has better performance than Arvand-LS. Because of the post-processing system

Aras, for small problems, the diversity of input plans for Aras is more important

than the quality of initial plans. Arvand produces more, and also more diverse, plans

than Arvand-LS because of its faster pure exploration strategy. For larger problems,

the very long plans generated by Arvand often deviate too far from good plans, and

the local optimization of Aras is not sufficient to substantially improve these.
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3.6 Conclusions

This chapter introduces the new algorithm RW-LS, which uses a local Greedy Best-

First Search driven by both direct node evaluation and Random Walks. The planner

Arvand-LS improves both coverage and quality significantly over the IPC-2011 ver-

sion of Arvand. In domains which contain sufficiently many paths from the initial

state to a goal, the algorithm scales better than other tested planners.
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Figure 3.2: The number of problems solved in the first 5 minutes and 30 minutes.
The x-axes represent the running time, and the y-axes represent the number of prob-
lems solved in the given time.
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Chapter 4

Adding Local Exploration to Greedy
Best First Search

Greedy Best-First Search (GBFS) is a powerful algorithm at the heart of many state

of the art satisficing planners. One major weakness of GBFS is its behavior in so-

called uninformative heuristic regions (UHRs) - parts of the search space in which

its heuristic provides no guidance towards states with improved heuristic values.

To address this, one can try to develop better heuristics. An alternative approach

is to modify the search algorithm in order to make the algorithm less sensitive to

UHRs. This chapter proposes a framework based on GBFS, named GBFS with

local exploration, which automatically switches from the global GBFS into local

exploration mode once the search algorithm gets stuck in UHRs. This chapter is

based on the following publication:

• F. Xie, M. Müller and R. Holte. Adding Local Exploration to Greedy Best-

First Search in Satisficing Planning. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence (AAAI-2014), 2388-2394, 2014

[68].

4.1 Introduction

Uninformative heuristic regions (UHRs) includes local minima and plateaus. A

local minimum is a state with minimum h-value within a local region which is not

a global minimum. A plateau is an area of the state space where all states have
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the same heuristic value. GBFS, because of its open list, can get stuck in multiple

UHRs at the same time.

Figure 4.1: Overview of h+ topology, from Hoffmann [24]. Domains with unrec-
ognized dead ends are not shown. Assume we denote the state space by a graph
G(V,E), and gd(s) denotes the goal distance of node s. On the x-axis, undirected
means that all actions can be undone, namely for any node s and s′, both (s, s′) and
(s′, s) ∈ E; harmless means that no action that can not be undone leads to a dead
end, namely if there exists (s, s′) ∈ E such that (s′, s) /∈ E, and, for all s ∈ V ,
gd(s) <∞; recognized means that all dead ends are recognizable by h+(s), namely
if there exists s ∈ V such that gd(s) = ∞, and, for all s ∈ V , if gd(s) = ∞ then
h+(s) =∞. The y-axis represents the existence or non-existence of constant upper
bounds on the exit distance [23] of local minima and benches (called plateau in this
dissertation).

Hoffmann has studied the problem of UHRs for the case of the optimal relax-

ation heuristic h+ [24, 23]. He classified a large number of planning benchmarks,

shown in Figure 4.1, according to their maximum exit distance from plateaus and

local minima, and by whether dead ends exist and are recognized by h+. This chap-

ter proposes local exploration to improve GBFS. The focus of the analysis is on

domains with a large or even unbounded maximum exit distance for plateaus and

local minima, but without unrecognized dead ends. In these domains, there exists a

plan from each state in an UHR (with h+ <∞).

As an example, the IPC domain 2004-notankage has no dead ends, but contains
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Figure 4.2: Cumulative search time (in seconds) of GBFS, GBFS-LS and GBFS-
LRW with hFF for first reaching a given hmin in 2004-notankage #21.

unbounded plateaus and local minima [24]. Instance #21 serves to illustrate a case

of bad search behavior in GBFS due to UHRs. For this instance, Figure 4.2 plots

the current minimum heuristic value hmin in the closed list on the x-axis against

the log-scale cumulative search time needed to first reach hmin. The solid line is

for GBFS with hFF . The two huge increases in search time, with the largest (763

seconds) for the step from hmin = 2 to hmin = 1, correspond to times when the

search is stalled in multiple UHRs. Since the large majority of overall search time

is used to inefficiently find an escape from UHRs, it seems natural to try switching

to a secondary search strategy which is better at escaping. Such ideas have been

tried several times before. This related work is reviewed and compared in the next

section.

This chapter introduces a framework which adds a local search algorithm to

GBFS in order to improve its behavior in UHRs. Two such algorithms, local GBFS

(LS(n)) and local random walks (LRW(n)), are designed to find quicker escapes

from UHRs, starting from a node n within an UHR. The main contributions of this

work are:
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• An analysis of the problem of UHRs in GBFS, and its consequences for lim-

iting the performance of GBFS in current benchmark problems in satisficing

planning.

• A new search framework, Greedy Best-First Search with Local Exploration

(GBFS-LE), which runs a separate local search whenever the main global

GBFS seems to be stuck. Two concrete local search algorithms, local GBFS

(LS) and local random walks (LRW), are shown to be less sensitive to UHRs

than GBFS and when incorporated into GBFS are shown to outperform the

baseline by a substantial margin over the IPC benchmarks.

• An analysis of the connection between Hoffmann’s theoretical results on local

search topology [24, 23] and the performance of adding local exploration into

GBFS.

The remainder of this chapter is organized as follows: after a review of previous

work on strategies for escaping from UHRs, the new search framework GBFS-LE

is introduced, compared with related work, and evaluated experimentally on IPC

domains.

4.2 Search Strategies for Escaping UHRs

There are several approaches to attack the UHR problem. Better quality heuris-

tics [18, 21, 25] can shrink the size of UHRs, as can combining several heuristics

[46, 51]. Additional knowledge from heuristic computation or from problem struc-

ture can be utilized in order to escape from UHRs. Examples are helpful actions [25]

and explorative probes [36]. The third popular approach is to develop search algo-

rithms that are less sensitive to flaws in heuristics. Algorithms which add a global

exploration component to the search, which is especially important for escaping

from unrecognized dead ends, include restarting [10, 38, 49] and non-greedy node

expansion [26, 60, 70]. This chapter focuses on another direction: adding a local

exploration component to the globally greedy GBFS algorithm.

The planner Marvin adds machine-learned plateau-escaping macro-actions to
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enforced hill-climbing [9]. YAHSP constructs macro actions from FF’s relaxed

planning graph [62]. Identidem adds exploration by expanding a sequence of actions

chosen probabilistically, and proposes a framework for escaping from local minima

in local-search forward-chaining planning [10]. Arvand [38] uses random walks to

explore quickly and deeply. Arvand-LS in Chapter 3 combines random walks with

local greedy best-first search, while Roamer [37] adds exploration to LAMA-2008

by using fixed-length random walks. Analysis from Nakhost and Müller [40] shows

that while random walks outperform GBFS in escaping many kinds of plateaus,

but they fail badly in domains such as Sokoban, where a precise action sequence

must be found to escape. In Real-Time Heuristic Search [33], the idea of Heuris-

tic Depression [27] is very similar to UHR. Intuitively, a heuristic depression is a

bounded region of the search space containing states whose heuristic value is much

lower compared to states in the border of the depression. LSS-LRTA* [32] uses

extensive look-ahead and heuristic correction to handle heuristic depressions. Al-

though extensive look-ahead and heuristic correction might not be applied directly

in satisficing planning because of the more expensive to compute heuristic comput-

ing and much large state spaces, the ideas are very similar to what we have seen in

these local search based planning algorithms. However, while escaping from UHRs

has been well studied in the context of these local search based planners, there is

comparatively little research on how to use search for escaping UHRs in the context

of GBFS. This chapter begins to fill this gap.
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Algorithm 7 GBFS-LE
Input Initial state I , goal states G
Parameter STALL_SIZE, MAX_LOCAL_TRY
Output A solution plan

1: (open, hmin)← ([I], h(I))
2: stalled ← 0; nuLocalTry ← 0
3: while open 6= ∅ do
4: n← open.remove_min()
5: if n ∈ G then
6: return plan from I to n
7: end if
8: closed.insert(n)
9: for each v ∈ successors(n) do

10: if v 6∈ closed then
11: open.insert(v, h(v))
12: if hmin > h(v) then
13: hmin ← h(v)
14: stalled ← 0; nuLocalTry ← 0
15: else
16: stalled ← stalled + 1
17: end if
18: end if
19: end for
20: if stalled = STALL_SIZE

and nuLocalTry < MAX_LOCAL_TRY then
21: n← open.remove_min()
22: LocalExplore(n){local GBFS or random walks}
23: stalled ← 0; nuLocalTry ← nuLocalTry + 1
24: end if
25: end while

4.3 GBFS-LE: GBFS with Local Exploration

The new technique of Greedy Best-First Search with Local Exploration (GBFS-LE)

uses local exploration whenever a global GBFS (G-GBFS) seems stuck. If G-GBFS

fails to improve its minimum heuristic value hmin for a fixed number of node expan-

sions, then GBFS-LE runs a small local search for exploration, LocalExplore(n),

from the best node n in a global-level open list. Algorithm 7 shows GBFS-LE.

STALL_SIZE and MAX_LOCAL_TRY, used in Line 22, are parameters which con-

trol the tradeoff between global search and local exploration.

45



Algorithm 8 LS(n), local GBFS
Input state n, initial state I , goal states G, hmin{global variable}, open, closed
Parameter LSSIZE

1: local_open ← [n]
2: h_improved← false
3: for i = 1 to LSSIZE do
4: if local_open = ∅ then
5: return
6: end if
7: n← local_open.remove_min() {FIFO tie-breaking}
8: if n ∈ G then
9: return plan from I to n

10: end if
11: closed.insert(n)
12: for each v ∈ successors(n) do
13: if v 6∈ closed then
14: if h(v) <∞ then
15: local_open.insert(v, h(v))
16: if hmin > h(v) then
17: hmin ← h(v)
18: h_improved← true
19: end if
20: end if
21: end if
22: end for
23: if h_improved then
24: break
25: end if
26: end for
27: merge(open,local_open)
28: return

The main change from GBFS is the call to LocalExplore(n) at Line 24 whenever

there has been no improvement in heuristic value over the last STALL_SIZE node

expansions.

Two local exploration strategies were tested. The first is local GBFS search

starting from node n, LocalExplore(n) = LS(n), which shares the closed list of G-

GBFS, but maintains its own separate open list local_open that is cleared before

each local search. LS(n), as shown in Algorithm 8, succeeds if it finds a node

v with h(v) < hmin at Line 16 before it exceeds the LSSIZE limit. In any case,
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Algorithm 9 LRW (n), local random walk
Input state n, goal states G, hmin{global variable}, open
Parameter LSSIZE

1: for i = 1 to LSSIZE do
2: s← n
3: for j = 1 to LENGTH_WALK do
4: A← ApplicableActions(s)
5: if A = ∅ then
6: break
7: end if
8: a← SelectAnActionFrom(A)
9: s← apply(s, a)

10: if s ∈ G then
11: open.insert(s, h(s))
12: return
13: end if
14: end for
15: if h(s) < hmin then
16: open.insert(s, h(s))
17: break
18: end if
19: end for
20: return

the remaining nodes in local_open are merged into the global open list. A local

search tree grown from a single node n is much more focused and grows deep much

more quickly than the global open list in G-GBFS. It also restricts the search to a

single plateau, while G-GBFS can get stuck when exploring many separate plateaus

simultaneously, which will be further discussed in Chapter 5. Both G-GBFS and

LS(n) use a first-in-first-out tie-breaking rule.

The second local exploration strategy tested is local random walk search, Lo-

calExplore(n) = LRW(n), as shown in Algorithm 9. The implementation of random

walks from the Arvand planner [38, 41] is used. LRW (n) runs up to a pre-set num-

ber of random walks starting from node n, and evaluates only the endpoint of each

walk using hFF . All intermediate states are checked for whether they are goal states.

Like LS(n), LRW (n) succeeds if it finds a node v with h(v) < hmin within its ex-

ploration limit at Line 15. In this case, v is added to the global open list, and the

path from n to v is stored for future plan extraction. In case of failure, unlike LS(n),
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no information is kept.

Random walks are controlled by a tuple of parameters:

• (len_walk , e_rate, e_period ,walk_type)

Random walk length scaling is controlled by an initial walk length of len_walk ,

an extension rate of e_rate and an extension period of NUMWALKS ∗ e_period .

The algorithm performs random walks with length cur_len_walk , which initially

equals len_walk . If hmin does not improves over NUMWALKS ∗e_period random

walks, cur_len_walk will be updated to cur_len_walk ∗ (1 + e_rate). walk_type

decides how actions are selected in Line 8. The choices are pure random (PURE)

and Monte Carlo Helpful Actions (MHA), which bias random walks to Helpful

Actions [25]. For example, in configuration (1, 2, 0.1,MHA) all random walks use

the MHA walk type, and if hmin does not improve for NUMWALKS ∗ 0.1 random

walks, then the length of walks, len_walk , which starts at 1, will be doubled. This

is very different from Roamer, which uses fixed length random walks. LRW was

tested with the following two configurations: (1, 2, 0.1,MHA), which is used with

preferred operators, and (1, 2, 0.1,PURE ).

The example of Figure 4.2 is solved much faster, in around 1 second, by both

GBFS-LS and GBFS-LRW, while GBFS needs 771 seconds. The three algorithms

built exactly the same search trees when they first achieved the minimum h-value

6. The local GBFS in GBFS-LS, focusing on one branch, found a 5 step path that

decreases the minimum h-value using only 10 expansions. The h-values along the

path were 6, 7, 7, 6 and 4, showing an initial increase before decreasing. h-values

along GBFS-LRW’s path also increased before decreasing. In contrast, GBFS gets

stuck in multiple separate h-plateaus since it needs to expand over 10000 nodes

with h-value 6, which were distributed in many different parts of the search tree.

Only after exhausting these, it expands the first node with h = 7. This is called the

Multiple Uninformative Heuristic Region problem, which will be further discussed

in Chapter 5. In this example, the local explorations, which expand or visit higher

h-value nodes earlier, massively speed up the escape from UHRs.

There are several major differences between GBFS-LS and GBFS-LRW. GBFS-

LS keeps all the information gathered during local searches by copying its nodes
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into the global open list at the end. GBFS-LRW keeps only endpoints that improve

hmin and the paths leading to them. This causes a difference in how often the local

search should be called. For GBFS-LS, it is generally safe to do more local search,

while over-use of local search in GBFS-LRW can waste search effort1. This sug-

gests using more conservative settings for the parameters MAX_LOCAL_TRY and

LSSIZE in LRW(n). The two algorithms also explore UHRs very differently. LS(n)

systematically searches the subtree of n, while LRW(n) samples paths leading from

n sparsely but deeply.

4.4 Experimental Results

Experiments were run on a set of 2112 problems in 54 domains from the first seven

International Planning Competitions which are publicly available2, using one core

of a 2.8 GHz machine with 4 GB memory and 30 minutes per instance. Results

for planners which use randomization are averaged over five runs. All planners are

implemented on the Fast Downward code base FD-2011 [19]. The translation from

PDDL to SAS+ was done only once, and this common preprocessing time is not

counted in the 30 minutes. Parameters were set as follows: STALL_SIZE = 1000 for

both algorithms. (MAX_LOCAL_TRY, LSSIZE) = (100, 1000) for GBFS-LS and

(10, 100) for GBFS-LRW.

4.4.1 Local Search Topology for h+

For the purpose of experiments on UHRs, the detailed classification by h+ of Figure

4.1 can be coarsened into three broad categories:

• Unrecognized-Deadend: 195 problems from 4 domains with unrecognized

dead ends: Mystery, Mprime, Freecell and Airport.

• Large-UHR: 383 problems from domains with UHRs which are large or of

unbounded exit distance, but with recognized dead ends: column 3 in Figure
1Each step in a random walk generates all children and randomly picks one, which is only slightly

cheaper than one expansion by LS when Deferred Evaluation is applied.
2The current IPC test set does not include Blocksworld, Hanoi, Ferry and Simple-Tsp from

Figure 4.1.
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4.1, plus the top two rows of columns 1 and 2.

• Small-UHR: 669 problems from domains without UHRs, or with only small

UHRs, corresponding to columns 1 and 2 in the bottom row of Figure 4.1.

The problems from these three categories are only a subset of the total 2112

problems, since not all the 54 domains were analyzed by Hoffmann [24].

4.4.2 Performance of Baseline Algorithms

Heuristic GBFS GBFS-LS GBFS-LRW
FF 1561 1641 1619.4
CG 1513 1608 1573.2
CEA 1498 1592 1615.2

Table 4.1: IPC coverage out of 2112 for GBFS with and without local exploration,
with three standard heuristics: FF, CG and CEA.

The baseline study evaluates GBFS, GBFS-LS and GBFS-LRW without the

common planning enhancements of preferred operators, deferred evaluation and

multi-heuristics. Three widely used planning heuristics are tested: FF [25], causal

graph (CG) [18] and context-enhanced additive (CEA) [21]. Table 4.1 shows the

coverage on all 2112 IPC instances. Both GBFS-LS and GBFS-LRW outperform

GBFS by a substantial margin for all 3 heuristics.

Figure 4.3(a) compares the time usage of the two proposed algorithms with

GBFS using hFF over the IPC benchmarks. Every point in the figure represents one

instance, plotting the search time for GBFS on the x-axis against GBFS-LS (top)

and GBFS-LRW (bottom) on the y-axis. Only problems for which both algorithms

need at least 0.1 seconds are shown. Points below the main diagonal represent in-

stances that the new algorithms solve faster than GBFS. For ease of comparison,

additional reference lines indicate 2×, 10× and 50× relative speed. Data points

within a factor of 2 are shown in grey in order to highlight the instances with sub-

stantial differences. Problems that were only solved by one algorithm within the

1800 second time limit are included at x = 10000 or y = 10000. The above plot

setting, which is referred as IPC time comparison setting, is used frequently in this
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dissertation. Both new algorithms show substantial improvements in search time

over GBFS.

Figures 4.3(b) and (c) restrict the comparison to Large-UHR and Small-UHR

domains, respectively. In Large-UHR domains, GBFS-LS and GBFS-LRW solve

19 (+9.7%) and 30 (+15.3%) more problems than GBFS (195/383) respectively.

Both outperform GBFS in search time. However, in Small-UHR domains, GBFS-

LS and GBFS-LRW only solve 3 (+0.5%) and 7 (+1.1%) more problems than GBFS

(634/669), and there is very little difference in search time among the three algo-

rithms. This result clearly illustrates the relationship between the size of UHRs

and the performance of the two local exploration techniques. For Unrecognized-

Deadend, GBFS-LS is slightly slower than GBFS with the same coverage (162/195),

while GBFS-LRW is slightly faster and solves 7 (+3.7%) more problems. The ef-

fect of local exploration on the performance in the case of unrecognized dead-ends

is not clear-cut.

4.4.3 Performance with Search Enhancements

Experiments in this section test the two proposed algorithms when three common

planning enhancements are added: Deferred Evaluation, Preferred Operators and

Multiple Heuristics. hFF is used as the primary heuristic in all cases.

• Deferred Evaluation delays state evaluation and uses the parent’s heuristic

value in the priority queue [45]. This technique is used in G-GBFS and LS(n),

but not in the endpoint-only evaluation of random walks in LRW(n).

• The Preferred Operators enhancement keeps states reached via a preferred

operator, such as helpful actions in hFF , in an additional open list [45]. An

extra preferred open list is also added to LS(n). Boosting with the default

parameter value (1000) is used, and Preferred Operator first ordering is used

for tie-breaking as in LAMA-2011 [46]. In LRW (n), preferred operators

are used in form of the Monte Carlo with Helpful Actions (MHA) technique

[38], which biases random walks towards using operators which are often

preferred.
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• The Multi-Heuristics approach maintains additional open lists in which states

are evaluated by other heuristic functions. Because of its proven strong per-

formance in LAMA, the Landmark count heuristic hlm [48] is used as the sec-

ond heuristic. Both G-GBFS and LS(n) use a round robin strategy for picking

the next node to expand. In Fast Downward, hlm is calculated incrementally

from the parent node. When Multi-Heuristics is applied to GBFS-LRW, the

LRW (n) part still uses hFF because the path-dependent landmark computa-

tion was not implemented for random walks. When LRW (n) finds a heuris-

tically improved state s, GBFS-LRW evaluates and expands all states along

the path to s in order to allow the path-dependent computation of hlm(s) in

G-GBFS. Without Multi-Heuristics, only s itself is inserted to the open list.

Table 4.2 shows the experimental results on all IPC domains. Used as a single

enhancement, Preferred Operators improves all three algorithms. Deferred Eval-

uation improves GBFS-LS and GBFS-LRW, but fails for GBFS, mainly due to

plateaus caused by the less informative node evaluation [45]. In GBFS-LS and

GBFS-LRW, the benefit of faster search outweighs the weaker evaluation. Multi-

Heuristics strongly improves GBFS and GBFS-LS, but is only a modest success in

GBFS-LRW. This is not surprising since LRW(n) does not use hlm, and in order to

evaluate the new best states generated by LRW(n) with hlm in G-GBFS, all nodes

on the random walk path need to be evaluated, which degrades performance.

Enhancement GBFS GBFS-LS GBFS-LRW
(none) 1561 1641 1619.4
PO 1826 1851 1827.4
DE 1535 1721 1635
MH 1851 1874 1688.4
PO + DE 1871 1889 1880.6
PO + MH 1850 1874 1854.2
DE + MH 1660 1764 1730.2
PO + DE + MH 1913 1931 1925.4

Table 4.2: Number of instances solved with search enhancements, out of 2112. PO
= Preferred Operators, DE = Deferred Evaluation, MH = Multi-Heuristic.
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4.4.4 Comparing with LAMA-2011 in terms of Coverage and
Search Time

The final row in Table 4.2 shows coverage results when all three enhancements are

applied. The performance comparisons in this section use this best known config-

uration in terms of coverage for three algorithms based on GBFS, GBFS-LS and

GBFS-LRW, which closely correspond to the “coverage-only” first phase of the

LAMA-2011 planner:

• LAMA-2011: only the first GBFS iteration of LAMA is run, with deferred

evaluation, preferred operators and multi-heuristics with hFF and hlm [46].

• LAMA-LS: Configured like LAMA-2011, but with GBFS replaced by GBFS-

LS.

• LAMA-LRW: GBFS in LAMA-2011 is replaced by GBFS-LRW.

Table 4.3 shows the coverage results per domain. LAMA-LS has the best overall

coverage, 18 more than LAMA-2011, closely followed by LAMA-LRW. LAMA-

LS solves more problems in 7 of the 10 domains where LAMA and LAMA-LS

differ in coverage. This number for LAMA-LRW is 7 out of 11. Although LAMA-

LRW uses a randomized algorithm, our 5 runs for LAMA-LRW had quite stable

results: 1927, 1924, 1926, 1924 and 1926. By comparison, adding the landmark

count heuristic, which differentiates LAMA-2011 from other planners based on the

Fast Downward code base, improves the coverage of LAMA-2011 by 42, from 1871

to 1913.

Using the same format as Figure 4.3 for baseline GBFS, Figure 4.4 compares

the search time of the three planners over the IPC benchmark. Both LAMA-LS

and LAMA-LRW show a clear overall improvement over LAMA-2011 in terms of

speed. The benefit of local exploration for search time in Large-UHR still holds

even with all enhancements on. Both LAMA-LS and LAMA-LRW solve 12 more

problems (4.1%) than LAMA-2011’s 290/383 in Large-UHR, while in Small-UHR

they solve 1 and 2 fewer problems respectively than LAMA-2011’s 646/669.

For further comparison, the coverage results of some other strong planners from

IPC-2011 on the same hardware are: FDSS-2 solves 1912/2112, Arvand 1878.4/2112,
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Domain Size LAMA-2011 LAMA-LS LAMA-LRW
00-miconic-ful 150 136 136 135.6
02-depot 22 20 20 19.6
02-freecell 80 78 79 78 .2
04-airport-str 50 32 34 32.8
04-notankage 50 44 43 44
04-optical-tel 48 4 6 4
04-philosoph 48 39 47 47.8
04-satellite 36 36 35 35
06-storage 30 18 23 21
06-tankage 50 41 41 42
08-transport 30 29 30 29.6
11-floortile 20 6 5 6
11-parking 20 18 20 16.8
11-transport 20 16 16 17
Total 2112 1913 1931 1925.4
Unsolved 199 181 186.6

Table 4.3: Domains with different coverage for the three planners. 33 domains with
100% coverage and 7 further domains with identical coverage for all planners are
not shown.

Lama-2008 1809/2112, fd-auto-tune-2 1747/2112, and Probe 1706/1968 (failed on

the ":derive" keyword in 144 problems).

Although the local explorations are inclined to increase the solution length3, the

influence is not clear-cut since they also solve more problems. The IPC-2011 plan

quality scores for LAMA-2011, LAMA-LS and LAMA-LRW are 1898.0, 1899.6

and 1900.5.

4.5 Chapter Summary

This chapter investigates how local exploration facilitates escaping from UHRs for

greedy best-first search. The new framework of GBFS-LE, GBFS with Local Ex-

ploration, has been tested successfully in two different realizations, adding local

greedy best-first search in GBFS-LS and random walks in GBFS-LRW.

3Local GBFS intends to search deeper than global GBFS, and local rand walks tend to search
even deeper.
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Chapter 5

Understanding and Improving Local
Exploration in Greedy Best First
Search

Chapter 4 has shown that the local exploration in GBFS-LE can dramatically im-

prove the performance of GBFS. One implementation of the GBFS-LE framework,

GBFS with local GBFS (GBFS-LS), is the focus of this chapter. GBFS-LS does

not add new search algorithms, it only differs from GBFS in the addition of a local

GBFS, and was experimentally shown to yield a substantial improvement for IPC

planning domains that have large UHRs. This chapter analyzes the reasons for this

improvement in detail.

The analysis will illustrate that a search method such as GBFS, which uses

a global open list, can become stuck in the union of many distinct UHRs from

different parts of the search space, which combine to form a large virtual UHR over

the open list. This is called the Multiple Uninformative Heuristic Region problem,

which can be overcome by local exploration. This section is based on the following

publication:

• F. Xie, M. Müller and R. Holte. Understanding and Improving Local Explo-

ration for GBFS. In Proceedings of the 25th International Conference on

Automated Planning and Scheduling (ICAPS-2015), 244–248, 2015 [72].
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Figure 5.1: Search time (in seconds) of GBFS and GBFS-LS with hFF for a given
h-value (x-axis) to first become the minimum of all h-values generated up to that
time. 2004-pipesworld-notankage instance #21.

# of node expansions number of nodes
needed for escaping (NEE)

[1,10] 456 (7.1%)
(10, 100] 66 (1.0%)

(100, 1000] 0 (0%)
>1000 5874 (91.8%)

Table 5.1: Number of nodes with different number of escaping node expansions.

5.1 Introduction

Instance #21 from the IPC-2004 pipesworld-notankage domain shows a clear case

of such a large virtual UHR. Figure 5.1 plots the accumulated search time that

GBFS and GBFS-LS need to reach the first node with a given minimum hFF -value.

GBFS requires almost 1000 seconds to decrease its minimum h-value from 2 to 1.

GBFS-LS solves the whole problem in 2 seconds.

Analyzing the search tree of GBFS shows that search stalls in a large virtual

UHR as shown in Figure 5.2. Since this virtual UHR is surrounded by a barrier of

nodes with heuristic value 3, GBFS has to expand all nodes with heuristic value
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Figure 5.2: Abstract structure of the search tree of GBFS when it has stalled in
heuristic value 2.

Figure 5.3: Small and large UHRs.
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2 in the virtual UHR before extending any node in the barrier. However, the good

news is that the virtual UHR consists of both small and large UHRs from different

regions of the state space, such as the two UHRs shown in Figure 5.3. If a local

GBFS starts from the root node of a small UHR as in Figure 5.3 (left), it only

needs 4 node expansions to escape the UHR. Given this analysis, the question then

becomes whether there is a sufficient number of small UHRs to make local GBFS

effective?

Consider the following snapshot of GBFS: the minimum h-value (hmin) on the

Open list is 2, there are 6396 nodes n on the Open list with h(n) = 2, and, since

none of them has a child cwith h(c) < 2, GBFS expands all 6396 nodes. In contrast,

GBFS-LS expands only a small fraction of these nodes since some have a relatively

quick local escape to a node n′ with h(n′) < 2. To quantify this, a small local

GBFS was started from each of these nodes n to determine NEE(n), the number of

nodes expanded by a local GBFS search starting at n before a node with h(n) < 2 is

encountered. Table 5.1 lists the order of magnitude of NEE(n) for these nodes. 7.1%

of nodes, a non-negligible fraction, allow for a very quick escape, with NEE (n) ≤

10. In contrast, standard GBFS without local exploration requires 1.8 million node

expansions to reach a node with h(n) ≤ 1. This analysis illustrates the existence

of small UHRs within a large virtual UHR and gives a hint of why local GBFS can

substantially reduce the time required to reach a goal state.

5.1.1 Contributions and Organization of this Chapter

The contributions of this chapter can be summarized as follows:

• Illustrate that there are both small UHRs and large UHRs in the open list of

GBFS;

• Explain why adding local GBFS improves the performance;

• Show how to further improve the performance of GBFS based on the distri-

bution of NEE values as in the example above.

The remainder of the chapter is organized as follows. A more detailed analysis

is presented to illustrate the existence of multiple UHRs and why GBFS-LS out-
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perform the GBFS on three IPC instances in detail. A modification of GBFS-LS,

which further improves performance, is proposed and tested experimentally.

5.2 The Problem of Simultaneous Expansion of Mul-
tiple Uninformative Heuristic Regions

This section investigates the problem of GBFS with multiple UHRs by analyz-

ing search behaviour in three IPC planning instances: 2000-Schedule #10-0, 2004-

pipesworld-notankage #21, and 2008-Cyber-security #01. hFF is used as the heuris-

tic. Experiments use one core of a 2.8 GHz Intel Xeon CPU machine with 4 GB

memory and 30 minutes per instance.

In all three instances, GBFS gets stuck at hmin = 2. It fails to find a lower

h-value in 30 minutes for 2000-Schedule #1, needs 1.8 million node expansions

(around 1000 seconds) in 2004-pipesworld-notankage #21 to decrease hmin from

2 to 1, and needs 2.5 million node expansions (nearly 800 seconds) to achieve the

same step in 2008-Cybersecurity #1. GBFS-LS’s search time for completely solving

these three instances is 28.26, 2.29 and 4.32 seconds respectively.

5.2.1 Small UHRs and Large UHRs

Given an expansion limit L (1000 in our experiments), a node n on the global open

list is said to be a small UHR if a local GBFS search from n generates a node v with

h(v) < hmin after expanding L or fewer nodes. i.e. NEE (n) ≤ L. Otherwise, n is

a large UHR.

The following experiments investigate the frequency of small and large UHRs in

the open list of GBFS for the three planning instances above. The experiment begins

when the first node n1 with h(n1) = 2 is added to the open list. The experiment has

the following three steps:

1. Keep GBFS running for 10,000 initializing expansions in order to add more

nodes to the open list.

2. Define set S as the first 5000 nodes in the open list at this point in time. Use

random tie-breaking to choose among nodes with equal h-value.
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Figure 5.4: The distribution of NEE values over the 5000 picked nodes in 2000-
Schedule #01, 2004-pipesworld-notankage#21, and 2008-cybersecurity #01.

3. Run local GBFS from each node n ∈ S, setting h = hFF , hmin = 2, L =

1000. Each local search uses an initially empty local open list and a local

closed list initialized with the (fixed) global closed list. Both the local open

list and the local closed list are discarded afterwards. The NEE of all nodes

in S is recorded.

For the three test instances, Figure 5.4 shows the percentage of nodes with a

NEE value less than or equal to the value on the x-axis. A non-negligible percentage

of nodes with a relatively small NEE are found in all three instances. A local search

starting from any of these nodes succeeds in reducing hmin. This result helps explain

why GBFS-LS can quickly make progress, and can be orders of magnitude faster

than GBFS.

The distribution of NEE varies among the three instances. For example, the

value of x such that 5% of the nodes have a NEE (n) ≤ x is 6 for 2005-pipesworld-

notankage #21, but is 38 for 2000-Schedule #01, and 195 for 2008-cybersecurity

#01. For ease of comparison, a reference line with y=5% is shown in the figure.

In each case, while the majority of the 5000 analyzed nodes seem to be located in
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Figure 5.5: The distribution of NEE values over the 5000 picked nodes in 10 differ-
ent planning instances.

large UHRs and cause the local search to fail, there is a sufficient number of nodes

in small UHRs that local GBFS can make quick progress.

Besides the three domains for which examples were analyzed above, co-occurring

small and large UHRs were detected in 7 further IPC domains: 1998-Mystery-

Prime, 2002-Depot, 2002-Driverlog, 2006-Rovers, 2006-Storage, 2008-Scanalyzer

and 2008-Transport. All these domains contain some instances where the GBFS

expands a larger number of nodes than the GBFS-LS in improving some hmin and

meanwhile the GBFS-LS only expands a small number of nodes (less than 5,000)

in finding such an improvement. In these instances, co-occurring small and large

UHRs can be easily detected using the same method above. Figure 5.5 illustrate the

NEE value distribution over 10 instances from these 10 domains.

5.2.2 Why does Global GBFS not explore Small UHRs?

In the cases analyzed above, enough small UHRs exist, from which local GBFS

can easily escape. Why does global GBFS not find an escape path from these small

UHRs? Is GBFS just unlucky, and always picks nodes with high NEE? The answer

is no. Further analysis shows that all the escape paths found by local GBFS in 2000-
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Schedule #10-0, 2004-pipesworld-notankage #21 and 2008-Cyber-security #1 go

through at least one barrier node n with h(n) > hmin. This means that all these

small UHRs are local minima, not plateaus from which global GBFS could escape.

While local GBFS can expand across such barrier nodes very quickly, GBFS is

forced to exhaustively expand all nodes n′ in all UHRs with h(n′) = hmin, before

it can expand any nodes with larger h.

As an extreme example, assume that all but one of the UHRs are local minima

needing only 2 node expansions to escape from and that the other UHR contains a

large number of nodes n′ with h(n′) = hmin. GBFS has to expand all the nodes in

the large UHR before it can find an escape path from one of the others. The discus-

sion here matches the observation in Chapter 4 that GBFS-LS only improves the

performance in domains that contain large UHRs. Such barrier nodes also exist for

other two commonly used heuristics: causal graph (CG) [18] and context-enhanced

additive (CEA) [21].

However, not all small UHRs must be local minima. As an example, in 2006-

Pipesworld-Tankage instance #32, GBFS needs 4706 node expansions in 13 sec-

onds to improve hmin from 6 to 5, while it takes GBFS-LS 6.6 seconds and 1621

node expansions starting from the same open list. The virtual UHR over the open

list contains both local minima and plateaus. Because the global GBFS can escape

from the plateaus, GBFS-LS does not improve the performance as dramatically as

it does in the three instances above.

5.3 More Exploration with Smaller Local GBFS

Greedy Best First Search with Local Search (GBFS-LS) [68] is the same as GBFS

except it executes a local GBFS whenever the global GBFS (G-GBFS) seems stalled.

G-GBFS is considered stalled if it fails to improve its minimum heuristic value hmin

for a specified number STALL_SIZE of node expansions, set to 1000 by default. In

this case GBFS-LS runs a small local GBFS for exploration, from a best node n in

the (global) open list. After each local exploration, the mechanism for detecting a

stalled global search is reset.
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Local GBFS can dramatically improve the time to solution if used for nodes in

small UHRs. In the original GBFS-LS algorithm, a single local GBFS is called and

expands up to 1000 nodes whenever G-GBFS did not improve hmin over its last

1000 expansions. Therefore each single local GBFS is relatively expensive.

The experiments above suggest that using more frequent but smaller local searches

may be a good tradeoff. To investigate this with minimal changes to the algorithm,

the proposed new scheme GBFS-LS-X × Y , where X × Y = 1000, runs X lo-

cal searches with Y expansions each from X random nodes in the best (minimum

h) bucket in the open list. If there are fewer than X nodes in this bucket, the re-

maining nodes are chosen from the next-best bucket(s). Our experiments include

the following pairs of (X, Y ): (1, 1000), (10, 100), (100, 10) and (1000, 1).

Experiments were run on the same set of 2112 problems as in Chapter 4, in

54 domains from the first seven International Planning Competitions (IPC 1 to 7),

using one core of a 2.8 GHz Intel Xeon CPU machine with 4 GB memory and 30

minutes per instance. Results for planners which use randomization are averaged

over five runs. All planners are implemented on the Jasper [69] code base, which

is downloaded from the IPC-8 website.1 The translation from PDDL to SAS+ was

done only once, and this common preprocessing time is not counted in the 30 min-

utes.

Heuristic GBFS LS LS-1×1000 LS-10×100 LS-100×10 LS-1000×1
FF 1561 1641 1641.0 1678.2 1659.2 1576.4
CG 1513 1608 1600.2 1618.4 1595.2 1516.4
CEA 1498 1592 1577.2 1612.4 1609.8 1497.0

Table 5.2: IPC coverage out of 2112 for GBFS, GBFS-LS, GBFS-LS-1×1000,
GBFS-LS-10×100, GBFS-LS-100×10 and GBFS-LS-1000×1 under three stan-
dard heuristics. LS is short for GBFS-LS.

Table 5.2 compares the new algorithms with GBFS and GBFS-LS. Three widely

used planning heuristics are tested: FF [25], causal graph (CG) [18] and context-

enhanced additive (CEA) [21]. Table 5.2 shows the coverage on all 2112 IPC in-

stances. Overall, GBFS-LS-10×100 outperforms GBFS, GBFS-LS and other con-

figurations for all three heuristics.

1http://helios.hud.ac.uk/scommv/IPC-14/
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GBFS-LS-1×1000 and GBFS-LS-1000×1 are added for evaluating the influ-

ence of randomness. While GBFS-LS applies a deterministic first-in-first-out ap-

proach in picking the starting node for local GBFS, GBFS-LS-1×1000 applies tie-

breaking uniformly at random. However, these two algorithms achieve very similar

coverage results. Similarly, GBFS-LS-1000×1 is very close to a GBFS version that

applies the random tie-breaking, which also results in a very similar coverage result

to GBFS. These two data points show that the superior performance of GBFS-LS-

10×100 over GBFS-LS is due to running a larger number of small local searches

and not due to the randomness in the node selection process.

Figure 5.6 compares the search time of GBFS-LS-10×100 (y-axis) with GBFS-

LS (x-axis) in IPC time comparison setting (see Chapter 4 Section 4.4.2) over the

IPC benchmarks. For all the heuristics tested, besides its improved coverage, GBFS-

LS-10×100 also shows a substantial improvement in search time over GBFS-LS,

with many more results in the factor 2 to 10 speed up region favouring the new

algorithm.

The same modification was also tested with LAMA-LS, which replaces the

GBFS component of LAMA-2011 with GBFS-LS from Chapter 4. Unfortunately,

there is no noticeable improvement here: LAMA-LS and LAMA-LS-10×100 are

very similar in both coverage and search time. One possible reason is that the major

enhancements in LAMA-2011 such as deferred evaluation, preferred operators [45]

and multiple heuristics [46], already cover some bad scenarios for GBFS-LS. This

is a topic for future study.

5.4 Chapter Summary

This chapter illustrates the multiple UHRs problem of GBFS using three IPC exam-

ples, and explains why adding local GBFS improves the performance of GBFS. As

suggested by the analysis, it is confirmed that running a larger number of smaller

local searches further improves the performance.
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Chapter 6

Adding Global Exploration with
Type Buckets to Greedy Best First
Search

Chapter 3 and 4 have described how and why local exploration improves the perfor-

mance of GBFS. This chapter proposes a framework that adds global exploration

into GBFS via a type system and the multiple queue approach. This chapter is based

on the following publication:

• F. Xie, M. Müller, R. Holte and T. Imai. Type-based Exploration for Satisficing

Planning with Multiple Search Queues. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence (AAAI-2014), 2395-2401, 2014

[70].

6.1 Introduction

The popular enhancements to planning systems such as Preferred Operators [45]

and Multi-Heuristic [46] are implemented in a Multiple Queue Search framework

[19]. Separate priority queues are used to hold different sets of nodes, or keep them

sorted according to different heuristics.

Still, each queue is sorted based on some heuristic h, and is used in a greedy

fashion by the search, which always expands a node with minimum h-value from

one of the queues. This makes search vulnerable to the misleading heuristic prob-

lem, where it can stall in bad subtrees, which contain large local minima or plateaus
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but do not lead to an easy solution. Adding exploration to a search algorithm is one

way to attack this problem.

Previous approaches to this problem of GBFS with misleading heuristics in-

clude K-BFS [13], which expands the first k best nodes in a single priority queue

and adds all their successors, and Diverse-BFS [26], which expands extra nodes

with non-minimal h-values or at shallow levels of the search tree. Another simple

algorithm is ε-GBFS [60], which expands a node selected uniformly at random from

the open list with probability ε. All these algorithms add an element of exploration.

This chapter proposes and evaluates a simple yet very effective way of adding

exploration based on a type system [35]. The major contributions are:

1. An analysis of the weaknesses of previous simple exploration schemes. and

a non-greedy approach to exploration based on a simple type system.

2. A search algorithm in the framework of multiple-queue search named Type-

GBFS which uses a type system for exploration, and the corresponding plan-

ner Type-LAMA, which replaces the GBFS component of LAMA-2011 by

Type-GBFS.

3. Detailed experiments on IPC benchmarks, which demonstrate that baseline

Type-GBFS solves substantially more problems than baseline GBFS, and that

this superiority also holds when adding most combinations of standard plan-

ning enhancements. Type-LAMA with all such enhancements outperforms

LAMA-2011.

6.2 Early Mistakes in GBFS

Early mistakes are mistakes in search direction at shallow levels of the search tree

caused by sibling nodes being expanded in the wrong order. This happens when the

root node of a bad subtree, which contains no solution or only hard-to-find solu-

tions, has a lower heuristic value than a sibling that would lead to a quick solution.

The 2011-Nomystery domain from IPC-2011 is a typical example where delete-

relaxation heuristics systematically make early mistakes [42]. In this transporta-
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tion domain with limited non-replenishable fuel, delete-relaxation heuristics such

as hFF ignore the crucial aspect of fuel consumption, which makes the heuristic

overoptimistic and misleading, and results in large unrecognized dead-ends in the

search space. Bad subtrees in the search tree, which over-consume fuel early on, are

searched exhaustively, before any good subtrees which consume less fuel and can

lead to a solution are explored. As a result, while the random walk-based planner

Arvand with its focus on exploration solved 19 out of 20 nomystery instances in

IPC-2011, LAMA-2011 solved only 10.

6.3 Exploration bias in the Open List: Two Case Stud-
ies

Previous exploration methods in GBFS suffer from biasing their exploration heavily

towards the neighborhood of nodes in the open list. In the case of early mistakes,

the large majority of these nodes is in useless regions of the search space. Con-

sider the nodes in the regular hFF [25] open list of LAMA-2011 while solving the

problem 2011-nomystery #12. Figure 6.1(a) shows snapshots of their h-value dis-

tribution after 2,000, 10,000 and 50,000 nodes expanded. In the figure, the x-axis

represents different heuristic values and the y-axis represents the number of nodes

with a specific h value in the open list. The solution eventually found by LAMA-

2011 goes through a single node n in this 50,000 node list, with h(n) = 18. This

node is marked with an asterisk in the figure. Over 99% of the nodes in the open list

have lower h-values, and will be expanded first, along with much of their subtrees.

However, in this example, none of those nodes leads to a solution. The open list is

flooded with a large number of useless nodes with undetected dead ends.

ε-GBFS [60] samples nodes uniformly over the whole open list. This is not too

useful when entries are heavily clustered in bad subtrees. In the example above,

ε-GBFS has a less than 1% probability to pick a node with h-value 18 or more in

its exploration step, which itself is only executed with probability ε. Furthermore,

the algorithm must potentially select several good successor nodes before making

measurable progress towards a solution by finding an exit node with a lower h-
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(a) h-values in nomystery #12

(b) h-values in nomystery #19

Figure 6.1: h-value distribution in the regular hFF open list of LAMA-2011.
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(h, g)-distribution in nomystery #19

Figure 6.2: Distribution of types in the regular hFF open list of LAMA-2011 after
100,000 nodes in 2011-nomystery #19.

value.

The instance 2011-nomystery #12, with 6 locations and 6 packages, has a rel-

atively small search space, and both GBFS and ε-GBFS eventually solve it after

exhaustively enumerating the dead ends. However, a larger problem like 2011-

nomystery #19, with 13 locations and 13 packages, is completely out of reach for

GBFS or ε-GBFS. This instance was solved by only 2 planners in IPC-2011. Fig-

ure 6.1(b) shows the h-value distribution in LAMA-2011’s regular hFF queue after

20,000, 100,000 and 500,000 nodes. The node with h = 39 from a solution found

by Arvand-2011 [38] is marked at the far right tail of the distribution in the figure.

6.4 Adding Exploration via a Type System

Can the open list be sampled in a way that avoids the over-concentration on a clus-

ter of very similar nodes? A type system [35], which is based on earlier ideas of

stratified sampling [7], is one possible approach.
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6.4.1 Type System

A type system is defined as follows:

Definition 3. [35] Let S be the set of nodes in a given search space. T = {t1, . . . , tn}

is a type system for S if T is a disjoint partitioning of S. For every s ∈ S, T (s) de-

notes the type t ∈ T for s.

Types can be defined using any property of nodes. The simple type system used

here defines the type of a node s in terms of its h-value for different heuristics h, and

its g-value. A simple and successful choice is the pair T (s) = (hFF (s), g(s)). The

intuition behind such type systems is that they can roughly differentiate between

nodes in different search regions, and help explore away from the nodes where

GBFS gets stuck.

Figure 6.2 views a LAMA-2011 search of instance 2011-nomystery #19 through

the lens of a (hFF , g) type system. The horizontal x- and y-axes represent hFF -

values and g-values respectively. The number of nodes in the open list with a spe-

cific (hFF , g) type is plotted on the vertical z-axis. The graph shows the frequency

of each type in the regular hFF open list of LAMA-2011 at the time when the

open list first reaches 100,000 nodes. After initial rapid progress, search has stalled

around a single peak. Most of the open list is filled with a large number of useless

nodes, which lead to no solution.

6.4.2 Type-GBFS: Adding a Type System to GBFS

Type-GBFS uses a simple two level type bucket data structure tbwhich organizes its

nodes in buckets according to their type. Type bucket-based node selection works as

follows: First, pick a bucket b uniformly at random from among all the non-empty

buckets. Then pick a node n uniformly at random from all the nodes in b. Type-

GBFS alternately expands a node from from the regular open list O and from tb,

and each new node is added to both O and tb.

Multi-Heuristic type systems (h1(s), h2(s), ....) have been explored before us-

ing a Pareto set approach [52]. The main differences between their approach and

ours are: 1) only Pareto Optimal buckets are selected in their approach, while all
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Figure 6.3: Distribution of types over the first 20,000 nodes expanded in the explor-
ing phase (ε-exploration or type buckets) of ε-GBFS(ε = 0.5).

buckets can be select in Type-GBFS; 2) the probability of selecting each Pareto op-

timal bucket is proportional to the number of nodes it contains in their approach,

while Type-GBFS selects all bucket uniformly random ; 3) only heuristics are used

to define types in their approach, whereas our approach also considers g and poten-

tially any other relevant information; and 4) nodes in a bucket are selected deter-

ministically in FIFO order, not uniformly at random.

Diverse Best-First Search (DBFS) [26] is another closely related high perfor-

mance search algorithm which includes an exploration component. This two-level

search algorithm uses a global open listOG, a local open listOL and a shared closed

list.

Like Type-GBFS with the (hFF (s), g(s)) type system, DBFS picks nodes based

on their h- and g-values. There are three major differences between these algo-

rithms. 1) DBFS performs a sequence of local searches while Type-GBFS defines

a single global search; 2) DBFS uses g to restrict its node selection, while Type-

GBFS can use g as part of its type system; 3) DBFS biases its node selection using

h, while Type-GBFS samples uniformly over all types.
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(a) Type-GBFS

(b) DBFS

Figure 6.4: Distribution of types over the first 20,000 nodes expanded in the explor-
ing phase of Type-GBFS and DBFS.
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6.4.3 Exploration in Type-GBFS, ε-GBFS and DBFS

Type-GBFS and ε-GBFS with ε = 0.5 both spend half their search effort on explo-

ration. However, the distribution of types of the explored nodes is very different.

In Nomystery-2011 #19, GBFS in LAMA-2011 grows the single peak shown in

Figure 6.2. Figure 6.3 and 6.4 shows the frequency of explored node types for ε-

GBFS with ε = 0.5, Type-GBFS1 and DBFS after 20,000 node expansions. Note

that while Figure 6.1 shows the distribution of all nodes in the open list, Figure 6.3

and 6.4 shows the types of only those nodes that were chosen in the exploration

step2.

ε-GBFS mainly explores nodes close to the GBFS peak types, while Type-GBFS

explores much more uniformly over the space of types. DBFS explores more types

than ε-GBFS. Unlike Type-GBFS, which samples types uniformly, DBFS is still

biased towards low h and high g values.

Note that the z-axis scales are different for the three plots. The single most

explored type contains around 800 nodes for ε-GBFS and 600 for DBFS, but only 40

for Type-GBFS. The presence or absence of exploration helps explain the relative

performance in 2011-Nomystery. The coverage for the 20 instances of this domain

for one typical run with 4 GB memory and 30 minutes per instance is 9 for GBFS,

11 for ε-GBFS with ε = 0.5, 17 for Type-GBFS and 18 for DBFS.

6.5 Experiments

The experiments use a set of 2112 problems (54 domains) from the first seven In-

ternational Planning Competitions, and were run on an 8-core 2.8 GHz machine

with 4 GB memory and 30 minutes per instance. Results for planners which use

randomization are averaged over five runs. All algorithms are implemented using

the Fast Downward code base FD-2011 [19]. The translation from PDDL to SAS+

was done only once, and this common preprocessing time is not counted in the 30

minutes.
1Some explored types are outside the (h, g) range shown in Figure 6.4(a).
2Unlike ε-GBFS and Type-GBFS, there is no clear exploration step in DBFS. All visited nodes

are shown in the figure.
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Figure 6.5: Comparison of search time of GBFS and Type-GBFS with the hFF

heuristic on IPC.

6.5.1 Performance of Baseline Algorithms

The baseline study evaluates the two algorithms GBFS and Type-GBFS without the

common planning enhancements of preferred operators, deferred evaluation and

multi-heuristics. It uses three popular planning heuristics - FF [25], causal graph

(CG) [18] and context-enhanced additive (CEA) [21]. Table 6.1 shows the cover-

age results. Type-GBFS outperforms GBFS by a substantial margin for each tested

heuristic.

Heuristic GBFS Type-GBFS
FF 1561 1755.6
CG 1513 1691.4
CEA 1498 1678.8

Table 6.1: Baseline GBFS vs. Type-GBFS - coverage of 2112 IPC instances.

Figure 6.5 compares the time performance of the baseline algorithms with hFF

in IPC time comparison setting (see Chapter 4 Section 4.4.2). Beyond solving al-

most 200 more problems, Type-GBFS shows a substantial advantage over GBFS in

search time for problems solved by both planners. There are many more problems

where Type-GBFS outperforms GBFS by more than a factor of 10 or 50 than vice
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(a) Lama-2011 (x) vs. Type-LAMA (y)

(b) DBFS2 (x) vs. Type-LAMA (y)

Figure 6.6: Comparison of search time. (a): GBFS and Type-GBFS with the hFF

heuristic on IPC. (b)(c): Type-LAMA vs. Lama-2011 (left) and DBFS2 (right). us-
ing typical single runs of Type-GBFS, Type-LAMA and DBFS2.
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versa. Still, while Type-GBFS outperforms GBFS overall, it does not dominate it

on a per-instance basis. Sometimes the extra exploration of Type-GBFS wastes time

or even leads the search astray for a while.

6.5.2 Performance with Different Enhancements

How do GBFS and Type-GBFS compare when common planning enhancements are

added? All combinations of Deferred Evaluation, Preferred Operators and Multiple

Heuristics are tested, with hFF as the primary heuristic. As the enhancements are

applied the same as in Chapter 4 Section 4.4.3, we only list the special settings for

Type-GBFS:

• With Preferred Operators, Type-GBFS uses only a single set of type buckets

for all nodes. There are no separate type buckets containing preferred nodes

only.

• With Multi-Heuristics Type-GBFS uses two open lists, one for each heuris-

tic, plus type buckets for the (hFF , g) type system.

When both Multi-Heuristic and Preferred Operators are applied, GBFS uses

four queues, two regular and two preferred ones. Type-GBFS uses the same queues

plus (hFF , g) type buckets.

Enhancement GBFS Type-GBFS
(none) 1561 1755.6
PO 1826 1848.6
DE 1535 1834.6
MH 1851 1789.8
PO + DE 1871 1906.4
PO + MH 1850 1846.2
DE + MH 1660 1729.0
PO + DE + MH 1913 1949.8

Table 6.2: Number of IPC tasks solved out of 2112. PO = Preferred Operators, DE
= Deferred Evaluation, MH = Multi-Heuristic.

Table 6.2 shows the experimental results on IPC domains for all 8 combina-

tions of enhancements. When used as a single enhancement, Preferred Operators
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and Multiple Heuristic improve both algorithms. Deferred Evaluation also strongly

improves Type-GBFS, but causes a slight decrease in coverage for GBFS, mainly

due to plateaus caused by the less informative node evaluation [45]. Apparently,

Type-GBFS gets stuck in such plateaus less often.

When combining any two enhancements, both algorithms achieve their best per-

formance with Preferred Operators plus Deferred Evaluation, as observed for GBFS

in Richter and Helmert’s work [45]. Multiple Heuristics have a negative effect on

Type-GBFS when combined with either Preferred Operators or Deferred Evalua-

tion, but work very well when combined with both. Finding an explanation for this

surprising behavior is left as future work. The last row in Table 6.2 lists coverage

results when all three enhancements are applied as in LAMA.

6.5.3 Comparing with LAMA-2011 and DBFS2 in Terms of Cov-
erage and Search Time

The performance comparison in this section includes the following planners:

• LAMA-2011: only the first iteration of LAMA using GBFS is run, with de-

ferred evaluation, preferred operators and multi-heuristics (hFF , hlm) [46].

• Type-LAMA: LAMA-2011 with GBFS replaced by Type-GBFS, uses the

same four queues as LAMA-2011, plus (hFF , g) type buckets.

• DBFS2: DBFS2 [26], an enhanced version of DBFS which adds a sec-

ond global open list for preferred operators only, was re-implemented by its

original author on the LAMA-2011 code base, which is stronger than the

LAMA-2008 code base used in the original experiment [26]. The parameters

P = 0.1, T = 0.5 from the same paper are used.

LAMA-2011 and Type-LAMA correspond to PO+DE+MH in Table 6.2.

Table 6.3 shows detailed coverage differences of these three planners. Type-

LAMA outperforms the other two planners, solving 36.8 more problems than LAMA-

2011 and 54.4 more than DBFS2. The percentage of unsolved problems is reduced

from 9.4% for LAMA to 7.6%. This is comparable to the improvement from adding
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domain size LAMA-2011 Type-LAMA DBFS2
98-logistics 35 35 35 34
98-mystery 30 19 19 19
00-miconic-full 150 136 139 138.6
02-depot 22 20 21.6 18.2
02-freecell 80 78 77.8 79.8
04-airport-strips 50 32 34.6 41
04-notankage 50 44 44 43.2
04-optical-tele 48 4 5.4 5
04-philosopher 48 39 48 48
04-psr-large 50 32 31.6 15.6
04-satellite 36 36 35.2 27
06-pathways 30 30 30 28.4
06-storage 30 18 23.8 23.4
06-tankage 50 41 42 36.8
06-trucks-strips 30 14 20.8 24
08-scanalyzer 30 30 30 29.6
08-sokoban 30 28 27 28
08-transport 30 29 30 29.8
08-woodworking 30 30 29.8 30
11-elevators 20 20 20 18.8
11-floortile 20 6 5.6 7.6
11-nomystery 20 10 17.8 17.8
11-openstacks 20 20 20 12.8
11-parking 20 18 17.6 12.6
11-scanalyzer 20 20 20 19.8
11-sokoban 20 19 18.2 18
11-tidybot 20 16 16.4 16.2
11-transport 20 16 15.6 12.4
11-visitall 20 20 20 7
Total 2112 1913 1949.8 1895.4
Unsolved - 199 162.2 216.6

Table 6.3: Number of instances solved. 25 domains with 100% coverage for all
three planners omitted.

the Landmark count heuristic [46] - from 11.4% to 9.4% unsolved. Considering

that only the hardest problems were left unsolved, adding the type system makes

the planner substantially stronger.

Figures 6.6 compares the search time of Type-LAMA against LAMA-2011 and

DBFS2 in the manner described for Figure 6.5. Between Type-LAMA and LAMA-

2011, many results are very close, presumably for instances where exploration plays
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only a small role. Type-LAMA has a large time advantage of over 10× more often.

Results for Type-LAMA and DBFS2 are much more diverse. Besides its cover-

age advantage, Type-LAMA also wins the time comparison over DBFS for a large

number of instances by factors of over 2×, 10× and 50×.

For further comparison, the coverage results of some other strong planners from

IPC-2011 on the same hardware are: FDSS-2 solves 1912/2112, Probe 1706/1968

(failed on DERIVE keyword in 144 problems), Arvand 1878.4/2112, fd-auto-tune-2

1747/2112, and Lama-2008 1809/2112.

Although type buckets cause some change in solution costs, the influence is not

clear-cut. If we compare LAMA-2011 and one typical run of Type-LAMA’s results,

there are 1907 problems solved by both planners. The IPC plan quality scores for

LAMA-2011 and Type-LAMA are 1895.1 vs 1892.5, only 2.6 difference over the

1907 problems. For 1698 problems, both planners get the same cost solutions.

6.5.4 Effect of Different Type Systems

The results above for both Type-GBFS and Type-LAMA are for the (hFF, g) type

system. Table 6.4 summarizes results for these two planners when using several

other simple type systems. Type(1) is the trivial single-type system T (s) = 1.

Among single-element type systems, Type(g) performs better than either heuris-

tic, and Type(hlm) solves around 10 more problems than Type(hFF ). Type-GBFS

is only tested with one heuristic hFF , while Type-LAMA is tested for two heuristics

hFF and hlm .

Compared to GBFS, Type(g) explores many more nodes with low g-values,

which are more likely to be at shallow levels of the search tree. Many such nodes

will be ignored or expanded very late in GBFS. In contrast, an (h)-only type system

focuses on exploring different estimated goal distances and ignores g. Interestingly,

Type(g) is slightly better than Type(hFF , g) in Type-GBFS, but Type(hFF , g)

is better in Type-LAMA. Among two-element type systems, Type(hFF , g) and

Type(hlm , g) are the top two configurations, while Type(hFF , hlm) is just slightly

better than Type(hlm). The three-element type system Type(hFF , hlm , g) is worse

and might be too fine-grained for this test set. The question of the right granularity

82



is important and needs further study.

Type T-GBFS T-LAMA Type T-LAMA
none 1561 1913 (hlm) 1921.6
(1) 1529.6 1916.2 (hlm , g) 1942.4
(g) 1758.2 1935.0 (hFF , hlm) 1925.6

(hFF ) 1729.0 1918.6 (hFF , hlm , g) 1939.0
(hFF , g) 1755.6 1949.8

Table 6.4: Coverage of Type-GBFS (T-GBFS) and Type-LAMA (T-LAMA) with
simple type systems.

6.5.5 Type-LAMA Works Better as an Integrated System than
as a Simple Portfolio

This experiment compares Type-LAMA, which integrates type-based exploration

directly into LAMA’s search process, with a portfolio which independently runs

LAMA and a simple type-based planner ST . ST selects nodes exclusively from

type buckets, using a (hFF , g) type system as defined above. For consistency with

LAMA, Deferred Evaluation is used for type buckets as well.

By itself, ST solves 1266 out of 2112 IPC problems. Consider a portfolio plan-

ner that uses x seconds for LAMA-2011, followed by 1800 − x seconds for ST .

The best coverage of 1926 is achieved for x = 1279. Figure 6.7 illustrates the per-

formance over different x value. Type-LAMA solves 23.8 problems more than this

best portfolio. This shows the synergy between exploitation-based search in LAMA

and exploration using a type system.

6.6 Chapter Summary

This chapter investigates the problem of inefficient exploration in previous GBFS-

type planners, and proposes a solution of using type-based exploration. The new

algorithm Type-GBFS samples nodes uniformly over a type system instead of uni-

formly over all nodes in an open list. By replacing GBFS with Type-GBFS, the

planner Type-LAMA can solve 36.8 more problems than LAMA-2011 on average,

decreasing the number of unsolved problems over the first 7 IPC event from 199 to

162.2.
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Figure 6.7: Coverage of LAMA+ST portfolio planner with varying time allocation.
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Chapter 7

Adding Exploration for Better
Quality Solutions

Chapter 4, 5 and 6 have discussed how to use exploration to improve the coverage

(number of problems solved) of GBFS. This chapter shows that exploration can also

be used for generating better quality solutions.

• F. Xie, R. Valenzano and M. Müller. Better Time Constrained Search via Ran-

domization and postprocessing. In Proceedings of the Twenty-Third Inter-

national Conference on Automated Planning and Scheduling (ICAPS-2013),

pages 269-277, 2013 [67].

7.1 Introduction

Since IPC-2008, the satisficing planning community has been using the IPC scor-

ing function to evaluate planners. This function emphasizes both plan quality and

coverage simultaneously. Many satisficing planners such as LAMA [46] and Fast

Downward [19] use an anytime approach: they attempt to quickly find an initial

plan of possibly low quality, then use the remaining time to improve upon this plan.

Post-processing, as implemented in the ARAS system [39], is another plan quality

improvement technique. This approach takes an existing valid plan as input and tries

to improve it by removing unnecessary actions and by finding shortcuts with a local

search. Another post-processing technique, discussed by Chrpa et al. [8], analyzes

action dependencies and independencies in order to identify redundant actions or

non-optimal sub-plans.
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Originally, the ARAS post-processor was applied as the final step of the plan-

ning process, after the planner had completed or was considered unlikely to find

a better plan. However, since post-processing systems decouple plan improvement

from plan discovery, post-processors like ARAS can also be used in an anytime

fashion: by running them with a relatively tight time or memory limit on every plan

produced by an anytime planner. This approach has been used by several planners

[41, 59, 66].

Tests with these planners, described below, show that there is a large variance in

the amount of improvement achieved with post-processing. As such, a lower quality

input plan can often yield a higher quality final plan through post-processing than

an initially better quality input plan. This behaviour can be exploited by planning

systems which use post-processing. Currently, most anytime satisficing planners

use the cost of the best incumbent solution to bound their future search. This avoids

wasting effort in areas of the state space that cannot directly lead to a better solution.

However, such bounding greatly decreases the number and variety of plans that an

anytime system finds and we will show that because of it, bounding can have a

negative impact on performance, when using post-processing.

The main contributions of this chapter are as follows:

• Introduce the concept of unproductive time, which measures the amount of

time after the best solution is found, to help explain the impact of bounding.

• Present evidence that bounding in an anytime system is detrimental when

used in conjunction with a post-processing system.

• Develop the meta-algorithm Diverse Anytime Search (DAS), which uses restart-

ing to generate a more diverse set of plans.

• Implement DAS in Fast Downward [19] and show that it leads to significant

plan quality improvements for two planning systems: LAMA-2011 [46] and

AEES [56].

• Show that the improvements from DAS and from post-processing are inde-

pendent, and can even be synergetic: with LAMA-2011, the improvement
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from using both techniques together is slightly larger than the sum of the

improvements when applied individually.

The remainder of this chapter is organized as follows: after introducing the con-

cept of unproductive time and measuring it in LAMA for IPC planning problems,

the new meta-algorithm DAS is introduced. DAS is tested both with and without the

ARAS post-processor on LAMA-2011 and AEES. The experimental results show

strong improvements in plan quality on IPC-2008 and IPC-2011 domains.

7.2 Unproductive Time in Anytime Satisficing Plan-
ning

As mentioned above, most planners use an anytime strategy to improve solution

quality over time. However, there has been little investigation into how much time

is actually being used to find the final solution. Let unproductive time be defined as

the amount of time remaining, out of the total time given, when the planner’s best

solution1 is found. For example, if an anytime planner A finds its best solution on

a planning instance B at 13 minutes given a 30 minute time limit, and A does not

improve upon this plan in the remaining 17 minutes, then the unproductive time for

planner A on problem B is 17 minutes. The amount of unproductive time can be

used to evaluate how efficiently an anytime planner is using the given search time,

since that unproductive time could be spent doing something more useful, such as

plan post-processing. Below, we will show that one of the consequences of using

bounding in an anytime system such as LAMA-2011 [46] is that it often leads to

large amounts of unproductive time.

LAMA-2011 won the sequential satisficing track of the International Planning

Competition in 2011 (IPC 2011) after, in its previous incarnation as LAMA-2008,

it won the same track at IPC 2008. LAMA-2011 starts its search with two runs of

greedy best-first search: first with a distance-to-go heuristic and then with a cost-to-

go heuristic. Next, LAMA improves the quality of its solutions through the anytime

procedure of Restarting Weighted A∗ (RWA∗) [49]. This procedure starts a new

1the current best plan must not be the optimal plan.
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WA∗ search with a lower weight w whenever a new best solution is found. Only

cost-to-go heuristics are used in this phase.

Whenever a new best solution with cost C is found, this cost is used to bound

the rest of the search. This means that only nodes with g-cost (cost of best known

path to the node) less than C are added to the open list. This prunes states that

cannot lead directly to a better solution than before. Figure 7.1 shows that this ap-

proach also leads to a very large fraction of unproductive time on IPC benchmarks.

Among the total of 244 problems solved in IPC-2011 with an 1800 second (30

minute) time limit, in more than 45% (111) of the problems, LAMA-2011 is unpro-

ductive for more than 1700 seconds. Table 7.1 shows the amount of unproductive

time separately for each IPC-2011 domain. In the four domains of 2011-barman,

2011-elevators, 2011-parcprinter and 2011-woodworking, unproductive time ex-

ceeds 90%. In these domains, the planner is able to quickly find an initial solution,

but fails to improve upon it.

As a typical example, Table 2 shows the number of solutions and the amount

of unproductive time for the 20 instances of 2011-elevators. With the exception of

instance 04, LAMA-2011 finds only a single solution to each problem. This does

not at all imply that the first solution found by LAMA-2011 is optimal. Subsequent

postprocessing with ARAS yields improved solutions for these problems. In these

cases, it is much more difficult to find a second solution when using cost-to-go

heuristics and the bound from the first solution, than to generate the initial solution

using distance-to-go heuristics with no bound.

7.3 Post-Processing with ARAS

Since even a strong planner such as LAMA-2011 spends the large majority of its

execution time being unproductive, a natural question becomes: How to use this

time more effectively?

One possibility is to feed the solutions found by a planner into a post-processing

plan improvement system such as ARAS [39]. ARAS consists of two components.

The first, Action Elimination (AE), examines the plan for unnecessary actions. This

88



Figure 7.1: Unproductive Time of LAMA-2011 on IPC-2011.

Domain solved total time UT percentage
parcprinter 20 36000 35997 99.99%
barman 20 36000 35901 99.73%
woodworking 20 36000 35357 98.21%
elevators 20 36000 33890 94.14%
visitall 20 36000 31280 86.89%
pegsol 20 36000 31107 86.41%
scanalyzer 20 36000 29844 82.90%
nomystery 10 18000 14682 81.57%
transport 15 27000 20554 76.13%
openstacks 20 36000 24902 69.17%
floortile 6 10800 7032 65.11%
tidybot 16 28800 18099 62.84%
sokoban 19 34200 20377 59.58%
parking 18 32400 13948 43.05%

Table 7.1: Unproductive Time (UT) of LAMA-2011 on different IPC-2011 domains.

involves scanning the plan from front to back, removing each action and its depen-

dent actions in turn, and testing if the resulting plan is still valid and reaches a goal.

If so, the unnecessary actions are discarded and the scan continues on the result-

ing shorter plan. The second and main component of ARAS is Plan Neighbourhood

Graph Search (PNGS). This technique builds a neighbourhood graph in the state

space around the trajectory of the input plan by performing a breadth-first search
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Instance #s UT Instance #s UT
01 1 1799 11 1 1760
02 1 1798 12 1 1704
03 1 1797 13 1 1679
04 3 1794 14 1 1725
05 1 1799 15 1 1659
06 1 1796 16 1 1649
07 1 1798 17 1 1576
08 1 1791 18 1 1510
09 1 1789 19 1 1152
10 1 1783 20 1 1531

Table 7.2: Number of solutions (#s) and Unproductive Time (UT) of LAMA-2011
in the 20 instances of 2011-elevators.

to some depth d. Once this plan neighbourhood is constructed, a lowest-cost plan

from the start to a goal state is extracted from this graph. Intuitively, the algorithm

identifies local shortcuts along the path.

Typically, ARAS is run with a time and memory limit. Until the first of these

limits is reached, AE and PNGS are alternated (starting with AE). PNGS is run

iteratively, with an increasing depth bound. The best plan found within the limits is

returned.

When ARAS was first introduced, it was used in a process-once fashion. This

involved splitting the available planning time into two phases: plan finding and plan

post-processing. In the first phase, a planner is used to find some plan (or a series of

plans). When the plan finding phase is up, the best plan found so far is handed to the

post-processor which is then allotted all of the remaining time. Several IPC-2011

planners [41, 59] used ARAS in an anytime fashion. This involves interleaving the

plan finding and post-processing phase by using the post-processor in between iter-

ations of an anytime planner. Each new plan found is immediately post-processed

by ARAS. When ARAS hits one of its limits, it returns the best solution it has found

and allows the anytime planner to continue looking for more plans.

There are two motivations for using ARAS in this way. First, for most anytime

satisficing planners, it is difficult to determine if any new plans will be found dur-

ing the remaining time or if the planner will be unproductive. Second, even if the
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anytime planner can find a better plan with more search, there is no guarantee that

post-processing the best plan found by an anytime planner will have a lower cost

than the post-processed version of a weaker plan found earlier. The following ex-

periment illustrates this. There are 151 problems from IPC-2011 for which LAMA-

2011 generates more than one plan (without any assistance from a post-processor).

If ARAS is run with a 2 GB memory limit on all these plans, then on 44 (29%) of

these problems, the lowest cost solution is generated by post-processing an earlier

plan, not by post-processing the final and best input plan found by LAMA-2011.

The instance 2011-transport-07 is typical: LAMA-2011 generates two plans, one

of cost 8396 and the other of cost 7222. Post-processing with ARAS improves the

weaker input plan to 6379, and the stronger one to 6402. The weaker initial plan

leads to the better final result.

This suggests that generating a greater diversity of input plans can be important

for post-processing. If the anytime planner is only able to generate a small number

of similar plans, then ARAS can only search within a very restricted set of neigh-

bourhoods. This likely means that all its output plans will be similar, and of similar

quality. When ARAS is handed a larger and more diverse set of input plans, it has a

greater chance of finding significant improvements for at least one of them.

7.4 The Diverse Anytime Search Meta-Algorithm

The Diverse Anytime Search (DAS) meta-algorithm, shown in Algorithm 10, uses

restarts with no bounds and post-processing in order to improve a given anytime

planner. DAS divides the given total planning time into N equal time segments,

where N is a user-supplied constant. In the first segment, the anytime planner P is

run normally, except that ARAS is used to post-process each plan generated by P .

At any time during this first segment, P can use its best plan found so far, excluding

post-processing, to bound its search.

When time runs out on the first time segment, the best plan found so far, includ-

ing post-processing, is saved. The anytime planner is restarted without any knowl-

edge of previous solutions, and with a planner-specific randomization which will
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vary the planner’s search. At the end of each search segment, the best overall plan

is updated, and P restarts from scratch with a new random seed.

As the early, greedier iterations of P typically find plans much more quickly

and frequently, by restarting from scratch (and thus performing these greedy iter-

ations again), DAS increases the number of plans available to the post-processor.

This increases the number of opportunities for finding a strong improvement. In

our experiments, if P cannot find any solution by the end of the first time seg-

ment, then it is does not restart. This ensures that the coverage of the planners

using DAS is the same as those that do not use it, and so we can directly focus

on the impact that DAS and other anytime approaches have on plan quality.

These details are included in Algorithm 11. The algorithm uses two time limits:

a soft time limit t for each segment, used for restarting if at least one solution was

found, and a hard time limit T for the whole search. If in the first segment, P cannot

find a solution within the soft time limit t, then restarts are disabled. In Algorithm

11, in the assignment 〈p1, t1〉 ← P .search(conf , bound , rand , time), conf is the

current search configuration (such as the weight for RWA*), bound is the plan qual-

ity bound, and rand is the random seed. If the search finds a solution within time

limit time, it returns the plan p1 and time used t1. Otherwise, the search terminates

with p1 = NULL and t1 = time.

The expression 〈p2, t2〉 ← PP .process(p1 , time) indicates a call to the post-

processor PP with p1 as the input plan. The post-processor PP returns when it either

reaches the time limit or a pre-set memory limit. When PP terminates because of

the time limit, it returns the best plan found and t2 = time. When it terminates

because of memory, it returns the best plan found and the time used. In each case,

the best plan returned could still be the input plan p1 if no improvements are found.

7.5 Experiments

In this section, we describe five sets of experiments which show the utility of DAS

and help enhance our understanding of this meta-algorithm. We begin with exper-

iments that show that bounding can be harmful when used in conjunction with a
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Algorithm 10 Diverse Anytime Search
Input Initial State I , goal condition G, given search time T , planner P , post-
processor PP
Parameter N
Output A solution plan

t← T/N
〈planbest, costbest〉 ← 〈[],∞〉
for i from 1 to N do
rand← generate_random_seed()
isSolved ← i > 1 {If the first iteration is successfully terminated, it means
there is at least one solution found. }
plan← AnytimeSearchPostprocess (I,G, T, t, rand, P, PP, isSolved)
if cost(plan) < costbest then
〈planbest, costbest〉 ← 〈plan, cost(plan)〉

end if
end for
return planbest

post-processor. This is followed by a look at the performance of DAS without post-

processing in LAMA-2011. We then experiment with combining DAS in LAMA-

2011 with the ARAS system. The fourth set of experiments then looks at the impact

of parameterization on DAS. Finally, we show that DAS is also effective when

added to AEES.

All experiments in this section were run on an 8 core 2.8 GHz machine with a

time limit of 30 minutes and memory limit of 4 GB per problem. Unless otherwise

noted, the test set is made of all 550 problems from IPC-2008 and IPC-2011. Results

for planners which use randomization are averaged over 5 runs (unless otherwise

noted). All planners are implemented on the same version of the Fast Downward

code base [19] and so the translation from PDDL to SAS+ is not included against

the time limit since it is the same for all planners. For the first four experiments,

the scores shown use the IPC metric with LAMA-2011’s plans as the baseline. This

means that if L is the best plan found by LAMA-2011 for a problem A, then the

score of a given plan P for problem A is given by cost(L)/cost(P ). A planner

can get > 1 score for problem A if it can find a better plan than L. For the post-

processor, we use the ARAS system with a 2 GB memory limit.
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Algorithm 11 Anytime Search with Post-processing
Input Initial State I , goal condition G, hard timelimit T ,
soft timelimit t, random seed rand, planner P ,
post-processor PP , first solution found flag solved
Parameter N
Output A solution plan

conf ← P .GetFirstConf ()
bound←∞
planbest ← []
isSolved← solved
totalT ime← 0
restart← true
while have time do

if not isSolved or not restart then
time← T − totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)
if not isSolved and t1 > t then

restart← false
end if

else
time← t− totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)

end if
if p1 == [] then

return []
end if
isSolved ← true
totalTime ← totalT ime+ t1
conf ← P .nextConf (conf )
bound← cost(p1)
if restart then
time← t− totalT ime

else
time← T − totalT ime

end if
〈p2, t2〉 ← PP.process(p1, time)
totalT ime← totalT ime+ t2
if cost(p2) < cost(planbest) then
planbest ← p2

end if
end while
return planbest
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Domain # of problems LAMA-2011 LAMA-Aras LAMA-Aras-B
barman 20 20 23.99 23.99
elevators 20 20 26.01 25.87
floortile 20 6 6.77 6.77
nomystery 20 10 10.00 9.83
openstacks 20 20 19.98 19.89
parcprinter 20 20 20.10 19.78
parking 20 18 18.93 17.46
pegsol 20 20 20.00 20.00
scanalyzer 20 20 23.35 21.26
sokoban 20 19 20.23 19.05
tidybot 20 16 16.77 16.77
transport 20 15 17.70 16.38
visitall 20 20 20.45 20.37
woodworking 20 20 20.96 20.85
Total 280 244 265.24 258.27

Table 7.3: Plan Quality of LAMA-2011, LAMA-Aras and LAMA-Aras-B on IPC-
2011.

7.5.1 Experiment 1: Using Post-Processing and Bounding in LAMA-
2011

Table 7.3 compares three planners on IPC-2011 domains:

• LAMA-2011 is the IPC-2011 version of LAMA.

• LAMA-Aras is an implementation of Diverse Anytime Search (DAS) with

the input planner being LAMA-2011, the input post-processor being ARAS,

and N=1. This means that there are no restarts, and that the improved plans

found by ARAS are not used for bounding, but LAMA-2011 still does its own

bounding internally.

• LAMA-Aras-B is like LAMA-Aras except all plans, including the improved

plans found by Anytime ARAS, are used to bound the subsequent iterations

of WA∗.

Table 7.3 shows that combining bounding with post-processing can be harmful,

LAMA-Aras’s plan quality scores are higher than LAMA-Aras-B’s in almost all

domains. Among the three planners, LAMA-Aras almost always gets the best plan

quality score, except by a small margin in openstacks and tidybot. ARAS is known
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to be ineffective on openstacks problems [39], and the time wasted running it causes

a slight decrease in plan quality in that domain.

7.5.2 Experiment 2: DAS without Postprocessing

This section examines the impact of using Diverse Anytime Search in terms of

unproductive time and the number of solutions it generates when used with LAMA-

2011. These tests do not use any post-processing. They show that the new meta-

algorithm increases the number of plans found and even improves solution quality

in a number of domains.

When DAS is added to LAMA-2011, RWA∗ is being used within each time seg-

ment (as is bounding). When a time segment ends, RWA∗ starts again from scratch

with a greedy best-first search iteration, though it does not bound using information

from previous time segments. The source of diversity is random operator ordering

[59]. This involves randomly shuffling the order of the generated set of successors

of an expanded node before they are added to the open list. Random operator order-

ing affects the search by changing how ties are broken. However, to ensure that

competing algorithms have the same coverage, we use the default operator or-

dering during the first time segment.

We refer to the new planner as Diverse-LAMA(N). N is the parameter which

affects the length of the time segments. Table 7.4 compares this planner, setting

N = 4, with LAMA-2011 on the 2011-elevators domain. The new planner exhibits

much less unproductive time2. In particular:

• The average number of plans increases from 1.1 to 4.3. On 17 of the prob-

lems, we see an increase from 1 plan with standard LAMA-2011 to 4 plans

with Diverse-LAMA(4), since Diverse-LAMA(4) finds one plan per segment.

In the cases of elev02 and elev03, Diverse-LAMA(4) sometimes finds more

than 1 plan per segment, depending on the random seed, whereas there is a

segment in which no plan is found on elev05.

• The amount of unproductive time decreases in all but one instance (elev11),

2Here, we show only one run instead of the average over 5 runs.
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often drastically. The problem elev11 is the only exception as Diverse-LAMA(4)

is unable to improve the plan it finds during the first segment when it finds the

same plan as LAMA-2011. However, in all other problems there was at least

one plan found in a later segment that was better than the first plan found.

Due to LAMA-2011’s high amount of unproductive time in this domain, Diverse-

LAMA(4) is also often able to find better solutions. This is because LAMA-2011

rarely finds a new solution after the first 1800/4 = 450 seconds. In contrast, Diverse-

LAMA(4) continues to find solutions by restarting and returning to a greedier search,

some of which are better than the solutions found in the first 450 seconds.

Table 7.5 compares the plan quality of LAMA-2011 and Diverse-LAMA(4) on

IPC-2011 domains and shows that this behaviour is also not limited to the elevators

domain. In total, Diverse-LAMA(4) improves by a score of 6.1 though this im-

provement is not uniform over all domains. Instead, Diverse-LAMA(4) improves

its solution quality over LAMA-2011 in 8 domains, while it is worse in 5 domains.

These improvements are mainly made in domains in which LAMA-2011 has a high

percentage of unproductive time for the same reasons as was the case in the eleva-

tors domain. However, in those domains in which LAMA-2011 is more productive

later in the search, the restarts prevent Diverse-LAMA(4) from following through

on one search long enough to find the best solutions. This is more apparent in Ta-

ble 7.6, which shows the number of problems on which each of LAMA-2011 and

Diverse-LAMA(4) found the best plan. In those domains in which LAMA-2011

is mostly unproductive, Diverse-LAMA(4) rarely generates worse final solutions,

while for those domains in which LAMA-2011 is more productive later on — such

as Floortile, Tidybot, Sokoban and Parking — Diverse-LAMA(4) will occasionally

find weaker plans.

7.5.3 Experiment 3: Combining DAS with ARAS

This section tests DAS when used with LAMA and ARAS. The system is denoted

as Diverse-LAMA-Aras(N) The four planners LAMA-2011, LAMA-2011-Aras3,

3LAMA-2011-Aras is equivalent to Diverse-LAMA-Aras(1).
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Instance #s1 UT1 #s2 UT2 Instance #s1 UT1 #s2 UT2
elev01 1 1799 4 1350 elev11 1 1760 4 1762
elev02 1 1798 6 330 elev12 1 1704 4 863
elev03 1 1797 4 1349 elev13 1 1679 4 354
elev04 3 1794 9 835 elev14 1 1725 4 793
elev05 1 1799 3 900 elev15 1 1659 4 713
elev06 1 1796 4 446 elev16 1 1649 4 795
elev07 1 1798 4 448 elev17 1 1576 4 1262
elev08 1 1791 4 895 elev18 1 1510 4 294
elev09 1 1789 4 1342 elev19 1 1152 4 1009
elev10 1 1783 4 440 elev20 1 1531 4 296

Table 7.4: Number of solutions and Unproductive Time of LAMA-2011 (#s1 and
UT1) and Diverse-LAMA(4) (#s2 and UT2) in the 20 instances of 2011-elevators.

domain UT LAMA-2011 Diverse-LAMA(4)
2011-parcprinter 99.99% 20 20.08
2011-barman 99.73% 20 21.76
2011-woodworking 98.21% 20 20.48
2011-elevators 94.14% 20 25.20
2011-visitall 86.89% 20 20.10
2011-pegsol 86.41% 20 19.79
2011-scanalyzer 82.90% 20 20.75
2011-nomystery 81.57% 10 10
2011-transport 76.13% 15 15.69
2011-openstacks 69.17% 20 20.22
2011-floortile 65.11% 6 5.05
2011-tidybot 62.84% 16 15.30
2011-sokoban 59.58% 19 18.59
2011-parking 43.05% 18 17.21
total 244 250.10

Table 7.5: Plan Quality of LAMA-2011, Diverse-LAMA(4) on IPC-2011. Domains
are sorted by decreasing fraction of Unproductive time (UT) shown in Table 7.1.

Diverse-LAMA(4), and Diverse-LAMA-Aras(4) are tested on all 550 problems

from IPC-2008 and IPC-2011.

Table 7.7 shows a comparison of the plan quality of these planners in each of

the domains tested. Diverse-LAMA-Aras(4) is the best (or tied for best) in 18 of

the 23 domains and achieves the highest overall score, improving over the baseline

planner LAMA-2011 by 59 units.
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domain UP better worse total
2011-parcprinter 99.99% 2 0 20
2011-barman 99.73% 19 0 20
2011-woodworking 98.21% 8 0 20
2011-elevators 94.14% 19 0 20
2011-visitall 86.89% 6 3 20
2011-pegsol 86.41% 0 1 20
2011-scanalyzer 82.90% 6 2 20
2011-nomystery 81.57% 0 0 10
2011-transport 76.13% 6 0 15
2011-openstacks 69.17% 4 4 20
2011-floortile 65.11% 0 2 6
2011-tidybot 62.84% 2 7 16
2011-sokoban 59.58% 1 4 19
2011-parking 43.05% 7 4 18

Table 7.6: Plan Comparison between Diverse-LAMA(4) and LAMA-2011 on dif-
ferent domains. The columns better indicates in how many problems Diverse-
LAMA(4) generates better plans than LAMA-2011 (worse means how many
worse). Domains are ordered according to the percentages of Unproductive time
(UP) shown in Table 7.1.

Figure 7.2: Normalized Score Curve of the 4 tested planners.

Figure 7.2 shows the normalized score 4 curve over 30 minutes of the 4 tested

4It equals the current score divided by 511, which is the final score by LAMA-2011 as shown in
Table 7.7.

99



domain # of problems LAMA DL(4) LAMA-Aras DL-Aras(4)
08-cybersec 30 30 30.00 30.00 30.00
08-elevators 30 30 35.82 38.50 43.34
08-openstacks 30 30 30.25 29.97 30.35
08-parcprinter 30 30 30.00 30.09 30.10
08-pegsol 30 30 29.78 30.00 30.00
08-scanalyzer 30 30 31.35 34.00 34.18
08-sokoban 30 28 27.15 27.66 27.48
08-transport 30 29 31.51 35.14 36.73
08-woodworking 30 30 30.92 33.10 34.28
11-barman 20 20 21.76 23.99 24.20
11-elevators 20 20 25.20 26.01 31.16
11-floortile 20 6 5.01 6.77 6.77
11-nomystery 20 10 10.00 10.00 9.89
11-openstacks 20 20 20.22 19.98 20.11
11-parcprinter 20 20 20.08 20.10 20.05
11-parking 20 18 17.21 18.93 19.54
11-pegsol 20 20 19.79 20.00 20.01
11-scanalyzer 20 20 20.75 23.35 23.46
11-sokoban 20 19 18.59 20.23 20.54
11-tidybot 20 16 15.21 16.77 16.17
11-transport 20 15 15.69 17.70 19.68
11-visitall 20 20 20.10 20.45 20.53
11-woodworking 20 20 20.48 20.96 21.78
total 550 511 526.89 553.69 570.35

Table 7.7: Plan Quality of LAMA-2011 (LAMA), LAMA-2011-Aras (LAMA-
Aras), Diverse-LAMA(4) (DL(4)) and Diverse-LAMA-Aras(4) (DL-Aras(4))
on all 550 problems from IPC-2008 and IPC-2011. Extra experiments
data can be found: www.cs.ualberta.ca/research/theses-publications/technical-
reports/2013/TR13-02.

planners over all test domains. The three vertical lines indicate the restart points

for Diverse-LAMA(4) and Diverse-LAMA-Aras(4) of 450, 900 and 1350 seconds.

Notice that the time axis is in log scale. Before the first restart, DAS and non-DAS

versions of the same planner are nearly the same5. Immediately after the first restart,

the DAS planners show a quick jump in solution quality. This is because for many

problems, restarting allows the planner to find new, sometimes better solutions. A

5To fully utilize our computational resources, we run several processes simultaneously on a
multi-core machine. While all versions use the same memory limit, the restarts cause DAS to use
less memory. The resulting decrease in memory contention accounts for the small differences in
planner performance.
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similar but less pronounced jump is also visible after the second restart.

By producing more plans, Diverse-LAMA-Aras(4) also provides more input

plans for ARAS. Compared to Diverse-LAMA-Aras(4), the improvement from the

first restart is more pronounced in Diverse-LAMA(4). Using ARAS smooths out

some of the variance in solution quality between different runs.

As shown by the previous two experiments, using either ARAS or DAS improves

plan quality. In Table 7.8, we show that the performance improvements from these

techniques are independent, and sometimes even synergetic. The score for each

planning system is split into two components: the raw scores of the best plans pro-

duced by the planning system ignoring the impact of ARAS (ie. ARAS is being run,

but the plans it outputs are not counted towards the score of the planner), and the

independent contribution of ARAS when it is used in the planning system. For com-

parison, the scores of the baseline planners (ie. those that do not run ARAS at all)

are also shown. The raw scores are slightly worse than the baseline scores, since

the planner producing the raw scores uses less time for the main search because of

using ARAS (though it is not counted in the score). The improvement of Aras over

Diverse-LAMA(4) is slightly larger than the improvement of Aras over LAMA-

2011. This demonstrates that the improvements from Diverse-LAMA(4) finding

substantially different overall plans seems to be largely independent from the local

plan improvements found by Aras. The following two examples help to explain this

behaviour:

• In 2011-floortile 05, the best raw plan generated by Diverse-LAMA(4) has

cost 132, while LAMA-2011 can find a cost 63 plan. ARAS can improve the

cost 132 plan to a cost of 63 as well. This suggests that ARAS can help DAS

in cases where restarting prevents the search from running long enough to

find good plans.

• In 2011-woodworking 01, plans of cost 1600, 1630 and 1620 are produced

in time segments 1, 3 and 4, while LAMA-2011 only finds one solution of

cost 1600. ARAS improves the three solutions as follows: 1600 → 1460,

1630 → 1290 and 1620 → 1380. The worst input plan turns out to be the
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best after post-processing, while the best input plan becomes the worst after

post-processing. Out of the 244 problem instances solved by LAMA-2011, in

44 cases the best final plan produced from Anytime Aras does not come from

LAMA’s best plan. In Diverse-LAMA-Aras(4), this ratio increases dramati-

cally, to 86/244 problems. This demonstrates how increased plan diversity

from DAS can improve overall performance.

domain LAMA DL(4) LAMA-Aras DL-ARAS(4)
rawLA ∆ARAS Final rawDL ∆ARAS Final

barman 20.00 21.76 20.00 3.99 23.99 21.70 2.51 24.20
elevators 20.00 25.20 20.21 5.80 26.01 24.82 6.35 31.16
floortile 6.00 5.01 5.21 1.55 6.77 4.67 2.10 6.77
nomystery 10.00 10.00 10.00 0.00 10.00 9.86 0.03 9.89
openstacks 20.00 20.22 19.98 0.00 19.98 19.94 0.17 20.11
parcprinter 20.00 20.08 20.00 0.10 20.10 20.00 0.05 20.05
parking 18.00 17.21 16.84 2.09 18.93 16.33 3.21 19.54
pegsol 20.00 19.79 19.57 0.43 20.00 17.65 2.36 20.01
scanalyzer 20.00 20.75 18.89 4.46 23.35 20.39 3.07 23.46
sokoban 19.00 18.59 16.58 3.65 20.23 16.10 4.44 20.54
tidybot 16.00 15.21 15.15 1.62 16.77 14.75 1.42 16.17
transport 15.00 15.69 14.00 3.70 17.70 16.32 3.37 19.68
visitall 20.00 20.10 20.00 0.45 20.45 20.06 0.47 20.53
woodwork 20.00 20.48 20.00 0.96 20.96 20.48 1.30 21.78
Total 244.0 250.1 236.44 28.80 265.24 243.06 30.84 273.90

Table 7.8: Combined effect of DAS and post-processing in IPC-2011 domains.

7.5.4 Experiment 4: Testing DAS with Different Numbers of Seg-
ments

Recall that DAS is parameterized by the number of segments, N , for which it runs,

with N = 1 corresponding to LAMA-ARAS, and N = 4 to the algorithm used

in the previous experiments. Figure 7.3 shows how the behaviour of this meta-

algorithm changes when varying N in the range from 1 to 120 on IPC 2011 do-

mains. Overall, the plan quality score differences are small, with the best results for

N from 3 to 6. For N ≤ 3, plan quality increases with N , taking advantage of the

diversity and number of plans generated. For N > 6, the solution quality slowly
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decreases as the runtime for both LAMA and ARAS becomes ever shorter.6 The

trade-off is that a too large N does not leave the planner enough time to find high

quality input plans, while small N hurt diversity.

Figure 7.3: Plan Quality of Diverse-LAMA-Aras(N) with different N values. The
x-axis represents the value of N. The y-axis represents the quality score.

7.5.5 Experiment 5: Combining DAS with Anytime Explicit Es-
timation Search

Anytime explicit estimation search (AEES) is an anytime search algorithm intro-

duced by Thayer et al. [56]. AEES uses explicit estimation search (EES) [55] as its

main search component. EES is a suboptimal search algorithm which is able to use

both inadmissible and admissible heuristics while still satisfying a given solution

cost bound. It does so by focusing its search on nodes that the inadmissible heuris-

tic estimates will lead to solutions that are within the bound. It has been shown to be

particularly effective in domains with non-unit action costs due to its ability to use

both distance-to-go and cost-to-go heuristics [55]. AEES is the anytime version of

EES, which lowers the suboptimality bound whenever a new best solution is found,

6The time of each time segment is given by T/N , where T is the total time (30 minutes in our
experiments).
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by using the latest solution as the new bound. The AEES algorithm’s goal is to

minimize the time between solutions, and generate more solutions. This makes it a

good test case for DAS.

This section tests AEES on IPC-2008 and IPC-2011 domains. DAS with AEES

is configured as follows: it uses the two planning-specific enhancements of deferred

evaluation and preferred operators, and the three heuristics Landmark-cut (admis-

sible cost-to-go heuristic) [20], FF-cost (inadmissible cost-to-go heuristic) and FF-

distance (distance-to-go heuristic) [25]. The scores shown use the IPC metric with

AEES as a baseline. If L is the plan computed by AEES, then the score of a given

plan P is calculated by cost(L)/cost(P ). The experimental results are shown in

Table 7.9. Similar to the LAMA-2011 experiments, Diverse-AEES-ARAS(4) gets

the highest score, improving the baseline planner AEES by 73.7 units from 440 to

513.7, and achieving the best score in 14 of 23 domains.

7.6 Chapter Summary

This chapter has shown that the search performance of LAMA-2011 suffers from a

large amount of unproductive time, time which can be used in other ways such as

post-processing. The new meta-algorithm of Diverse Anytime Search tries to uti-

lize this unproductive time with randomized restarts to generate a larger and more

diverse set of plans for a post-processing system such as ARAS to improve upon.

Experimental results show that the new framework leads to substantial improve-

ments on IPC-2008 and IPC-2011 domains, for both LAMA-2011 and the AEES

algorithm. The best parameter N for DAS depends on factors such as the planning

domain, randomizing method and search algorithm. However, in the experiments

the performance was robust for small values of N between 3 and 6.
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domain # of problems AEES DE(4) AEES-Aras DE-Aras(4)
08-cybersec 30 29 31.20 29.00 32.36
08-elevators 30 30 33.80 41.67 45.20
08-openstacks 30 30 31.35 30.00 31.15
08-parcprinter 30 25 25.16 25.70 25.82
08-pegsol 30 30 29.96 30.11 30.05
08-scanalyzer 30 30 30.53 34.35 34.16
08-sokoban 30 27 26.47 26.71 26.73
08-transport 30 28 31.09 38.43 40.86
08-woodworking 30 20 20.25 21.14 21.32
11-barman 20 20 20.88 22.74 22.85
11-elevators 20 19 23.03 25.03 28.06
11-floortile 20 6 5.50 6.00 6.00
11-nomystery 20 10 9.94 10.00 9.91
11-openstacks 20 20 20.92 20.00 21.00
11-parcprinter 20 11 11.14 11.88 11.92
11-parking 20 15 15.15 16.61 18.40
11-pegsol 20 20 19.92 20.11 20.04
11-scanalyzer 20 20 21.00 24.73 24.43
11-sokoban 20 17 16.73 16.60 16.96
11-tidybot 20 13 13.56 16.21 15.41
11-transport 20 13 14.60 18.22 19.51
11-visitall 20 3 3.32 7.30 7.39
11-woodworking 20 4 3.98 4.12 4.13
total 550 440 459.50 496.67 513.67

Table 7.9: Plan Quality of AEES, Diverse-AEES(4) (DE(4)), AEES-Aras, and
Diverse-AEES-Aras(4) (DE-Aras(4)) on all 550 problems from IPC-2008 and IPC-
2011.
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Chapter 8

The Jasper Planner: Combining
Exploration in Greedy Best First
Search

Chapters 3 to 7 propose techniques that improve the performance of GBFS in both

coverage and plan quality. This chapter integrates these techniques and builds the

new satisficing planner Jasper. This chapter is based on the following publication:

• F. Xie, M. Müller and R. Holte. Jasper: the Art of Exploration in Greedy

Best First Search. In M. Vallati, L. Chrpa, L. and T. McCluskey, The Eighth

International Planning Competition, University of Huddersfield, 39–42, 2014

[69].

8.1 The Jasper Planner

Jasper is a satisficing planner that builds on LAMA-2011 [47]. It adds two modi-

fications. First, it replaces the GBFS algorithm in LAMA-2011 with an improved

GBFS variant, Type Exploration based Greedy Best-First Search with Local Search

(Type-GBFS-LS). GBFS-LS (see Chapter 4) and Type-GBFS (see Chapter 6) are

designed for two different problems in GBFS. Jasper applies both enhancements to

GBFS. Like GBFS-LS, Type-GBFS-LS uses a local search when the global search

gets stuck. However, Type-GBFS-LS replaces GBFS with Type-GBFS in both the

global level search and the local level search. Type-GBFS-LS is an improved ver-

sion of GBFS that is less sensitive to flaws in heuristic functions. Second, it imple-
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Figure 8.1: Comparison of search time: LAMA-2011 vs. Jasper.

ments the DAS (see Chapter 7) system for solution improvement, which takes the

modified LAMA-2011 as the anytime planner and ARAS [39] as the post-processing

system, as shown in Chapter 7.

8.2 Experiments on the First 7 IPC domains

Experiments were run on a set of 2112 problems in 54 domains from the first seven

International Planning Competitions, using one core of a 2.8 GHz machine with 4

GB memory and 30 minutes per instance. Results for planners which use random-

ization are averaged over five runs.

The performance comparison in this section includes the following planners:

LAMA-2011, LAMA-LS (from Chapter 4), Type-LAMA (from Chapter 6), and

Jasper.

Table 8.1 shows the coverage results for the four planners. All three new plan-

ners get better results than LAMA-2011, with the best result of 1953.0 for Jasper.

Figures 8.1, 8.2 and 8.3 compare each planner with Jasper in terms of their

search time of finding the first solution in IPC time comparison setting (see Chapter

4 Section 4.4.2). Jasper shows a clear improvement over the other 3 planners in
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Figure 8.2: Comparison of search time: LAMA-LS vs. Jasper.

Figure 8.3: Comparison of search time: Type-LAMA and Jasper.
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terms of speed. It solves more problems than LAMA-LS. Besides its advantage in

coverage, it wins the time comparison with Type-LAMA for a larger number of

instances by factors 2× and 10×.

Planner LAMA-2011 LAMA-LS Type-LAMA Jasper
Coverage 1913 1931 1949.8 1953.0

Table 8.1: IPC coverage out of 2112.

8.3 Experiments on IPC 2014

Jasper is developed and tuned towards the first 7 IPC benchmarks. In order to show

its robustness in new domains, this section compares Jasper with LAMA-2011 over

the IPC-2014 domains.

8.3.1 Overview of IPC-2014 Sequential Satisficing Track

There are 14 domains and 280 problems (20 problems each domain) in the Sequen-

tial Satisficing track of IPC-2014. The score of a plan is computed according the

IPC metric with best found solution as the baseline. This means that if Lbest is the

plan with minimum cost found by all planners, then the score of a given plan P is

given by cost(Lbest)/cost(P ). The score is 0 if no plan is found. A planner’s score

is computed by summing up scores of their best solutions in each problem.

There are 20 planners attending the Sequential Satisficing track. Jasper ranked

4th (considering both coverage and plan quality) behind IBaCoP2/IBaCoP [6], Mer-

cury [28] and MIPlan [43]. Portfolio based planners achieved remarkable success in

this competition. Mercury and Jasper are the only two not portfolio based planners

that ranked in top 10. Jasper solved the second largest number of problems only

behind IBaCoP2/IBaCoP [6], which is a powerful planner based on 28 different

planners.

8.3.2 Comparing Coverage and Plan Quality with LAMA-2011

Experiments were run on all 280 problems from IPC-2014, using one core of a 2.8

GHz machine with 4 GB memory and 30 minutes per instance. Results for Jasper
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which use randomization are averaged over five runs.

Coverage Plan Quality
Domain # of ins LAMA-2011 Jasper LAMA-2011 Jasper
2014-Barman 20 20 20 14.84 19.54
2014-CaveDiving 20 7 7 7.00 7.00
2014-Childsnack 20 0 0 0.00 0.00
2014-CityCar 20 4 10 3.29 9.92
2014-Floortile 20 2 2 1.96 2.00
2014-GED 20 20 20 17.59 18.27
2014-Hiking 20 17 19.6 14.17 18.27
2014-Maintenance 20 7 11 6.07 10.88
2014-Openstacks 20 19 19.6 17.36 18.62
2014-Parking 20 12 19.8 10.05 18.19
2014-Tetris 20 4 7.2 3.34 4.42
2014-Thoughtful 20 17 17 16.02 16.68
2014-Transport 20 7 10 4.69 9.58
2014-Visitall 20 20 20 19.14 19.93
Total 280 156 180.8 135.52 173.30

Table 8.2: Coverage and quality score for LAMA-2011 and Jasper.

The first two columns in Table 8.2 compare the coverage result between LAMA-

2011 and Jasper. Jasper solved 180.8 (average over 5 runs) problems, 24.8 more

than LAMA-2011. Jasper solved 182, 180, 180, 180 and 182 problems in 5 different

runs respectively.

Figure 8.4 compares the time usage of LAMA-2011 and Jasper over the IPC-

2014 benchmarks in IPC time comparison setting (see Chapter 4 Section 4.4.2).

Jasper shows substantial improvements in search time over LAMA-2011.

The last two columns in Table 8.2 compare LAMA-2011 and Jasper in IPC

scores. Jasper’s IPC scores are quite stable in 5 runs. It achieved 174.39, 173.10,

173.31, 172.25 and 173.45 in 5 different runs respectively. Jasper only solved 24.8

more problems than LAMA-2011, however, its IPC score is 37.7 (average over

5 runs) higher than LAMA-2011. Jasper not only solved more problems but also

produced better solutions because of the Diverse Anytime Search framework.
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Figure 8.4: Comparison of search time: LAMA-2011 vs. Jasper on IPC-2014 bench-
marks.

8.4 Chapter Summary

This chapter describes the new planner Jasper, which integrates techniques devel-

oped in this dissertation into LAMA-2011. It compares LAMA-2011 and Jasper on

both the first 7 IPC benchmarks and the latest IPC-214 benchmarks. Jasper shows

a substantial improvement over LAMA-2011 in both coverage and plan quality.
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Chapter 9

Conclusion

This chapter summarizes the contributions and lessons we learned during this dis-

sertation, followed by a discussion on the limitations and possible future work in

this line of research.

9.1 Contributions and Lessons

AI Planning and Heuristic Search are fundamental research areas for Artificial In-

telligence. Heuristic Search is proven to be one of the most effective methods in

solving planning problems. Despite the success in this direction, flawed heuristics

are still some of the main bottlenecks that prevents heuristic search from scaling to

harder problems.

This dissertation proposed exploration as a solution to reduce the influence of

flaws in heuristics. It investigates how exploration works from four different as-

pects, and develops a strong planner based on these techniques:

• Investigating the scalability of current satisficing planners in large IPC

domains: In Chapter 3, we show the limit of the current satisficing planners

by generating a set of large problems from IPC domains. We also demonstrate

the combination of local GBFS and random walks, which do not evaluate

intermediate nodes, can scale to much larger planning instances.

• Understanding and using local exploration in GBFS: Chapters 4 and 5

introduce the Greedy Best First Search with Local Exploration (GBFS-LE)

framework along with two concrete algorithms GBFS-LS and GBFS-LRW
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to attack the UHR problem for GBFS. We also conduct a deep analysis on

some instances of GBFS, which shows that GBFS often gets stuck in a big

"virtual" UHR that consists of both small and big UHRs over the open list.

Moreover, we show that the existence of barrier nodes is the main reason that

GBFS fails badly in some problems, while GBFS-LS performs much better

in this case.

• Exploring the usage of type systems in adding exploration to GBFS:

Chapter 6 demonstrates that early mistakes can make GBFS grow the search

tree deep into a region of state space without any easy-to-find solutions. In

the case of early mistakes, the nodes on some solution path that do exist in

the open list are not open until very late because they have high heuristic val-

ues. Moreover, we show that the straightforward exploration by selecting a

node from the open list uniformly at random like ε-GBFS has some limita-

tions when the majority of the nodes in the open list might come from the bad

region. The novel idea of type buckets is used to change the distribution of the

nodes that Type-GBFS samples from to improve the quality of exploration.

• Discovering unproductive time and reducing it by combining random-

ized restart and post-processing: It is commonly accepted that in an any-

time satisficing planner, all solutions with higher plan cost than the current

best solution should be pruned. Chapter 7 shows that such a bounding strat-

egy is harmful for plan improvement when post-processing is applied. We

introduce the concept of Unproductive Time, and analyze it on LAMA-2011.

Later, we propose the new meta algorithm of Diverse Anytime Search, which

takes an anytime satisficing planner and a post-processing system to reduce

the unproductive time and generates better quality solutions.

• Developing a strong satisficing planner: Chapter 8 introduces the new sat-

isficing planner Jasper. It integrates both the local exploration from GBFS-LS

and the global exploration from Type-GBFS into a single search algorithm. It

also integrates Diverse Anytime Search for better quality solutions. It ranked

the 4th out of 21 planners in the deterministic satisficing track of IPC-2014,
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and solved the largest number of problems among all non-portfolio-based

planners.

There are two major lessons that I learned during my past 5 years. First, balanc-

ing between exploration and exploitation is important for overcoming the problems

caused by flaws in heuristics. Second, deep analysis of specific instances can lead to

algorithm improvement in general1. The second lesson is the fundamental method-

ology behind much of my work, which keeps evolving the process. In my first few

years in PhD, guess-and-try manner was my major strategy. For example, during

building Arvand-LS, I first asked the question "can we combine systematic search

and random walks?" and then I conducted different combinations and reported the

one that worked best. In later years, more analysis on specific instances provided

solid reasoning on why and how the proposed techniques will work. For example,

Chapter 5 illustrates that small UHRs take up a sufficiently large part of the open

list, leading to the idea of breaking a large local exploration into multiple smaller

ones. Chapter 7 analyzes unproductive time and the relationship between an input

raw solution and an output improved solution, which leads to the idea of random-

ization and multiple restarts in that chapter.

9.2 Challenge and Future Work

This section discusses some of the challenges of the current research and proposes

interesting directions for future work:

• Combining Greedy Best First Search and Stochastic Random Walk: One

remaining weakness of Arvand-LS is in problems that require exhaustive

search of large regions of the state space, such as Sokoban and Parking. Since

portfolio based planners have achieved remarkable results [6, 59], building a

portfolio planner that contains Arvand-LS as well as other planners such as

LAMA-2011, which performs well in such problems, is an interesting direc-

tion.
1This sentence is partially borrowed from one AAAI review. The original sentence is "This work

is an excellent example of directed analysis leading to algorithm improvement...".
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• Adding and Understanding Local Exploration in GBFS: Determining whether

the Multiple Uninformative Heuristic Region problem occurs in classical heuris-

tic search domains, such as sliding tile puzzles [34], is an interesting research

direction. Valenzano et al. [60] show that replacing preferred operators with

random actions can achieve about half the improvement of preferred opera-

tors. Similarly, replacing the secondary heuristic in multiple heuristics with

a purely random heuristic achieves about half the improvement of multiple

heuristics. The Multiple Uninformative Heuristic Region problem might be a

contributing cause of these two phenomena.

• Adding Global Exploration with Type Buckets to Greedy Best First Search:

One potential problem of Type-GBFS is that the type system might not be

able to explore deeply enough when the distance from current nodes in the

open list to heuristically promising nodes is large. One potential solution for

this problem is to use a larger local search. As I show in Chapter 8, com-

bining Type-GBFS with local GBFS performs better than Type-GBFS itself.

However, more research,on how to combine global level and local level ex-

ploration properly, is needed.

• Adding Exploration for Better Quality Solutions: The Diverse Anytime

Search framework introduces solution diversity by randomizing operators.

However, it is detected in many problems that the neighborhood graphs of

"different" input plans have a large degree of overlap. Finding more diverse

plans, such as Srivastava et al.’s work [54], can be a promising direction to

explore in the future.

• The Jasper planner: Jasper has shown its strong performance in IPC-2014.

It solved the second largest number of problems in the competition. It solved

more problems than many portfolio base planners, only behind IBaCoP2/IBaCoP

[6]. It naturally raises the question of whether we can include Jasper in a port-

folio planner to further improve the coverage?
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